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We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks
(DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our
method can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover,
since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks
learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will
be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study,
we label 12, 206 lesion patches and re-annotate the DR grades of 23, 595 fundus images from Kaggle competition dataset. Under
the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable
performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve
the capability of our DCNN-based DR grading algorithm.

Index Terms—Diabetic retinopathy, deep convolutional neural networks, fundus images, retinopathy lesions

I. INTRODUCTION

Diabetics is an universal chronic disease around some
developed countries and developing countries including China
and India [1], [2], [3]. The individuals with diabetic have high
probabilistic for having diabetic retinopathy (DR) which is
one of the most major cause of irreversible blindness [4],
[5]. Therefore, the quickly and automatically detecting of DR
is critical and urgent to reduce burdens of ophthalmologist,
as well as providing timely morbidity analysis for massive
patients.

According to the International Clinical Diabetic Retinopa-
thy Disease Severity Scale [4], [8], the severity of DR can
be graded into five stages: normal, mild, moderate, severe
and proliferative. The first four stages can also be classified
as non-proliferative DR (NPDR) or pre-proliferative DR, and
NPDR may turn to proliferative DR (PDR) with high risk
if without effective treatment. The early signs of DR are
some lesions such as microaneurysm (MA), hemorrhages,
exudate etc. Therefore, lesion detection is a less trivial step
for the analysis of DR. There are plenty of literatures focus on
detecting lesions in retina. Haloi et al. [9] achieve promising
performance in exudates and cotton wool spots detection.
Later, Haloi [3] try to find MAs in color fundus images
via deep neural networks. van Grinsven et al. [6] propose
a selective sampling method for fast hemorrhage detection.
Additionally, Srivastava et al. [10] achieve robust results
in finding MA and hemorrhages based on multiple kernel
learning method.

However, the aforementioned algorithms do not attach the
DR severity grades of the input fundus images, which is vital
for the treatment of DR patients. Recently, Seoud et al. [7]
propose an automatic DR grading algorithm based on random
forests [36]. By leveraging deep learning techniques [13],
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Gulshan et al. [4] take efforts to classify the fundus images
into normal and referable DR (moderate and worse DR) with
the annotations of 54 Unite States licensed ophthalmologists
on over 128 thousands fundus images. Similarly, Sankar et
al. [12] using DCNN to grade DR into normal, mild DR
and several DR. Pratt et al. [2] predict the severity of DR
according to the five-stages standard of International Clinical
Diabetic Retinopathy Disease Severity Scale[4], [8]. Even
though these DR grading algorithms seem to have achieved
promising performance, they still have the following problems:

(1) The aforementioned DCNN-based DR grading methods
can only output the DR grade but cannot indicate the location
and type of the existing lesions in the fundus images. How-
ever, the detailed information about the lesions may be more
significant than a black box for clinicians in treatment.

(2) The above end-to-end DCNN 1 may not suitable to
learn features for DR grading. Compared to the size of the
input image, some tiny lesions (eg., MAs and some small
hemorrhages) are such unconspicuous that they are prone to
be overwhelmed by the other parts of input image via end-to-
end DCNN. However, these lesions are critical for DR grading
according to the international standard [8].

To address the above issues, we proposed two-stages DCNN
for both lesion detection and DR grading. Accordingly, our
method composed of two parts: local network to extract local
features for lesion detection and global network to exploit
image features in holistic level for DR grading.

Instead of end-to-end DR grading, we construct a weighted
lesion map to differentiate the contribution of different parts in
image. The proposed weighted lesion map gives imbalanced
attentions on different locations of the fundus image in terms
of the lesion information, i.e., the patches with more severe

1End-to-end DCNN grading means that directly feed the input images into
DCNN, then output the DR grades of the images.
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lesions will attract more attention to train the global grading
net. Such imbalanced weighted scheme significantly improve
the capability of the DR grading algorithm (See Section IV-E).

Compared to the existing DCNN-based DR detection algo-
rithms, the proposed algorithm has the following advantages
and contributions:
(1) We propose a two-stages DCNN-based algorithm which

can not only detect the lesions in fundus images but also
grade the severity of DR. The two-stages DCNNs learn
more complete deep features of fundus images for DR
analysis in both global and local scale.

(2) We introduce imbalanced attention on input images by
weighted lesion map to improve the performance of DR
grading network. To the best of our knowledge, this is
the first DNN-based work resorting imbalanced attention
to learn underlying features in fundus images for DR
grading.

II. RELATED WORK

Our work is closely related to two topics: DCNN and
DCNN-based DR detection. Extensive work has been done
on these issues over the past years, and good reviews can be
found in [13], [14]. In this section, we only discuss some most
relevant methods to our work.

DCNN is a powerful deep learning architecture inspired
by visual mechanisms of animal [13]. The basic components
of DCNN are convolution layer, subsampling layer, fully
connected layer, and between two adjacent layer, there may
exist an activation functions. A loss function for specific tasks
may assigned at the end of network. Additionally, some useful
tricks often be utilized to improve the performance of DCNN
including Dropout [15], batch normalization (BN) [16], local
response normalization [17]. Due to the reported performance
of DCNN, many researchers have taken efforts on this topic
and give rise to some representative networks: LeNet-5 [18],
AlexNet [17], ZFNet [19], VGGNet [20], GoogleNet [21], [29]
and ResNet [22]. Nowadays, DCNN has been successfully
applied in almost all the computer vision tasks and achieved
state-of-the-art performance, such as image classification [22],
object detection [23], [24], [25], image segmentation [26],
action recognition [27], visual saliency detection [28].

Recently, automatic DR detection via fundus images has
attracted more and more attentions by both researchers in
clinical department and computer sciences. Researchers from
Google Research and some hospitals used Inception-v3 [29]
to detect referable DR and macular edema. In a recent Kaggle
competition 2, all the top-5 teams had applied deep learning
based algorithms to grade the severity of DR. The wining
entry had claimed to achieve the comparable performance with
ophthalmologist [29], [30]. Later, Alban and Gilligan [31] took
the comparison between AlexNet and GoogleNet to end-to-
end grade on Kaggle DR dataset, and some other researchers
constructed they own DCNN architectures for end-to-end DR
grading [2], [12].

2Kaggle DR competition url: https://www.kaggle.com/c/diabetic-
retinopathy-detection

However, the above DCNN DR detection methods are
all black box for DR grading, i.e, they do not provide the
information of the lesions in the DR screening. To analyze DR
in lesion scale, van Grinsven et al. [6] found the existence of
hemorrhages within the color fundus images. Haloi [3] trained
a DCNN to find the MAs. Lim et al. [32] proposed a DCNN-
based transformed representations for lesion detection in reti-
nal images. Additionally, Antal and Hajdu [11] addressed
both MA detection and DR grading via an ensemble-based
algorithm.

Inspired by the superior performance of DCNN in computer
vision and DR detection, in this study, we propose a two-
stages DCNN for DR analyzing. The proposed local and global
networks extract the deep features of fundus images in both
local and global scale, and the lesion information exploited
by the local net improve the correctness of global DR grading
net.

III. METHODS

In this section, we present the details of the proposed
two-stages DCNN for lesion detection and DR grading. The
main workflow of our algorithm is illustrated in Fig. 1. First,
the input fundus photographs image will be preprocessed
and divided into patches. Then, the weighted lesion map is
generated based on the input image and output of local net.
Third, the proposed global network is introduced for grading
the DR severity of input fundus image.

A. Image Division Via Overlap Grids

Image division is a critical and essential step for providing
lesion candidates and generating the lesion map. In most
detection tasks, detection candidates are provided by selective
search [37], which ignore the relative location among the
candidates in single image. However, the relative location
among patches is less trivial in the construction of weight
lesion map (see Section III-B).

A straightforward method to keep the relative locations is
partitioning via grids. However, as shown in Fig. 2, when
microaneurysm or some small hemorrhage happen to located
in the edge of the grid, they may be misclassified into normal
patches. In this paper, we solve this issue by dividing the
images with overlapped grids, which is a special case of sliding
windows. The grid size is fixed as h × h (in pixels), and the
sliding stride is h−ov, where ov is the overlapped size between
two adjacent grids. As seen in Fig. 2(c) the small lesions are
located at more conspicuous place in the yellow grid than
those in Fig. 2(b). Therefore, the proposed dividing method
can retain the relative location of the image patches, as well
as generating high quality candidates for lesions detection.

B. Local Network

In the last subsection, the input images are divided into
h × h patches. Our local network is trained to classify the
patches into 0 (normal), 1 (microaneurysm), 2 (hemorrhage),
3 (exudate), which are the main indicators to NPDR.

Inspired by the outstanding works in deep convolutional
neural network [17], [21], [22], the proposed network is
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Fig. 1. Main workflow of the proposed algorithm

microaneurysm

(a) images with small lesions

(b) divided via traditional grids (c) divided via overlapped grids

Fig. 2. The advantages of overlapping grids. Compare to (b), The yellow
grid in (c) can alleviate the drawbacks of traditional non-overlap grids when
small lesions are located in the edge of grid.

composed by convolutional layer, max-pooling layer, fully
connected (FC) layer. The activation function between two
layers is rectified linear unit (ReLU), and batch normalization
(BN) is applied before each ReLU. Additionally, Dropout [15]
is utilized after FC layers. The label of the input patch is
given by the output of soft-max regression [33]. The detailed
architecture of the local network is presented in TABLE I.

C. Weighed Lesion Map

Two maps are generated when all the patches in fundus
image I ∈ Rd×d are classified by the local network. One
is label map L ∈ Rs×s, which records the predicted labels
of the patches. Wherein s = b(d − h)/(h − ov)c, and b.c
is the floor operator. The other map is probabilistic map
P ∈ Rs×s, which retains the the biggest output probability
of the softmax layer for each patch label. Based on these two
maps, we construct a weighting matrix for each input image
as follows: (1) Integrating the label map and probabilistic map

TABLE I
LOCAL NETWORK ARCHITECTURE

Layer Type kernel size and number stride
0 input ... ...
1 convolution 3 × 3 × 64 1
2 convolution 3 × 3 × 128 1
3 max-pooling 2 × 2 2
4 convolution 3 × 3 × 128 1
5 max-pooling 2 × 2 2
6 convolution 3 × 3 × 256 1
7 fully connected 1 × 1 × 512 ...
8 fully connected 1 × 1 × 1024 ...
9 soft-max ... ...

as LP = (L+ 1)�P, where � is the element-wise product
and 1 ∈ Rs×s is an all one matrix 3. (2) Each entry in LP
is augmented to a h × h matrix (corresponding to the patch
size), and the illustration of (1) and (2) step can be seen in
Fig. 3(a). (3) Tiling the augmented matrixes into the weighting
matrix MI ∈ Rd×d according to the relative locations in the
input image I. The weighting matrix is constructed into the
same size of input image, and the values in the intersection
areas are set as the average values between adjacent expanded
matrixes.

The weighted lesion map of input image I is defined as I∗ =
MI � I. The entries in the weighting matrix MI implicit the
severity and probability of lesions in local patches. Therefore,
the image patches have more severe lesion patches with higher
probability will get higher weights in the weighted lesion map.
As seen in Fig. 3(b), imbalanced attentions are payed on the
weighted lesion map by highlighting the lesion patches.

By feeding the weighted lesion map into the global network
to grade the DR severity of the fundus images, the proposed
grading network trends to pay more attention on the patches
with severer lesions. Therefore, as shown in the experimental
section, the grading algorithms with the proposed weighting

3The motivation of the addition of the all one matrix is to avoid totally
removing the information in the patches with label 0.
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Fig. 3. The illustration of the construction of weighted lesion map. (a) Jointing
label map and probabilistic map into weighting matrix. (b) Illustration of
imbalanced attention on weighted lesion map.

scheme outperform the traditional end-to-end grading net-
works under the same implementation setup.

D. Global Network

The global network is designed to grade the severity of DR
according to the International Clinical Diabetic Retinopathy
scale [8]. Since PDR is the most severe stage in the standard,
it’s somewhat too late to precaution and remedy when the
patients already step into PDR. Therefore, in this study,
we focus on the advanced detection on NPDR. The rough
description of the stages of fundus images are characterized
as:

• class 0 - No visible lesions and abnormalities.
• class 1 - Mild NPDR, only microaneurysms.
• class 2 - Moderate NPDR, extensive microaneurysms,

haemorrhages, and hard exudates.
• class 3 - Severe NPDR, venous abnormalities, large blot

haemorrhages, cotton wool spots, venous beading, venous
loop, venous reduplication

The global network is trained with weighted lesion map,
and the output is the severity grade of the testing fundus
images. Since the size of weighted lesion map is bigger
than the patches for local network, the depth of the global
network is deeper than the local one. The detailed architecture
of the global network is shown in TABLE II. Similar with
local network, BN is used before each ReLU activation, and
Dropout is implemented after fully connection layers.

IV. EXPERIMENTS, RESULTS AND DISCUSSIONS

A. Datasets

Kaggle database: The Kaggle database contains 35, 126
training fundus images and 53, 576 testing fundus images. All
the images are assigned into five DR stages, i.e., four NPDR
stages as presented in Section III-D and one stage denotes
PDR. The images in the dataset come from different models
and types of cameras under various illumination.

According to our cooperate ophthalmologists, although the
ammont of images in this dataset is relatively big, there exist a

TABLE II
GLOBAL NETWORK ARCHITECTURE

Layer Type kernel size and number stride
0 input ... ...
1 convolution 3 × 3 × 32 1
2 max-pooling 2 × 2 2
3 convolution 3 × 3 × 32 1
4 max-pooling 2 × 2 2
5 convolution 3 × 3 × 64 1
6 max-pooling 2 × 2 2
7 convolution 3 × 3 × 64 1
8 max-pooling 2 × 2 2
9 convolution 3 × 3 × 128 1
10 max-pooling 2 × 2 2
11 convolution 3 × 3 × 128 1
12 max-pooling 2 × 2 2
13 convolution 3 × 3 × 256 1
14 max-pooling 2 × 2 2
15 convolution 3 × 3 × 256 1
16 max-pooling 2 × 2 2
17 convolution 3 × 3 × 512 1
18 max-pooling 2 × 2 2
19 convolution 3 × 3 × 512 1
20 fully connected 1 × 1 × 1024 ...
21 fully connected 1 × 1 × 1024 ...
22 fully connected 1 × 1 × 4 ...
23 soft-max ... ...

large portion of biased labels. Additionally, the dataset do not
indicates the locations of the lesions which are meaningful to
clinicians. Therefore, we select subset from Kaggle database
for re-annotation. The subset consists of 22, 795 randomly
selected images in terms of the four grades of NPDR, where
21, 995 for training and 800 for testing (each NPDR grade
contains 200 testing images).

The training and testing patches for lesion detection are
cropped from the training and testing images respectively,
which totally contains 12, 206 lesion patches and over 140
thousands randomly cropped normal patches. Licensed oph-
thalmologists and trained graduate students are invited or
payed to annotate the lesions in the images and re-annotate
DR grades of the fundus images. The detailed statistics of the
DR grades and patch labels can be seen in TABLE III and IV.

B. Data Preparation

1) Data Preprocessing. Inspired by [6], contrast improve-
ment and circular region of interesting extraction are con-
ducted on the color fundus images as following:

I = αIraw + βG(θ) ◦ Iraw + γ, (1)

where Iraw is the raw fundus image in the datasets, and I
denotes the corresponding output image after preprocessing.
G(x, y; θ) is a Gaussian kernel with scale θ. In this paper, θ
is empirically set as 10. ◦ is the convolution operator. α, β and
γ are parameters to control the weights of different parts in Eq.
(1), which are respectively set as 4, −4 and 128. As seen in
Fig. 4, compared to the raw fundus images, some underlying
lesions can be easily exploited after the preprocessing step.

Additionally, for lesion detection, all the images are resized
to 800×800, and the relative ratio between the sample height
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(a) Raw fundus images (b) Corresponding images 
after preprocessing

Fig. 4. Comparison between the raw fundus images before and after
preprocessing. The red ellipse and arrows in the right indicate some underlying
lesions can be singularized after preprocessing.

and length is kept by padding before resizing the raw images.
The input sample size of global network are turned into 256×
256 to reduce the computational complexity.

2) Data Augmentation.
Data augmentation are implemented to enlarge the training

samples for deep learning, as well as to balance the samples
across different classes. Inspired by [17], the augmentation
methods include randomly rotation, cropping and scaling. The
detailed statistics of the dataset are presented in TABLE III
and TABLE IV. The images after augmentation is split into
training and validating set for tuning the deep models, and the
testing images presented in the last line of TABLE III are not
put into augmentation.

TABLE III
STATISTICS OF FUNDUS IMAGES FROM KAGGLE DATASET

Normal Mild Moderate Severe
Raw images 18472 1870 1870 583
Augmentation 18472 28050 29869 27401
Total number 36944 29920 34136 27984
Train number 35844 28920 33136 26984
Validation number 1000 1000 1000 1000
Test number 200 200 200 200

TABLE IV
STATISTICS OF LESION PATCHES FROM KAGGLE DATASET

Normal MA Hemorrhage Exudate
Raw patches 1373 1945 2144 1614
Augmentation 12147 8275 10043 9823
Total number 13520 10220 12187 11437
Train number 13220 9920 11887 11137
Validation number 300 300 300 300

3) Reference Standard and Annotation. In this paper, the
reference of the samples are generated from the integration of

three type of observers: the original annotations from Kaggle
competition, the trained graduate students 4 and a clinical
ophthalmologist.

Concretely, for training the local network, the patches
(TABLE IV) are first annotated by two over three months
trained observers, then all the samples are checked by clinical
ophthalmologists. For training the global network, the labels
of the fundus images are selected from Kaggle annotations by
the trained observers, then the label biases are corrected by
the clinical ophthalmologist.

For the testing sets, firstly, all the testing lesion patches
and DR grades of fundus images are annotated independently
among all the trained observers and ophthalmologist, then the
discrepancy patches are selected for further analyzing. Finally,
the references of the patches are determined only by achieving
the agreement of all annotators.

C. Evaluation design and Metrics

To clearly evaluate the performance of the proposed algo-
rithm, we conduct the following experiments: (1) For analyz-
ing the effectiveness of the local network, we record the recall
and precision of each type of lesions in testing images. Addi-
tionally, the sensitivity and specificity between normal patches
and lesion patches are shown with receiver operating charac-
teristics (ROC) curve and area under curve (AUC) metric. (2)
To show the superior of the proposed algorithm in grading
the severity of fundus images, Kappa score 5 [34] and clas-
sification accuracy are introduced to measure the agreement
between the predictions and the reference grades. In this paper,
the calculation of Kappa metric is same with Kaggle Diabetic
Retinopathy Detection competition Readers can see the follow-
ing link for more details: https://www.kaggle.com/c/diabetic-
retinopathy-detection/details/evaluation. Besides, ROC curve
and AUC are also took into comparison between different
grading algorithms to classify normal fundus images and
referable DR (moderate or worse DR) images.

To further clarify the evaluation metrics, we list some
necessary conceptions as following.
For multi-class classification:

• Recall - For class i, recall means the rate of correct
predicted number over total number of class i in the
testing set.

• Precision - For class i, precision means the rate of correct
predicted number over total number of class i predicted
by the algorithm.

• Accuracy - The total number of correct predictions divide
the number of samples in testing set.

For binary classification between lesion (positive) and normal
(negative) patches, as well as between referable DR (positive)
and normal (negative) fundus images.

• True positive (TP) - The number of positive sample is
correctly detected.

• False positive (FP) - The number of negative sample is
miss classified as positive.

4All the trained observers have experience in medical image processing
5Kappa score typically varies from 0 (random agreement between raters)

to 1 (complete agreement between raters)
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• False negative (FN) - The number of positive samples is
miss classified as negative.

• True negative (TN) - The number of negative sample is
correctly detected.

Based on the aforementioned description, sensitivity and
specificity is defined as

sensitivity = TP
TP+FN ,

specificity = TN
FP+TN .

(2)

D. The Identification of Lesions

To evaluate the performance of local network for lesion
recognition, we record the recall and precision for each class
of lesion in testing fundus images, and the statistics of lesions
in testing images can be found in TABLE V. The second line
of the table present the number of different types of lesions
in testing set. The left and right values in the table denote
recall and precision respectively. Two baseline algorithms are
take into comparison: random forests (RF) [36] and support
vector machine (SVM) [35]. The input of these two alternative
algorithms are image patches with are in the same condition
with our local network, and we use the default setting with a
Python toolkit named Sciket-learn 6 except that the number of
RF trees is turned from 10 to 500 (Readers can see the url in
the footnote for Details). As seen in the table, the proposed
local network significantly outperforms the random forests and
SVM under same training images, which indicate the powerful
ability of DCNN in learning task-driven features.

As listed in TABLE V, the recall and precision of MA and
hemorrhages are relatively worse than exudate in the proposed
algorithm. The reason behind may be three folders: (1) the
MA is too inconspicuous and small for detecting even with
our own eyes. (2) The MAs and some small hemorrhages are
such similar that it is challenging to distinguish them even
if the lesions are detected. (3) Compared to testing set, the
annotations of training set are less strict. Therefore, the labels
between some MAs and hemorrhages may mixed up in the
training of local network, which further effect the recognition
between these two types of lesions. As seen the confusion
matrix for lesion recognition in Fig. 5, there are lots of MA
and hemorrhages are successfully detected but mis-classified.
Additionally, some cotton wool spots are detected as exudates
in the experiments, which lead to some false positives in
exudates detection. This issue can be addressed by adding
cotton wool spots into our training set in the further work.

TABLE V
RECALL (THE LEFT VALUES) AND PRECISION (THE RIGHT VALUES) OF

LESION RECOGNITION

MA Hemorrhage Exudate
lesion number 1538 3717 1248
local network 0.7029 / 0.5678 0.8426 / 0.7445 0.9079 / 0.8380
Random Forest 0.0078 / 0.06704 0.2754 / 0.1011 0.6859 / 0.1941
SVM 0.4153 / 0.0251 0.0108 / 0.0548 0.0787 / 0.0318

6http://scikit-learn.org/stable/.

251 1,081 1205

327 247 3,132 11

68 2 45 1,133

MA: 1

Hemorrhage: 2

Exudate: 3

Normal: 
0

MA:
1

Hemorrhage:
2

Exudate:
3

145,491 574 207825Normal: 0

Fig. 5. Lesion confusion matrix. The value of (i, j)-th entry of the matrix
denotes the number of class i patches with prediction as class j. Wherein,
i, j ∈ {0, 1, 2, 3} according to the first and second axes respectively. The
number of correct prediction with respect to each type of lesion is shown in
red.
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AUC = 0.9687

Fig. 6. ROC curve (shown in red) of the proposed algorithm over lesion
detection. The black diamonds on the curve indicate the sensitivity and
specificity of our lesion detection algorithm on high-sensitivity and high-
specificity operating points. The green and blue dots present the performance
of two trained human observers on binary lesion detection on the same testing
dataset.

To show the importance of local net in detecting the lesions,
we also train a binary classifier to distinguish the lesion
patches from normal ones in the testing set. ROC curve
is drawn with sensitivity and specificity in Fig. 6, and the
value of AUC is 0.9687. The black diamonds on the red
curve highlight the performance of the proposed algorithm
at high-specificity (sensitivity : 0.863, specificity : 0.973)
and high-sensitivity point (sensitivity : 0.959, specificity :
0.898). The green and blue dots correspond to the sensitivity
and 1− specificity of two trained observers on binary lesion
detection. As shown in the figure, the proposed algorithm
can achieve superior performance over the trained human
observers by setting a proper operating point.

E. Grading The Severity of Fundus Images

In this paper, we focus on the grading on NPDR, which can
be classified into 0 to 3 stages: normal, mild, moderate and
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Fig. 8. ROC curves of grading network in referable DR detection under
weighted (red) and non-weighted (blue) conditions.

severe respectively. To prove the importance of the proposed
weighting scheme, we compare the Kappa score and Accu-
racy of grading networks with and without weighting (non-
weighted for simplification) scheme under the same implemen-
tation setup. The results are shown in Fig. 7. As seen in the
figure, both our global net and the popular AlexNet achieve
superior results with weighted lesion map, which prove the
effectiveness of the proposed weighted scheme.

Since the symptom of some milder DR are too uncon-
spicuous to be spotted, the judgements of milder DR are
not easy to be unified even among licensed ophthalmologists.
Therefore, similar with [4], we also train our global net to
distinguish referable DR from normal images. The ROC curves
on sensitivity and 1-specificity are illustrated in Fig. 8. The
performance of referable DR detection with weighted scheme
is shown in red, and the AUC of the proposed algorithm
is 0.9590. On the other side, the performance of the same
network under non-weighted scheme is shown in blue, and the
corresponding AUC is 0.7986. The comparison results further
prove the effectiveness of the proposed weighted scheme in
DR grading.

V. DISCUSSION

The experimental results in the last section prove the ef-
fectiveness of the proposed local network in lesion detection

and recognition, and the outperformance of the global net
with weighting lesion map indicate the superiority of the
proposed imbalanced weighting scheme for DR grading. On
the one hand, the lesion information from weighting matrix
promote the performance of the proposed global grading net.
On the other hand, by learning the underlying feature in both
images and weighting matrix, the global deep neural network
smooth some mistakes generated by the local net in grading
the severity of fundus images. To sum up, both the global and
local network are two complementary parts to provide more
abundant information for ophthalmologists and patients in DR
analysis.

Although the proposed study gives reasonable results in
lesion detection and NPDR grading, there still exists some
imperfections, such as the quantity and quality of the carefully
annotated training samples need to be improved. It will be
better if more professional observers can plug into sample an-
notation. However, limited by the time and current resources,
we’ve tried our best to ensure the correctness of the samples
and show the performance of the algorithm reasonably. In
addition, we only detect lesions including MA, hemorrhage
and exudate, but some other important abnormal observations
are not addressed (e.g., venous beading in NPDR and neovas-
cularization in PDR). However, benefited from the powerful
ability of deep learning, the features of these untreated lesions
may be learned for grading the severity of DR [4].

In addition, we aim to provide a two-stages networks
pipeline and imbalanced weighting framework for DR analysis
in this paper. Therefore, the global and local networks can be
any architecture which can achieve better performance.

VI. CONCLUSION

In this paper, we proposed two-stages DCNN to detect
abnormal lesions and severity grades of DR in fundus images.
The experimental results have shown the effectiveness of
the proposed algorithm, and this study can provide valuable
information for clinical ophthalmologists in DR examination.
However, there still exist limitations need to be solved in our
future work, such as collecting more high quality annotated
fundus data, and paying attention to more types of lesions.
Moreover, diabetic macular edema is also an import open issue
needed to be addressed.
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