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Abstract. With the availability of big medical image data, the selec-
tion of an adequate training set is becoming more important to address
the heterogeneity of different datasets. Simply including all the data
does not only incur high processing costs but can even harm the predic-
tion. We formulate the smart and efficient selection of a training dataset
from big medical image data as a multi-armed bandit problem, solved
by Thompson sampling. Our method assumes that image features are
not available at the time of the selection of the samples, and therefore
relies only on meta information associated with the images. Our strategy
simultaneously exploits data sources with high chances of yielding useful
samples and explores new data regions. For our evaluation, we focus on
the application of estimating the age from a brain MRI. Our results on
7,250 subjects from 10 datasets show that our approach leads to higher
accuracy while only requiring a fraction of the training data.

1 Introduction

Machine learning has been one of the driving forces for the huge progress in
medical imaging analysis over the last years. Of key importance for learning-
based techniques is the training dataset that is used for estimating the model
parameters. Traditionally, medical data has been scarce so usually all available
data for a particular task was used for training. Nowadays, many initiatives
make data publicly available so that huge amounts of data can potentially be
used to estimate more accurate models. However, just including all the data
in the training set is becoming increasingly impractical, since processing the
data to create training models can be very time consuming on huge datasets. In
addition, most processing may be unnecessary because it does not help the model
estimation for a given task. In this work, we propose a method to select a subset
of the data for training that is most relevant for a specific task. Foreshadowing
some of our results, such a guided selection of a subset of the data for training
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can lead to a higher performance than using all the available data while requiring
only a fraction of the processing time.

The task of selecting a subset of data for training is challenging because at
the time of making the decision, we do not yet have processed the data and
we do therefore not know how the inclusion of the sample would affect the
prediction. However, in many scenarios each image is assigned metadata about
the patient (sex, diagnosis,age etc.) or the image acquisition (dataset of origin,
location, imaging device, etc.). We hypothetize that some of this information
can be useful to guide the selection of samples but it is a priori not clear which
information is most relevant and also how it should be distributed. To address
this problem, we formulate the selection of the samples to be included in a
training set as reinforcement learning, where a trade-off must be reached between
the exploration of new sources of data and the exploitation of sources that have
been shown to lead to informative data points in the past. More specifically, we
model this as a multi-armed bandit problem solved with Thompson sampling,
where each arm of the bandit corresponds to a cluster of samples generated using
meta information.

In this paper, we apply our sample selection method to brain age estima-
tion [7] from MR1 T1 images. The estimated age serves as a proxy for biological
age, whose difference to the chronological age can be used as indicator of dis-
ease [6,8]. The age estimation is a well-suited application for testing our algo-
rithm as it allows us to work with a large number of datasets since the subject’s
age is one of the few variables that is included in every neuroimaging dataset.

1.1 Related Work

Our work is mostly related to active learning approaches, whose aim is to select
samples to be labeled out of a pool of unlabeled data. Examples of active learning
approaches applied to medical imaging tasks include the work by Hoi et al. [10],
where a batch mode active learning approach was presented for selecting med-
ical images for manually labeling the image category. Another active learning
approach was proposed for the selection of histopathological slices for manual
annotation in [21]. The problem was formulated as constrained submodular op-
timization problem and solved with a greedy algorithm. To select a diverse set of
slices, the patient identity was used as meta information. From a methodological
point of view, our work relates to the work of Bouneffouf et al. [1], where an ac-
tive learning strategy based on contextual multi-armed bandits is proposed. The
main difference between all these active learning approaches and our method is
that image features are not available a priori in our application, and therefore
can not be used in the sample selection process. Our work also relates to do-
main adaptation [16]. In instance weighting, the training samples are assigned
weights according to the distribution of the labels (class imbalance) [11] and the
distribution of the observations (covariate shift) [17]. Again these methods are
not directly applicable in our scenario because not all the distribution of the
metadata is defined on the target dataset.
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2 Method

2.1 Incremental Sample Selection

In supervised learning, we model a predictive function f : (x,p) 7→ y depending
on a parameter vector p, relating an observation x to its label y. In our appli-
cation, x ∈ Rm is a vector with m quantitative brain measurements from the
image and y ∈ R is the age of the subject. The parameters p are estimated by
using a training set ST = {s1, s2, . . . , sNtrain

}, where each sample s = (x, y) is
a pair of a feature vector and its associated true label. Once the parameters are
estimated, we can predict the label ỹ for a new observation x̃ with ỹ = f(x̃,p∗),
where the prediction depends on the estimated parameters and therefore the
training dataset.

In our scenario, the samples to be included in the training set ST are selected
from a large source set S = {h1, h2, .., hNtotal

} containing hidden samples of the
form h = {x̂, ŷ,m}. Each h contains hidden features x̂ and label ŷ that can
only be revealed after processing the sample. In addition, each hidden sample
possesses a d-dimensional vector of metadata m ∈ Zd that encodes character-
istics of the patient or the image such as sex, diagnosis, and dataset of origin.
In contrast to x̂ and ŷ, m is known a priori and can be observed at no cost.
To include a sample h from set S into ST , first its features and labels have to
be revealed, which comes at a high cost. Consequently, we would like to find a
sampling strategy that minimizes the cost by selecting only the most relevant
samples according to the metadata m.

2.2 Multiple Partitions of the Source Data

In order to guide our sample selection algorithm, we create multiple partitions
of the source dataset, where each one considers different information from the
metadata m. Considering the j-th meta information (1 ≤ j ≤ d), we create
the j-th partition S = ∪ηji=1C

j
i with ηj a predefined number of bins for m[j].

As a concrete example, sex could be used for partitioning the data, so S =
Csex

female ∪ Csex
male and ηsex = 2. All the clusters generated using different meta

information are merged into a set of clusters C = {Cjι }. We hypothesize that
given this partitioning, there exist clusters Ci ∈ C that contain more relevant
samples than others for a specific task. Intuitively, we would like to draw samples
h from clusters with a higher probability of returning a relevant sample. However,
since the relationship between the metadata and the task is uncertain, the utility
of each cluster for a specific task is unknown beforehand. We will now describe a
strategy that simultaneously explores the clusters to find out which ones contain
more relevant information and exploits them by extracting as many samples
from relevant clusters as possible.

2.3 Sample selection as a multi-armed bandit problem

We model the task of sequential sample selection as a multi-armed bandit prob-
lem. At each iteration t, a new sample is added to the training dataset ST . For
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adding a sample, the algorithm decides which cluster Ci ∈ C to exploit and ran-
domly draws a training sample st from cluster Ci. The corresponding feature
vector xt and label yt are revealed and the usefulness of the sample st for the
given task is evaluated, yielding a reward rt ∈ R. A reward rt = 1 is given if
adding the sample improves the prediction accuracy of the model and rt = −1
otherwise.

At t = 0, we do not possess knowledge about the utility of any cluster. How-
ever, this knowledge is incrementally built as more and more samples are drawn
and their rewards are revealed. To this end, each cluster is assigned a distribu-
tion of rewards Πi. With every sample the distribution better approximates the
true expected reward of the cluster, but every new sample also incurs a cost.
Therefore, a strategy needs to be designed that explores the distribution for each
of the clusters, while at the same time exploiting as often as possible the most
rewarding sources.

To solve the problem of selecting from which Ci to sample at every iteration
t, we follow a strategy based on Thompson sampling [18] with binary rewards. In
this setting, the expected rewards are modeled using a probability Pi following
a Bernoulli distribution with parameter πi ∈ [0, 1]. We maintain an estimate
of the likelihood of each πi given the number of successes αi and failures βi
observed for the cluster Ci so far. Successes (r = 1) and failures (r = −1)
are defined based on the reward of the current iteration. It can be shown that
this likelihood follows the conjugate distribution of a Bernoulli law, i.e., a Beta
distribution Beta(αi, βi) so that

P (πi|αi, βi) =
Γ (αi + βi)

Γ (αi)Γ (βi)
(1− πi)βi−1παi−1

i . (1)

with the gamma function Γ . At each iteration, π̂i is drawn from each cluster
distribution Pi and the cluster with the maximum π̂i is chosen. The procedure
is summarized in Algorithm 1.

Algorithm 1 Thompson Sampling for Sample Selection

1: αi = 1, βi = 1, ∀i ∈ {1, . . . , N}
2: for t = 1, 2, ... do
3: for i = 1, . . . , N do
4: Draw π̂i from Beta(αi, βi).

5: Reveal sample ht = {xt, yt,mt} from cluster Cj where j := arg maxi π̂i.
6: Add sample ht to ST and remove from all clusters.
7: Obtain new model parameters p∗ from updated training set ST .
8: Compute reward rt based on new prediction ỹ = f(x,p∗).
9: if rt == 1 then αj = αj + 1

10: else βj = βj + 1
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3 Results

In order to showcase the advantages of our multi-armed bandit sampling algo-
rithm (MABS), we present an evaluation of our method in the task of estimating
the biological age of a subject given a set of volume and thickness features of the
brain. We choose this task in particular because of the big number of available
brain images in public databases and, the relevance of age estimation as a tool
for diagnostic of neuro degenerative diseases [8,19]. For predicting the age, we
reconstruct brain scans with FreeSurfer [5] and extract volume and thickness
measurements to create our feature vectors x. Based on these features, we train
a regression model for predicting the age of previously unseen subjects.

3.1 Data

We work on MRI T1 brain scans from 10 large-scale public datasets: ABIDE [3],
ADHD200 [15], AIBL [4], COBRE [14], IXI5, GSP [2], HCP [20], MCIC [9],
PPMI [13] and OASIS [12]. From all these datasets we obtain a total number of
7,250 images, which is to the best of our knowledge, the largest dataset collected
for the task of age prediction. Since each one of these datasets is targeted towards
different applications, the selected population is heterogeneous in terms of age,
sex, and health status. Images are processed with FreeSurfer [5] and thickness
and volume measurements extracted. Even though this is a fully automatic tool,
the extraction of the feature is a computationally intensive task which is by far
the bottleneck of our age prediction regression model.

3.2 Age estimation

We perform age estimation on two different testing scenarios. In the first, we
create a testing dataset by randomly selecting subsets from all the datasets. The
aim of this experiment is to show that our method is capable of selecting samples
that will create a model that can generalize well to a heterogeneous population.
In the second scenario, the testing dataset corresponds to a single dataset. In
this scenario, we show that the sample selection permits tailoring the training
dataset to a specific target dataset.

Experiment 1. For the first experiment we take all the images in the dataset
and we divide them randomly into three sets: 1) a small validation set of 2% of
all samples to compute the rewards given to MABS , 2) a large testing set of 48%
to measure the performance of our age regression task, and 3) a large hidden
training set of 50%, from which samples are taken sequentially using MABS.
We perform the sequential sample selection described in Algorithm 1 using the
following metadata to construct the clusters C: age, dataset, diagnosis, and sex.
We experiment with considering all of the metadata separately, to investigate the
importance of each one, and the joint modeling. Since we require to evaluate a
regression model every time a sample is included, we opted to use ridge regression

5 http://brain-development.org/ixi-dataset/
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as our learning algorithm. Rewards r are given to each bandit estimating and
observing if the r2 score of the prediction in the validation set increases. It is
important to emphasize that the testing set is not observed by the bandits in the
process of giving rewards. Every experiment is repeated 20 times using different
random splits and the mean results are shown. We compare with two baselines:
the first one (RANDOM) consists of obtaining samples at random from the
hidden set and adding them sequentially to the training set. As a second baseline
(AGE PRIOR), we add samples sequentially by following the age distribution of
the testing set . The results of this first experiment are shown in figure 1 (top
left). In almost all the cases, using MABS as a selection strategy performed better
than the baselines. It is important to observe that an increase in performance
is obtained not only when the relationships between the metadata and the task
are direct, like in the case of the clusters constructed by age, but also when
this relationship is not clear like in the case of clustering the images using only
dataset or diagnostic information. Another important aspect is that even when
the meta information is not informative, like in the case of the clusters generated
by sex, the prediction using MABS is not affected.

Experiment 2. For our second experiment, we perform age estimation with
the test data being a specific dataset. This experiment follows the same method-
ology as the previous one with the important difference of how the datasets are
split. This time the split is done by choosing: 1) a small validation set, taken
only from the target dataset, 2) a testing set, which corresponds to the remaining
samples in the target dataset not included in the validation set, and 3) a hidden
dataset containing all the samples from the remaining datasets. The goal of this
experiment is to show that our methodology can be deployed when samples have
to be selected according to a specific population and prediction task. From the
results in figure 1, we observe that depending on the dataset, using bandits with
only one specific source of meta information can actually improve the sample
selection algorithm. However, the best meta information for a particular task
is different in every case. We also observe that in general the MABS using all
available meta information extracts informative samples more efficiently than
our baselines and always close to the best performing single meta information
MABS. This reinforces our hypothesis that it is hard to define an a priori rela-
tionship between the meta data and the task, and is therefore a better strategy
to let MABS select from multiple sources of meta information at once.

4 Conclusion

We have proposed a method for efficiently and intelligently sampling a training
dataset from a large pool of data. The problem was formulated as reinforcement
learning, where the training dataset was sequentially built after evaluating a
reward function at every step. Concretely, we used a multi-armed bandit model
that was solved with Thompson sampling. The intelligent selection considered
metadata of the scan to construct a distribution about the expected reward
of a training sample. Our results showed that the selective sampling approach
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Fig. 1. Results of our age prediction experiments in terms of r2 score. A comparison
is made between MABS using different strategies to build the clusters C, a random
selection of samples, and a random selection based on the age distribution of the test
data. To improve the visualization of the results, we limit the plot to 4,000 samples.

leads to higher accuracy than using all the data, while requiring less time for
processing the data. We demonstrated that our technique can either be used to
build a general model or to adapt to a specific target dataset, depending on the
composition of the test dataset. Since our method does not require to observe
the information contained in the images, it can also be applied to predict useful
samples even before the images are acquired, guiding the recruitment of subjects.
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