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Abstract. Automatic detection of contrast inflow in X-ray angiographic
sequences can facilitate image guidance in computer-assisted cardiac
interventions. In this paper, we propose two different approaches for
prospective contrast inflow detection. The methods were developed and
evaluated to detect contrast frames from X-ray sequences. The first
approach trains a convolutional neural network (CNN) to distinguish
whether a frame has contrast agent or not. The second method extracts
contrast features from images with enhanced vessel structures; the con-
trast frames are then detected based on changes in the feature curve
using long short-term memory (LSTM), a recurrent neural network ar-
chitecture. Our experiments show that both approaches achieve good
performance on detection of the beginning contrast frame from X-ray
sequences and are more robust than a state-of-the-art method. As the
proposed methods work in prospective settings and run fast, they have
the potential of being used in clinical practice.

1 Introduction

During percutaneous coronary interventions (PCI), X-ray angiography (XA) is
commonly used by clinicians to identify the sites of plaque and navigate devices
through the arteries of patients with advanced coronary artery disease. As X-ray
imaging has poor soft tissue contrast, coronary arteries are normally visualized
by injecting radio-opaque contrast agent in the vessels.

Approaches for improving image guidance in such procedures have been re-
ported, for example fusion of coronary models from CTA [1]. Such methods can
only be applied if vessels are visible in the XA, thus automated application of
such methods requires detection of presence of contrast agent. Similarly, auto-
mated detection of catheter and guidewires, which can also be used for virtual
roadmapping [2], is generally only possible in non-contrast enhanced frames.
Therefore, an automatic way to detect contrast inflow online is relevant for fur-
ther automating advanced image guidance methods for coronary interventions,
reducing interactions of clinicians with computers during procedures.

Existing works for detection of contrast inflow in X-ray images fall into two
categories: enhancement-based and learning-based. Enhancement-based meth-
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ods [3,4,5,6,7] enhance contrasted structures, followed by a step to extract fea-
tures that indicate the change of contrast throughout the sequence. The contrast-
enhanced frames are then detected via analysis of the feature. Learning-based
approaches [8,9] train a classifier to detect contrast or non-contrast frames based
on handcrafted image features. Among these works, [4,6,8] need an entire se-
quence to detect contrast inflow, and thus only work retrospectively. [5] does
not rely on a complete sequence, but retrospectively runs on a sliding segment
of a few new X-ray frames, thus there is a trade-off between the possible delay
of the contrast inflow detection and the overall processing efficiency. In addition,
this method was designed specifically for TAVI procedures on aorta: their con-
trast detection method involves aligning a predefined aorta shape model to X-ray
images and a step of TEE probe detection, which is not relevant for coronary
interventions. [7] uses a heuristic approach to detect the first contrast-enhanced
frame from X-ray sequences of left atrium (LA) used for electrophysiology (EP)
ablation procedures. [9] developed a learning-based framework on X-ray images
of LA for EP procedures. The method used a SVM classifer with the heuristic
features introduced in [3] and [7]. Out of these methods, [3] is the only one that
may be directly used for coronary interventions and work in prospective settings.

The purpose of our work is to develop and evaluate solutions for prospective
detection of contrast inflow in XA images that can fit into the clinical work-flow
of coronary interventions. Specifically, we aim at prospectively detecting if a
frame has contrast agent. To this end, two different approaches were developed.
Due to the exceptional performances that convolutional neural networks (CNN)
have in image classifications [10], and medical applications, such as tissue seg-
mentation and surgical tools detection [11], we propose a learning-based method
using CNN to classify each frame of an XA sequence into two classes: with
or without contrast. Additionally, we propose a hybrid of enhancement- and
learning-based. It computes a temporal contrast feature from vessel-enhanced
sequences based on which contrasted frames are detected with long short-term
memory (LSTM) [12], a recurrent neural network (RNN) architecture. To the
best of our knowledge, this is the first work that applies deep learning for con-
trast inflow detection in X-ray images. To validate the detection, the position of
the beginning contrast frame (BCF) [8,9] in a sequence (where contrast starts
being visible) was used in the experiment.

2 Methods

2.1 The CNN-based method

Let S = {I1, I2, . . . , In} denote a sequence of n frames in which Ic is the be-
ginning contrast frame. All frames I1, . . . , Ic−1 are associated with the label
“without contrast”. The other frames Ic, . . . , In have the label “with contrast”.

In order to classify the fluoroscopic frames, we used a CNN to learn the
difference between the contrast frame and non-contrast frame (Fig. 1, top). The
input of the CNN has 5 images: the current frame Ii to be classified, its 3 previous
frames Ii−1, Ii−2, Ii−3, and the first frame I1 (normally non-contrasted). There
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Fig. 1: The neural networks (top) connects the 5 input images (the first, the
current and its 3 previous X-ray frames) to the 2 output nodes (“with contrast”
and “without contrast”). The model consists of several n-conv blocks. They are
a succession of CNNs with a skip connection between the input and the output
of the block (bottom). f × h × w is the dimension of the data (feature number
times image height times image width) .

are 7 intermediate layers directly after the input layer, each of which has a n-conv
block with n consecutive convolutions (Fig. 1, bottom). The last n-conv block
is connected with two fully-connected layers. The final output is a softmax layer
with two nodes: “with contrast” and “without contrast”. The model was trained
with binary cross-entropy as the loss function. In order for a faster convergence,
batch normalization was used after every convolution, residual connection at
every layer and the strided convolutions instead of pooling layers.

To detect the BCF of an XA sequence online using the trained model, frames
of the sequence were classified one by one in a chronological order. The first frame
labeled as “with contrast” in the sequence is considered as BCF.

2.2 The RNN-based method

The RNN-based method consists of two major steps: vessel enhancement and
contrast frame detection. An overview of this method is illustrated in Fig. 2.

Vessel enhancement The vessel enhancement step is crucial for accurate ap-
proximation of contrast changes in XA sequences. This step removes most non-
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Fig. 2: The overview of the RNN-based method.

vessel background structures using a previously developed online layer separation
technique [13] followed by multi-scale Frangi-vesselness filtering [14].

The online layer separation method prospectively separated an XA sequence
into three layers: a breathing layer, a quasi-static background layer, and a vessel
layer in which vessels have better visibility. First, the breathing layer was sepa-
rated via morphological closing. After this layer was removed from the original
image, online robust PCA (OR-PCA) [15] was applied to separate the low-rank
quasi-static layer and sparse vessel layer through alternatively projecting the
new data sample (frame) to the underlying low-rank subspace basis and updat-
ing the basis using the new estimation of the layers. After layer separation, the
structures that may cause artefacts in the next step, such as diaphragm, spine,
were removed from the vessel layer.

Following the layer separation, a multi-scale vesselness filter [14] was applied
on the separated vessel layer to further enhance the tubular structures. In the
end, after the vessel enhancement step, for each incoming frame, a new image
was created where vessel structures are enhanced.

Contrast frame detection Once the image with enhanced vessel structures
is obtained, the feature that indicates the level of contrast agent was extracted
from the image. In this work, we used the average pixel intensity of the complete
vessel-enhanced image as the contrast feature. This results in a 1D signal for a
complete sequence.

The last step is to detect contrast frames from the previously obtained 1D
contrast signal. In order to fully use the temporal relation between frames, each
signal point is classified as “contrast” or “non-contrast” with a recurrent neural
network. The long short-term memory (LSTM) network [12] was used due to its
good performance on modeling long-term temporal relations in time-series data.

Let xk denote the feature for the kth frame Ik. The single-direction LSTM
takes xk as the input. A hidden state hk in the LSTM network is recurrently
updated through nonlinear interactions between the input signal xk, the LSTM
units and its state of the last time point hk−1. The output label yk of xk is the
outcome of a nonlinear function of hk. This process is illustrated in Fig. 3.

3 Experiments

We retrospectively obtained anonymized data that was acquired during clinical
routine with a Siemens AXIOM-Artis biplane system. The data were 120 XA
sequences from 26 patients who underwent a PCI procedure. The frame rate
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Fig. 3: Each signal point is classified from a contrast frame or a non-contrast
frame with a LSTM network.

of all sequences is 15 frames per second. The length of sequence varies from
24 to 244 frames. The size of images in our dataset are 512 × 512, 600 × 600,
776× 776 and 1024× 1024. In all sequences, contrast inflow can be observed. In
our experiments, 40 sequences from 20 patients were used as training data, the
80 sequences from the other six patients were used for validation.

For the CNN-based method, all images were resized to 512 × 512 before
training. The parameters of the CNN model were optimized using stochastic
gradient descent with a learning rate 0.0001, a decay of 0.0005 and a momentum
of 0.99. The model was trained with a batch size of 15 during 33,000 iterations.
For each sequence, the six frames before and after the BCF were chosen to
ensure an even number of contrast and non-contrast training images. The BCF
was discarded to assist the CNN to learn more differences between contrast
and non-constrat frames. As the dataset used to train the model is small, data
augmentation was applied during the training to virtually create more data:
translation (+/- 100 pixels), rotation (+/- 5 degrees), scaling (+/- factor 0.1),
intensity shift (+/- 0.2), Gaussian noise (σg = 0.01) on the normalized image
between 0 and 1, and vertical flip were used to transform images.

For the RNN-based method, we manually tuned the parameters based on
visual check and quantitative evaluation on the training data; the same param-
eters were used for testing. The images were first down-scaled 2 or 4 times to
256 × 256 or 300 × 300 or 388 × 388 depending on the original image size for
speeding up the image processing. The parameters for layer separation were set
following the approach with the sliding window option in [13] using the closed-
form solution of OR-PCA. To improve the convergence of OR-PCA, we used a
mini-batch of 5 frames (before contrast agent was injected) to get an initial es-
timate of the low-rank subspace basis. This was done using the layer separation
method in [16] with fast principal component pursuit [17]. The scale of Frangi
vesselness filter was set ranging from 0.6 mm to 2.8 mm according to the size
of coronary arteries. The β and c parameter of the vesselness filter were 0.5 and
15. The dimension of LSTM units was set to 7 with a dropout probability being
0.2. The nonlinear activation function of the hidden layer is sigmoid function.
The LSTM network was trained using RMSprop optimizer with a learning rate
being 0.005 during 100 epochs. At last, the BCF was detected as the first frame
in a sequence being classified as contrasted by LSTM.
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Fig. 4: An example to illustrate the RNN-based method. From left to right are
the original XA frame (left), the vessel layer after layer separation (middle left),
the vesselness image (middle right), the contrast signal for the whole sequence
(right). The color markers in the signal show the prediction of BCF with LSTM
(red) and the ground truth (green). Note that the artefact of diaphragm does
not appear in the vesselness image thanks to layer separation.

In the experiments, we also compared our methods with the state-of-the-art
approach of Condurache et al.[3]. For setting the parameters of the method,
the first 3 feature values from non-contrast frames were modeled as a Gaussian
N0(µ0, σ

2
0). The threshold T for choosing contrast frames was set to µ0 + 3σ0.

The evaluation metric we used is the absolute difference between the frame
index of the ground truth BCF and the frame predicted by different methods.

The image processing steps in the RNN-based method and the method of
Condurache et al. were implemented in MATLAB with a single CPU core (In-
tel Core i7-4800MQ 2.70 GHz). LSTM and CNN were implemented in Keras
with TensorFlow as backend. LSTM was running on the CPU due to its small
dimension. CNN was trained and tested on an Nvidia GeForce GTX 1080 GPU.

4 Results and discussion

Fig. 4 shows an example to illustrate steps in the RNN-based method. The statis-
tics of the absolute errors made by the three methods are shown in Table 1. The
results of the mean and median errors show that the two proposed approaches
have smaller errors than the state-of-the-art method, especially, the RNN-based
method is able to achieve a median absolute error of 2 frames. The median of
non-absolute errors (prediction minus ground truth) indicates the prediction bias
of each method. The method of Condurache et al. makes late predictions, while
the others have a minor bias. The table also lists the number of sequences with
a small prediction error (3 frames, being about 0.2 seconds) and a large error
(>10 frames). The method of Condurache et al. has mis-detection on 7 sequences
(the first entry in the last two columns in Table 1), which was also reported in
[9]. While the two proposed methods both have 55 sequences with a small error
(6 3 frames) out of 80, the CNN-based approach has the smallest numbers of
sequences with a large error (> 10 frames) among the three methods.

The median error of the RNN-based method is similar to the results reported
in [8]. While they achieved a mean error of less than one frame, their detection
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Methods mean (std) median (*) #(error 6 3) #(error > 10)

Condurache et al.[3] 6.2 (7.1) 5 (4) 29 / 73 10 / 73
CNN-based 3.9 (4.9) 2.5 (1) 55 / 80 5 / 80
RNN-based 3.6 (4.6) 2 (-0.5) 55 / 80 7 / 80

Table 1: The statistics of the absolute error for the 3 methods. The two columns
in the middle show the mean, standard deviation, median of the absolute errors
and the median of non-absolute errors (*) in frames. The last two columns show
the number of sequences on which the method made an absolute error no larger
than 3 frames or larger than 10 frames.

step requires the knowledge of complete sequences, hence it will not work in a
prospective scenario. The learning-based method in [9] can be used for prospec-
tive detection, but some of the proposed features were heuristically designed for
X-ray images of LA for EP procedure, which have different image features from
the XA of coronary interventions. Compared to these methods, our approaches
were designed for prospective settings and the CNN-based method is a general
framework that could potentially be applied in different clinical procedures.

The RNN-based learning with a handcrafted feature has slightly lower mean
and median error than the CNN-based method, although the latter has a more
complex and deeper architecture. This might contradict to what is commonly
known about the performance of deep learning. The possible reasons may be two-
fold. First, the size of training data was small, even with data augmentation and
a reduced CNN model, some over-fitting was observed. Second, the CNN treats
frames independently rather than modeling their temporal relations. Although
CNNs perform excellent in many classification tasks, detecting BCF requires a
classifier that has good accuracy for data on the border between two classes.

In terms of computation efficiency (test time), the method of Condurache et
al. needed 111 ms to 443 ms to process a frame. While the CNN-based method
ran very fast and used on average only 14 ms to process one frame. The RNN-
based method ran on average 64 ms/frame on images of the original size 512×512
or 1024×1024, and 140 ms/frame on images of the original size 776×776. As the
test time of the RNN-based method was based on a MATLAB implementation
with a single CPU core, it has large potential to run in real-time (<66 ms) with
an optimized implementation running on a modern GPU.

In conclusion, we have developed two novel approaches for prospective de-
tection of contrast inflow in XA sequences, a CNN-based and a RNN-based
approach. The proposed methods perform well in BCF detection tasks in XA
sequences, and outperform a previous state-of-the-art method. Both methods
work in prospective settings and run fast, therefore have the potential to be in-
tegrated in advanced image guidance systems for PCI.
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