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Abstract

In brain shape analysis, the striatum is typically divided into three parts: the caudate, putamen, and 

accumbens nuclei for its analysis. Recent connectivity and animal studies, however, indicate 

striatum-cortical inter-connections do not always follow such subdivisions. For the holistic 

mapping of striatum surfaces, conventional spherical registration techniques are not suitable due to 

the large metric distortions in spherical parameterization of striatal surfaces. To overcome this 

difficulty, we develop a novel striatal surface mapping method using the recently proposed 

Riemannian metric optimization techniques in the Laplace-Beltrami (LB) embedding space. For 

the robust resolution of sign ambiguities in the LB spectrum, we also devise novel anatomical 

contextual features to guide the surface mapping in the embedding space. In our experimental 

results, we compare with spherical registration tools from FreeSurfer and FSL to demonstrate that 

our novel method provides a superior solution to the striatal mapping problem. We also apply our 

method to map the striatal surfaces from 211 subjects of the Human Connectome Project (HCP), 

and use the surface maps to construct a cortical connectivity atlas. Our atlas results show that the 

striato-cortical connectivity is not distinctive according to traditional structural subdivision of the 

striatum, and further confirms the holistic approach for mapping striatal surfaces.

1 Introduction

Striatum is a critical sub-cortical structure that connects the cortex and other basal ganglia 

structures. It is an essential part of the cortico-striatal-thalamo-cortical (CSTC) network that 

regulates human emotion and behaviors [1]. With T1-weighted MRI, shape analysis has 

been applied to study morphometry changes of the striatum in neurological [2] and mental 

disorders [3] by dividing the striatum into three parts: the caudate, putamen, and accumbens 

nuclei. Recent connectivity research [4, 5] and animal studies [6], however, indicate that 

striatum functions do not follow such subdivisions and it is more natural to map the striatum 

as a holistic structure. In this work, we follow this line of research in neuroscience and 

develop a novel striatum surface mapping method for studying its connectivity and function.

The novel surface mapping method we develop is based on Riemannian metric optimization 

on surfaces (RMOS) in the Laplace-Beltrami (LB) embedding space proposed recently [7]. 
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As illustrated in Fig. 1, the metric optimization approach eliminates the large metric 

distortion during the parameterization step of conventional spherical registration methods 

[8–10]. This fundamental advantage stems from the isometry of the LB embedding [11]. 

This is especially important for mapping the striatum as a holistic surface because of its 

drastically different geometry as compared to the unit sphere. To drive the striatum surface 

mapping in the LB embedding space, we also develop novel anatomical contextual features 

using the relation of neighboring brain structures. This helps establish anatomically 

meaningful maps and remove sign ambiguity in the LB eigenfunctions, which is a critical 

problem in shape analysis using the LB spectrum [12, 13]. In our experimental results, we 

compare our novel striatum mapping method with two spherical registration algorithms from 

FreeSurfer [8] and FSL [10], and apply it to a large-scale dataset from Human Connectome 

Project (HCP) [14] for the construction of a surface-based connectivity atlas of the striatum.

2 Methods

Striatal Surface Reconstruction

To perform striatal surface mapping, we first reconstruct a triangular mesh representation of 

the striatum in each hemisphere of the human brain from T1-weighted MRI (Fig. 2). 

Because publicly available tools typically segment out the caudate, putamen, and accumbens 

nuclei of the striatum, we merge them into one mask and apply the surface reconstruction 

method in the MOCA software tool [15] on NITRC. This algorithm ensures all surfaces have 

genuszero topology, and removes segmentation artifacts without volume shrinkage. Finally 

we decimate each mesh to 1000 vertices and 2994 edges for all mapping tasks.

Metric Optimization in LB Embedding Space

Let ℳ1 and ℳ2 denote the mesh representation of two striatum surfaces,  and 

 denote the L features defined on the two surfaces to guide their mapping, 

and W1 and W2 denote their Riemannian metrics, i.e., the edge weights. Given the 

Riemannian metrics, we can compute the LB embeddings of ℳi(i = 1, 2) as:

(1)

where  and  denote the n-th eigenvalue and eigenfunction of ℳi [7]. To compute the 

surface maps u1: ℳ1 → ℳ2 and u2: ℳ2 → ℳ1, we will minimize an energy function via 

metric optimization as follows:
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(2)

There are two terms in the energy function: feature term EF, and regularization term ER with 

the coefficient γ for the smoothness of the Riemannian metrics. The feature term measures 

the agreement of corresponding features. For the j-th feature, the cost function Cj measures 

the similarity of the same feature at the corresponding locations of the two surfaces induced 

by the surface maps u1 and u2. In this work, we define the cost function as the l2 energy, but 

more general choices such as mutual information are also possible. The regularization 

energy is designed to avoid overly irregular distortion during the mapping process. In this 

work, we define ER at each edge as the l2 difference between its metric ratio and the mean 

value of its neighbors.

As shown in Fig. 3, there are three main steps in the energy minimization. Given the current 

metrics, we compute the LB eigensystem and construct their LB embeddings in Step 1. 

Also, the sign and order ambiguities in the eigenfunctions are resolved in this step by 

searching for the optimal embedding from possible combinations of the eigenfunctions. To 

better estimate the right combination, we compute the feature energy EF in Eq. 2 with the 

nearest point map for every possible combination of the eigenfunctions, and search for the 

optimal embedding only from the combinations for which the feature energy is sufficiently 

low (below the lower 10 percentile in this work). To link the mismatch of features with the 

metrics, we then compute the β-maps  along the gradient descent direction of EF and 

convert it into a distance energy ẼF in Step 2. This is a critical step as the distance energy in 

the embedding space is a function of the eigen-systems as defined in [13], so it allows the 

computation of the gradient of the final energy E with respect to the metrics. This 

information is sent back to the image space to update the metrics W1 and W2 in Step 3. 

After that, the three steps are repeated until convergence. The final maps are obtained via 

composition of the embeddings and the maps in the embedding space. Because both surfaces 

are treated equally in the RMOS framework, the maps are symmetric.

As shown in Fig. 1(B), this computational framework uses the high dimensional LB 

embedding space as a canonical space instead of the 2D sphere (Fig. 1(A)). The isometry of 

the LB embedding ensures that the numerical calculation we perform in the embedding 

space stays faithful to the original surfaces. The surface registration algorithm in the 

framework is also fundamentally different from conventional nonlinear mesh deformation on 

the sphere [8,9]. To calculate a general diffeomorphism between surfaces, iterative 

optimization of the metrics on mesh edges was conducted instead of deforming the meshes 

in the embedding space. This means that we only need to optimize a set of scalar functions 

on the surfaces without the need of worrying about numerical difficulties such as the 
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flipping of triangles or self-intersection. This numerical advantage is from the theoretical 

guarantee that the LB embedding is fully determined by the Riemannian metric on the 

surfaces and the Riemannian metric can be fully determined by a diffeomorphism via the 

pullback metric.

Anatomical Contextual Features for Striatal Surface Mapping

The metric optimization framework is flexible and can take general features to guide surface 

mapping in the LB embedding space. For the mapping of striatal surfaces, we will utilize 

contextual information for robustness. Compared with local features derived from 

curvatures, the context features provide a global characterization about “where to where” in 

the mapping process. Importantly, they also help resolve the sign ambiguity of the LB 

eigensystem by providing a unique description in different parts of a structure, especially 

when there exist some symmetries of the structure shape. Finally, the redundant 

characterizations from all the features will increase robustness in mapping results.

For striatal surface mapping, we develop anatomical neighbor context (ANC) features that 

characterize the geometric relation between neighboring brain structures. At each vertex of a 

surface, a contextual feature will be represented as a vector. Let di (i = 1, 2, · · ·, C) denote 

the l2-distance transform of its i-th neighbor. For each vertex Vj ∈ℳ, its ANC is defined as

(3)

By normalizing each distance transform by its maximal value on the surface, we make the 

ANC feature invariant to scale differences. As an example, we show in Fig. 4 the ANC 

features for a striatal surface with respect to three neighbors: the lateral ventricle, insular 

cortex and pallidum. These features provide complementary information in different parts of 

the striatum. Taken together, they give a highly informative description about the 

corresponding locations across different subjects.

3 Results

Curvature-driven Surface Mapping

As a first experiment, we demonstrate curvature-driven mapping between two left striatal 

surfaces shown in Fig. 5(A) and (B) using RMOS and spherical registration. The surfaces 

are colored by mean curvature (MC) that is normalized by surface volume for surface 

mapping. We computed the RMOS map with the maximum of 60 eigenfunctions, and the 

regularization coefficient of 0.1. For spherical registration, the two surfaces were first 

parameterized to the unit sphere (Fig. 5(E) and (F)) using SPHARM-MAT [16], with the 

maximum SPHARM degree of 6 and other recommended parameter settings. Then the 

source sphere was registered to the target sphere by matching the MC using FreeSurfer’s 

mris register [8] and FSL’s msm [10] under the default parameter settings.
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Large metric distortions were introduced in spherical parameterization as shown in Fig. 5(E) 

and (F), which led to significant errors in the subsequent spherical registration from the 

source to target sphere as shown in Fig. 5(G) and (H) by FreeSurfer and FSL, respectively. It 

is more obviously observed, in projection of the source to target striatal surface via the maps 

computed by spherical registration (Fig. 5(I) and (J)), that spherical mapping failed in the 

establishment of correspondences especially in the putamen part. This failure was 

consistently observed in spherical mapping of other striatal surfaces. With MC-driven 

RMOS, we can see in Fig. 5(C) and (D) that high quality surface maps have been achieved 

with little metric distortion.

ANC-driven RMOS Mapping

In this experiment, we demonstrate ANC-driven RMOS mapping between left and right 

striatal surfaces, which is more challenging because the symmetry between the left and right 

shapes makes it more difficult to resolve the sign ambiguity in the early mapping process. 

As shown in Fig. 6(C), MC-driven RMOS failed to establish anatomically correct 

correspondences (for example, the green patch on the putamen) for a pair of left and right 

striatal surfaces shown in Fig. 6(A) and (B). This is because MC did not provide a unique 

description in different parts of the striatum, especially in the putamen part. Using both the 

MC and ANC features developed in this work, we can see that RMOS is able to correctly 

map the corresponding anatomy (Fig. 6(D)).

Striatal Connectivity Atlas

In the final experiment, we constructed a surface-based connectivity atlas of the left striatum 

from 211 subjects of the Q1–Q3 release of HCP. We computed striatal connectivity using 

probabilistic tractography with fiber orientation distributions (FODs) reconstructed from the 

multi-shell diffusion MRI data [17]. We generated the connectivity maps to seven cortical 

regions: orbital-frontal (medial only), middle/inferior-frontal, superior-frontal, precentral, 

parietal, occipital, and temporal cortices [4] as done from the thalamus in [7].

For construction of the connectivity atlas, RMOS maps between one reference surface and 

the other 210 surfaces was computed using both the three ANC and MC features with the 

same RMOS parameters above. Then the connectivities on each surface were pulled back to 

the reference surface by the RMOS maps, and we have a vector of the 211 connectivities to 

each cortical region for every vertex on the reference surface. The probabilistic atlas of each 

cortical regions was defined as the number of the connectivities to the cortical region higher 

than 10% divided by the total number 211 for every vertex. Then we thresholded the 

probabilistic atlas at 25%, which are shown in Fig. 7(A). Finally, the labeled atlas was 

computed by assigning each vertex to the cortical region to which it had the highest 

probability of the connection.

Each cortical region is topographically connected to adjacent areas on the striatal surface, 

but there is little connection at the lateral parts of the striatal surface as observed in 

tractography around the striatum (Fig. 7(A)). This is possibly due to the difficulty of current 

tractography techniques in detecting extremely short connections to neighboring cortices. 

More importantly, the striato-cortical connectivity patterns do not follow the conventional 
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subdivison from the FSL segmentation tool. In particular, the striatal connection to the 

orbito-frontal cortex not only occupies the nucleus accumbens but also extends to the ventral 

part of the putamen/caudate as shown in Fig. 7(C).

4 Conclusion

In this paper, we developed a novel holistic mapping method for studying striatum structure 

and connectivity. Using the data from 211 HCP subjects, we constructed a tractography-

based striato-cortical connectivity atlas. We successfully established the detailed 

correspondences across the striatal surfaces using RMOS driven by the novel ANC features. 

The projected connectivities to each cortical region by the RMOS maps are highly clustered 

on functional ROIs that do not follow the traditional structural subdivision of the striatum. 

For future work, with our high-quality surface maps of the striatum, we will build a striatal 

connectivity atlas using resting-state fMRI that provides more accurate functional 

connections.
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Fig. 1. 
A conceptual comparison of (A) the spherical registration method and (B) the metric 

optimization method in the Laplace-Beltrami embedding space for the mapping of two 

striatum surfaces M1 and M2. The fundamental advantage of the metric optimization 

framework is that there is no extra distortion induced by the parameterization process. All 

the metric changes are induced to match the two surfaces. On the other hand, the spherical 

mapping process introduces large metric distortions purely for the parameterization step, 

which can lead to large errors in the final maps.
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Fig. 2. 
Surface representation of (A) subdivision of the striatum; (B) the whole striatum.
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Fig. 3. 
The main algorithmic steps to compute the striatal surface maps.
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Fig. 4. 
An illustration of Anatomical Neighbor Context (ANC). (A) a striatum surface and its 

neighboring structures used for defining the ANC. Normalized distance features to the 

ventricle, insula, and pallidum are shown in (B), (C), and (D), respectively.
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Fig. 5. 
Curvature-driven mapping between two left striatal surfaces. (A) The source and (B) target 

surfaces are colored by mean curvature (MC). Using the maps computed by MC-driven 

RMOS, we pull back the MC of the target surface onto the source surface (C), and project 

the source onto the target surface (D). The two striatal surfaces in (A, B) were parametrized 

to (E, F) the unit spheres (colored by MC in (A, B)) using SPHARM-MAT, (E) the source 

sphere was registered to (F) the target sphere using (G) FreeSurfer and (H) FSL. Projection 

of the source striatal surface in (A) to the target surface by the spherical map is shown in (I, 

J), respectively.
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Fig. 6. 
RMOS mapping from (A) a left striatal surface to (B) a right striatal surface driven by (C) 

MC only and (D) ANC (with MC). (C) In projection of the left to right striatal surface by the 

map of MC-driven RMOS, the green patch on the left putamen in (A) was mapped onto the 

opposite side of the right putamen in (C). (D) ANC-driven RMOS correctly maps the patch 

onto the same side of the right putamen in (D). The surface views in (C) is opposite to (A, B, 

D) (lateral vs. medial views).
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Fig. 7. 
Striato-cortical connectivity atlas of 211 subjects. From the connectivities on all the striatal 

surfaces projected to the reference surface with the RMOS maps, (A) a probabilistic atlas 

was computed and thresholded at 25% for each cortical region. The labeled atlas by the 

highest probability of connection is shown in (B) and (C). The accumbens boundary and the 

boundary between putamen and caudate are drawn on the surface in (C) as solid and dashed 

curves, respectively.
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