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Adaptable landmark localisation: applying
model transfer learning to a shape model
matching system

C. Lindner', D. Waring?, B. Thiruvenkatachari?, K. O’Brien?, and
T.F. Cootes'

! Centre for Imaging Sciences, The University of Manchester, UK
2 School of Dentistry, The University of Manchester, UK

Abstract. We address the challenge of model transfer learning for a
shape model matching (SMM) system. The goal is to adapt an existing
SMM system to work effectively with new data without rebuilding the
system from scratch.

Recently, several SMM systems have been proposed that combine the
outcome of a Random Forest (RF) regression step with shape constraints.
These methods have been shown to lead to accurate and robust results
when applied to the localisation of landmarks annotating skeletal struc-
tures in radiographs. However, as these methods contain a supervised
learning component, their performance heavily depends on the data that
was used to train the system, limiting their applicability to a new dataset
with different properties.

Here we show how to tune an existing SMM system by both updat-
ing the RFs with new samples and re-estimating the shape model. We
demonstrate the effectiveness of tuning a cephalometric SMM system to
replicate the annotation style of a new observer.

Our results demonstrate that tuning an existing system leads to signif-
icant improvements in performance on new data, up to the extent of
performing a well as a system that was fully rebuilt using samples from
the new dataset. The proposed approach is fast and does not require
access to the original training data.

Keywords: Model Transfer Learning, Random Forests, Landmark Lo-
calisation, Statistical Shape Models, Machine Learning, Model Tuning

1 Introduction

Shape model matching (SMM) plays an important role in a range of medical
imaging application areas in both research and clinical practice — including dis-
ease diagnosis, treatment planning and assessment of treatment response or pro-
gression of disease. Recent work has shown that SMM systems which combine
Random Forest (RF) [1] regression with constraints from a linear shape model
lead to accurate and robust results across application areas [2—4, 8,11, 14].
Transfer learning in the context of machine learning describes the ability of a
system to apply knowledge learned in a previous task to a new task in a related
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domain with some commonality [10]. In model transfer learning, the goal is to
fine-tune a pre-trained system to new data without access to the original training
data [13]. When the new data arrives sequentially then this is also referred to as
online transfer learning [15].

An early example of applying online transfer learning in the context of RF
regression was given in [12] where On-line Hough Forests were used for object de-
tection and tracking. In other work, transfer learning was applied in the context
of RF classification [5,13].

Our motivation to consider model transfer learning for SMM systems arose
from a collaborative project aimed at introducing automated cephalometric
SMM systems in clinical practice. Even though definitions exist for the positions
of cephalometric landmarks, the actual annotations often are very subjective and
based on years of training and experience. While in the long term the goal would
be to achieve consistency across surgeries by having a standardised automated
system to identify the landmark positions [9], introducing any form of automated
systems in clinical practice tends to require a transitional phase. Thus, in the
medium term, to get clinicians accustomed to the automation of annotations
(a.k.a. tracings), the goal is to have SMM systems that could imitate the indi-
vidual tracing style of any clinician. Due to the methodological, computational
and time requirements for developing such a system, it would not be feasible to
do this from scratch for every clinician/surgery. We therefore aim to develop an
adaptable system that can be quickly and easily refined locally.

Contributions: In this paper, we propose to apply model transfer learning
to RF regression-based SMM systems by tuning an existing pre-trained SMM
system to new data without access to the original training data. We describe
simple but effective RF regression and shape model update schemes, and apply
the latter to tuning a cephalometric SMM system to replicate the annotation
style of a new observer. We demonstrate that the tuned SMM system significantly
improves performance on new data.

For the experiments below, we apply model transfer learning (“tuning”) to
Random Forest regression-voting Constrained Local Models (RFRV-CLM) [7],
and refer to the resulting SMM systems as tuned SMM systems.

2 Methods

2.1 Random Forest regression-voting Constrained Local Models

RFRV-CLMs combine a linear shape model with a set of local models which use
RF's to vote for the likely position of each landmark point. Full details are given
in [7,8], here we summarise the approach. The shape model and local models
are constructed from an annotated training set. Each set of landmark points is
encoded as a shape vector, x, by concatenating the n point co-ordinates.

Training the shape model: We align the shapes then build a shape model of
the form
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x=T(x+Pb+r;0) (1)

where X is the mean shape, P are the first ¢ eigenvectors of the covariance matrix,
with eigenvalues A, which define the shape modes, b the shape parameters, r
allows small deviations from the model, and T'(.;0) applies a global similarity
transformation (with parameters 6) to map from a reference frame to the image
frame.

Training the local models: For training the RF regressors, the region of
interest of the image that captures all landmark points of the object is re-sampled
into a standardised reference frame. For every landmark point p in x and every
image, image patches v; are sampled at a set of random displacements dp; from
the true position of the point in the reference frame (i. e. v; is centred at p+9p;).
A set of trees are trained on these patches to predict the displacement dp; from
features in the patch. Each tree leaf stores the mean offset d and the standard
deviation o of the displacements of all training samples arriving at that leaf.

Search using RF regression-voting CLMs: For a new image, given an initial
estimate of the pose of the object, the region of interest of the image is re-sampled
into the reference frame. Local image patches (centred on q) are then sparsely
sampled in the area around the initial estimate of the landmark’s position. The
relevant features are extracted from each patch and fed into the trees of the RF
to make predictions (q + d) on the true position of the landmark, resulting in a
2D histogram of votes V; for every landmark point £. All predictions are made
using a single weighted vote per tree.

To match the shape model to the new image, the goal is to seek the shape and
pose parameters {b, 8} that maximise the number of votes over all landmarks

Q({b,0}) = X7 Vi(T(Xe + Pib +14;0)). (2)

2.2 Tuning the shape model

Suppose that we have the shape model parameters (X, P, \;), and N new shape
examples {yy}. If the shape model is not a good representation of the new
shapes, we can tune the model so it better matches the shapes of the tuning
dataset.

Updating the mean shape: If there are small systematic differences in the
way the landmark points are defined then a simple approach is to replace the
model mean with a mean estimated from the tuning data. If 8y is a vector of
the parameters of the similarity transformation T'(x;0) which best matches the
model mean to the target shape yg, i.e. the minimiser of

Q(0r) = |T(x;0x) — yi|? (3)
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then we can compute a new estimate of the mean as

% = = ST (s 0. (1)
k

Updating the mean shape and the shape model modes: If the tuning
dataset is likely to include significant variations not exhibited in the original
training set then the modes of the original shape model will not be able to rep-
resent the tuning data well. In this case, we need to update both the mean shape
and the modes of shape variation. There are sophisticated techniques available
for updating eigen-space models [6]. Here we describe a simplified approach.

We first assume that the original mean is suitable for defining the reference
frame for the new model. We map each new tuning example into this frame by
applying yi. < T~ '(yx; 0x) where 0, are the pose parameters which minimise
Equation (3).

The covariance of the tuning data about the origin, S,,, and the covariance
of the tuning data about the mean (y), S, are given by

1 __
Syy = N Zka{ and S =8y, — ny (5)
k

If we had access to the original training data then we could simply add it to
the sums in Equation (5). If we, however, only have access to the shape model
parameters, we can reconstruct the covariance about the origin for the training

dataset using
S,. = PAPT 4+ xxT (6)

where A is the diagonal matrix of eigenvalues.
We can then create a merged shape model by combining the means and
covariances from the original training data and the new tuning data via

Xm = (1 - 6)5( + By Simm = (1 - /G)Sx;c + /Bsyy (7)

where 8 € [0, 1] indicates the relative weight on the tuning data.
The new modes of shape variation are the eigenvectors of (S, — X X2).

2.3 Tuning the RF trees

To tune the RF trees, for each image of the tuning dataset and corresponding
manual annotations x, we re-sample the image into the reference frame. For
every point p in x, Ny random displacements (0p;) are generated and image
patches v; are sampled (centred at p + dp;). Every image patch v; is fed into
each tree and a record is made of which of the samples arrive at each leaf.

To update the displacement offset d at a leaf, using the n samples, {0p;},
that arrived at that leaf, we use

J— J— 1
d 1—a)d op; where dp; = — p;
+— ( a)d 4+ adp; where dp n; P (8)
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The parameter o € [0, 1] indicates how much attention to pay to the tuning
data. Similarly, to update the standard deviation ¢ that is stored at a leaf use

. 1 —
0%+ (1 —a)o? + ac? with ol = - Z l6p; — opi|?. (9)

3 Experiments

We tested the system on a set of 289 lat-
eral cephalograms. All images were provided
by the Central Manchester University Hospi-
tal NHS Foundation Trust (CMFT) and were
collected under relevant ethical approvals. All
cephalograms were annotated (“traced”) by
two orthodontists with 54 cephalometric land-
marks as in Figure 1, resulting in two sets of
manual annotations per image.

Study design for performance evalua-

tion: We used the dataset to investigate the Fig. 1. Cephalometric manual an-
ability of a tuned SMM system to adapt to a notation example.

new annotation style. We ran a series of sys-

tematic two-fold cross-validation experiments

as outlined in Figure 2.

(D S-S ... TrainOn(A1-95) = TestOn(A2) & TestOn(B2)

_ _ |{n=50) L L0=80) | Clas g 0n(A2-94) > TestOn(A1) & Teston(B1)

§ < <] AL95 . “| B1-95 C1b: TrainOn(B1-95) - TestOn(A2) & TestOn(B2)

:é § (n=95) § (n=95) TrainOn(B2-94) - TestOn(A1) & TestOn(B1)

=l |2 2

5l |2 A250 | | 2 B2-50 TrainOn(A1-95)+TuneWith(B1-50) = TestOn(A2) & TestOn(B2)

g1 |°| o0y (o  [Ln=50  TrainOn(A2-94)+ TuneWith(B2-50) > Teston(A1) & Teston(81) | <V

< <| A2-94 @1 B2-94 | C2p: TrainOn(B1-95)+TuneWith(A1-50) - TestOn(A2) & TestOn(B2) ov
(n=94) (n=94) TrainOn(B2-94)+TuneWith(A2-50) = TestOn(A1) & TestOn(B1)

Fig. 2. Cross-validation (CV) study design.

For all experiments, we used a single-stage (coarse) RFRV-CLM with 10 trees
as described in [8], and ran five search iterations starting the search from the
mean shape at the correct pose.

3.1 Parameter optimisation experiments

To identify how much attention to pay to the new data when tuning an existing
SMM system, we ran parameter optimisation experiments varying the values for



6 Lindner et al.

0.8 i 0.8
5 S 5
] 3 i
Y £ 06 e
a / a f /
2 / 2 /
T 04 g 04 L
S S
£ / £ .
3 a3 7 a=1.0, no shape update
0=0.0, B=05 —— 7/ a=1.0, B=0.0
0.2 @=0.25, 3=0.5 0.2 £ a=1.0, p=0.25 - ]
0=0.5, B=05 - 7 o= 0.5
a=0.75, 3=0.5 A / a=1 75—
0 : a=1.0, p=0.5 0 ) a=1.0,p=1.0 ---
1 1.5 2 25 3 35 4 1 1.5 2 25 3 35 4
Point-to-point error (mm) Point-to-point error (mm)
(a) Ceph. [train on A, tune with B] (b) Ceph. [train on A, tune with B]

Fig. 3. Parameter optimisation (applying the tuned SMM systems to images of the
tuning dataset): analysing the impact on performance of the proportion of new data
considered when tuning (a) the trees and (b) the shape model. Note that 3=0.0 refers
to only updating the mean shape but not the shape model modes.

« (tree tuning) and S (shape model tuning). For all experiments we set N, the
number of sampled patches per point and image, to 200.

Figure 3 shows the results of applying the tuned SMM systems to new images
in the tuning dataset. The best results are obtained when only considering the
new data to tune the trees (« = 1.0). The shape model tuning results demon-
strate that the tuned SMM systems benefit from updating the shape model in
addition to tuning the RF trees. Updating the RF trees has more impact on the
overall performance improvement than updating the shape model.

3.2 Performance evaluation

To estimate the overall gain in performance by tuning an existing SMM system
we compare the performance of the tuned systems with pure systems that were
fully trained from scratch (i.e. before tuning).

Figure 4 shows the results in both directions for the cephalometric dataset.
These demonstrate that overall the pure systems trained on B (Clb) perform
slightly better on the training dataset and slightly worse on the tuning dataset,
compared to the pure systems trained on A (Cla). The latter are less accurate
but generalise better, perhaps because the manual annotations of A are less
consistent than the manual annotations of B (since RFRV-CLMs replicate the
annotation quality of the training data [9]).

In both directions, tuning the systems (with o = 1.0 and 8 = 0.5) signifi-
cantly improves their performance on the tuning dataset. In contrast, the per-
formance of the tuned systems drops on the training dataset with the amount
of this performance drop being reversed compared to the performance improve-
ment on the tuning dataset. In Figure 4, the tuned systems C2a perform equally
well on the tuning dataset to the pure systems Cla on the training dataset, and
the tuned systems C2b perform significantly better on the tuning dataset than
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Fig. 4. Comparing the original vs tuned SMM systems (see Figure 2)

the pure systems C1b perform on the tuning dataset but not as well as the pure
systems Clb on the training dataset. This leaves the impression that the pat-
tern of performance improvement/drop by tuning is different for both directions
but a closer look shows that the amount of improvement/drop is similar and
independent of which dataset (A vs B) was chosen for training and tuning.
Figure 4 (red and blue curves) also demonstrates that both the pure and
the tuned SMM systems are more accurate on the training and tuning dataset,
respectively, than is the agreement between the two manual annotation sets.
For comparison we tried building models from scratch with the training+tuning
data. This leads to worse results compared the tuning approach we propose (test-
ing on A [training data = C2b training+tuning data], median error: 2.2mm vs
2mm; testing on B [training data = C2a training+tuning data], median: 2.1mm
vs 1.9mm). This is probably because training on all data blurs the differences
between the annotators, rather than tuning to the style of the target annotator.

4 Discussion and Conclusions

We have proposed to apply model transfer learning to RF regression-based SMM
systems by tuning both the trees and the underlying shape model.

Our results show that tuning to an observer leads to significant improve-
ments in performance (i.e. reducing the discrepancy between the system and
the observer on new images). Other experiments (omit for space) show that the
same technique can be used to tune the system to a new dataset with differ-
ent image properties (such as a diseased bone). It took less than 5 minutes to
tune a the system, compared to many hours to build a system in the first place.
This is of benefit for a range of scenarios such as when there is no access to
the methodology required to train an SMM system from scratch, when there
are computational or time constraints with regards to generating an SMM sys-
tem, when the size of the tuning dataset is significantly smaller than the training
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dataset, or when additional training data might become available at a later stage
(which can then be used to tune the system).

Even though in this work model transfer learning was specifically applied to
RFRV-CLMs, the proposed and effective RF update scheme can be applied in
combination with any shape constraints.

Acknowledgements: C. Lindner is funded by the Engineering and Physical
Sciences Research Council, UK (EP/M012611/1).
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