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Abstract

Geodesic regression on images enables studies of brain development and degeneration, disease 

progression, and tumor growth. The high-dimensional nature of image data presents significant 

computational challenges for the current regression approaches and prohibits large scale studies. In 

this paper, we present a fast geodesic regression method that dramatically decreases the 

computational cost of the inference procedure while maintaining prediction accuracy. We employ 

an efficient low dimensional representation of diffeomorphic transformations derived from the 

image data and characterize the regressed trajectory in the space of diffeomorphisms by its initial 

conditions, i.e., an initial image template and an initial velocity field computed as a weighted 

average of pairwise diffeomorphic image registration results. This construction is achieved by 

using a first-order approximation of pairwise distances between images. We demonstrate the 

efficiency of our model on a set of 3D brain MRI scans from the OASIS dataset and show that it is 

dramatically faster than the state-of-the-art regression methods while producing equally good 

regression results on the large subject cohort.

1 Introduction

In medical research, image time-series are collected for individual subjects or in a 

population to monitor and study aging, disease progression, brain development and 

degeneration. For instance, brain magnetic resonance imaging (MRI) scans capture 

anatomical and functional changes in individual brains. Summarizing the characteristic 

patterns of these changes will improve our understanding of brain functions and disease 

progression for developing early diagnosis and effective treatment.

Image regression has been commonly used to estimate such changes. Existing approaches 

include piecewise regression based on image registration [5,10], methods based on kernel 

regression [2,4], geodesic regression [11,12], polynomial regression [6], and spline 

regression [13]. In contrast to piecewise regression and kernel regression approaches, 

geodesic and higher-order regression methods aim to estimate a parametric model that 

minimizes the sum of squared distances between the observed images and the corresponding 

images on the regression trajectory. The compact representation in the form of model 

parameters is then used in further statistical analysis, e.g., performing group comparisons 

between patients with a particular disease and normal controls and identifying statistical 
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differences between such cohorts. Unfortunately, closed-form solutions generally do not 

exist for this problem, especially in the case of diffeomorphisms [11]. The distance metric 

defined by diffeomorphic image registration [3] is too expensive to compute for an iterative 

optimization in the high dimensional image space. Previous work on first order 

approximations have been used to derive a closed-form solution for the distance metric [8]. 

However, all the computations were still implemented on a full dense image grid, which 

typically requires massive amounts of time and memory.

In this paper, we derive a fast geodesic regression method that utilizes a finite dimensional 

Fourier representation of the tangent space of diffeomorphisms [15] to enable efficient 

estimation of geodesic regression for image time-series. We define a distance metric in the 

low dimensional bandlimited space that leads to a fast estimation of the regression trajectory, 

which includes the initial image (‘intercept’) and the initial velocity field (‘slope’). 

Moreover, we apply the first-order approximation [8] to the distance metric and derive a 

closed-form solution that eliminates the need for iterative estimation. In particular, our 

model reduces the optimization problem of image regression to a collection of independent 

pairwise image registrations that is easily implemented in parallel. The resulting initial 

velocity is computed as a weighted average of the velocity fields in the low dimensional 

Fourier space estimated from pairwise registrations. We demonstrate the efficiency of our 

model on a set of 3D brain MRIs from the OASIS dataset and show that it is dramatically 

faster than the existing regression method [8] without sacrificing accuracy.

2 Background: Geodesic Regression

We first review the geodesic regression for image time-series in the setting of large 

deformation diffeomorphic metric mapping (LDDMM) with geodesic shooting [11]. 

Assume at P time instants {ti} (i = 1, …, P), we have a set of images {Yij} (j = 1, …, Ni), 

that is, at each time instant ti there are Ni images. The problem of geodesic regression is then 

formulated by minimizing an energy function

(1)

where I0 and υ0 are the unknown initial image (‘intercept’) and the unknown initial velocity 

field (‘slope’) that parameterize the regression geodesic at a starting time point t0, σ2 is a 

constant representing the noise variance, Yij is the jth image at time point ti, and dϕi/dt = 

(Δtiυ0) ◦ ϕi with Δti = ti − t0. Here, (m, υ) is a pairing of a velocity field υ and its dual m = 

ℒυ, with a symmetric positive-definite differential operator ℒ. The distance function 

Dist(·,·) measures the squared difference between the image Yij and its corresponding image 

on the regression geodesic, i.e., the image I0 deformed by the transformation ϕi. A 

commonly-used LDDMM framework [3] defines the distance metric

(2)
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where ℐ1, ℐ2 are the images of interest, uτ (τ ∈ [0, 1]) is the time-varying velocity field. 

The path of deformation fields ψτ is generated by dψτ /dτ = uτ ◦ ψτ. Deformation ψ0 = Id 

is the identity element and λ is a positive weight parameter.

The geodesic shooting algorithm estimates the initial velocity field u0 at τ = 0 and relies on 

the fact that a geodesic path of transformations ψτ with a given initial condition u0 can be 

uniquely determined through integrating the Euler-Poincaré differential equation (EPDiff) 

[1,9] as

(3)

where div is the divergence operator, D denotes Jacobian matrix, and  = ℒ−1 is the inverse 

of the smoothness operator ℒ in (2). Since the optimal transformation ψ1 can be 

parameterized by the given initial velocity u0, we use an exponential map Exp to simply 

denote the relationship between u0 and ψ1 as ψ1 = ExpId(u0).

The problem of minimizing the distance metric (2) can be equivalently reduced to 

optimizing over the initial velocity u0 with the EPDiff (3). The distance metric can then be 

rewritten as

(4)

In practice, we would have an inexact matching when measuring the distance due to the 

noise and appearance changes1.

3 Fast Geodesic Regression

The standard iterative minimizing procedure for energy function (1) requires gradient 

computations in the high dimensional image space. To reduce its computational cost, a 

simple geodesic regression method [8] that derives a closed-form solution for the initial 

velocity υ0 by employing a first order approximation. All the computations are still 

implemented on the full dense image grid, which limits the model’s applicability for large 

scale population analysis. In this paper, we introduce a fast geodesic regression algorithm 

that adopts the low dimensional bandlimited representation of the velocity fields in the 

Fourier space [15].

We define our model in the finite-dimensional Fourier space Ṽ that represents bandlimited 

velocity fields with conjugate frequencies. Let ℱ be a function that maps an element u ∈ V 
from the image domain to the frequency domain ũ ∈ Ṽ, i.e., ũ = ℱ[u]. The inverse Fourier 

transform ℱ−1 maps the signal ũ back to the image domain, i.e., u = ℱ−1[ũ]. The 

correspondence between the initial velocity field ũ0 and its associated transformation ψ1 at 

1A metamorphosis approach [7,14] can be used instead to produce an exact matching.
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time point τ = 1 in the image domain is ψ1 = ExpId(ℱ−1[ũ0]). With a slight abuse of 

notation, we drop the time index of the initial velocity ũ0 and the deformation ψ1 and use ũ 
and ψ in the remainder of this paper.

Similar to [8], we define a first order approximation of the diffeomorphic distances in Eq. 

(1) between images through the exponential map in Fourier space. Suppose the initial 

velocity ũij and the corresponding diffeomorphic transformation ψij map the initial image I0 

to the observed image Yij. Based on the rule of right composition, we have a transformation 

Φij = ψij ◦ (ϕi)−1 that measures the mapping error between the deformed initial image 

 and the observed image Yij. We now rewrite Φij in the form of an exponential 

map:

(5)

By taking the first-order approximation of Φij in Eq. (5), we obtain

which provides an approximation of the distance between images in terms of Fourier 

representations of the pairwise initial velocity fields ũij and the regression initial velocity υ̃0.

The minimal distance in Eq. (4) is empirically equivalent to the Riemannian length of the 

optimal transformation  that corresponds to the optimal initial velocity :

(6)

when . Since the minimal-energy curve preserves constant speed along 

geodesics, we obtain

(7)

Here, ℒ̃ is the Fourier representation of the differential operator ℒ, i.e., a d-dimensional 

Laplacian operator (−αΔ+I)c with a positive weight parameter α and a smoothness 

parameter c:
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where ξq(q = 1, …, d) denotes frequency.

Using Eqs. (6) and (7), we are ready to approximate the geodesic regression formulation in 

Eq. (1) as

(8)

The initial image I0 can be computed simultaneously with the registration-based initial 

velocities ũij by the unbiased atlas building algorithm [15].

Differentiating Eq. (8) w.r.t. the initial velocity υ̃
0, we obtain

Note that we compute the gradient in the Sobolev space by applying operator 𝒦 ̃ for 

numerical stability, which cancels out the differential operator ℒ̃.

Finally, we arrive at a closed-form solution for υ̃
0 as

(9)

To summarize, our algorithm estimates the initial image I0 and the velocity fields ũij jointly 

in a low dimensional bandlimited space by employing an efficient atlas building approach 

[15]. The initial velocity υ̃
0 is then updated as a weighted average of the estimated velocity 

fields ũij as shown in Eq. (9). Since I0 is the mean image of the entire population, the 

starting time point of the regression line in our paper is associated with the average of all 

time points as .

4 Results

Data

We demonstrate our fast geodesic regression (FGR) model on a set of 3D brain MRIs of 129 

subjects from the OASIS database, aged from 60 to 98. The MR scans were collected from 

69 healthy controls (182 MR scans in total) and 60 individuals with mild to moderate 

Alzheimer’s disease (AD) (136 MR scans in total). Each individual was scanned at 2–5 time 

points with the same resampled resolution 128 × 128 × 128 and the voxel size of 1.25 × 1.25 

× 1.25 mm3. All images underwent down-sampling, skull-stripping, intensity normalization 

to the range [0, 1], bias field correction, and co-registration with affine transformations.
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Experiments

We estimate the regression trajectory for each cohort separately. We use 163 dimensions for 

the Fourier representations of the velocity fields for patients and control group [15]. We set 

λ = 1.0, α = 3. 0, c = 3. 0 for the operator ℒ̃ and the number of steps of the time integration 

in pairwise diffeomorphic image registration in the Fourier space is set to 10. We set σ2 = 0. 

01 to balance the regularization and data matching error. We initialize I0 as the average of 

image intensities and υ0 is a zero vector field. We evaluate accuracy, runtime, and memory 

consumption of our FGR model.

To evaluate the model’s ability to capture the group trend, we compute the sum-of-squared-

differences (SSD) between another 16 test image scans and the images obtained by shooting 

the image template I0 with the estimated velocity field υ0 for the corresponding age of the 

subject. We employ the simple geodesic regression (SGR) [8] estimated on the full image 

grid as the baseline. For fair comparison, we keep all the parameters the same for both 

methods. We perform the two-sample hypothesis test on the computed SSDs between our 

method (FGR) and the baseline algorithm (SGR).

Experimental Results

Figure 1 visualizes the estimated group trends with shooting results for ti = 65, 75, 85, 95 

and illustrates the expansion and shrinkage of the brain anatomy. The group trajectories for 

both cohorts in our study show anatomical changes consistent with [12], e.g., the changes in 

ventricle size is the dominant source of variability in both populations, while the dementia 

group has a faster degeneration rate.

As shown in the left panel of Fig. 2, the entire inference procedure finishes in 7.5 min with 

168.4 MB memory by using parallel computing, while the simple geodesic regression 

method in a high dimensional image space [8] requires more than 2 h and 1708.1 MB 

memory using the same number of cores. The right panel of Fig. 2 reports the square root of 

the normalized SSD for our method (FGR) and the baseline algorithm (SGR). We therefore 

conclude that the two algorithms produce comparable results in terms of quality of image 

prediction of SSD errors. The difference in SSD is not statistically significant in a paired t-

test (p = 0.7391).

5 Discussion and Conclusions

In this paper, we proposed a fast geodesic regression method that dramatically decreases the 

computational costs while offering comparable accuracy. We employ an efficient low 

dimensional representation of diffeomorphisms derived from the image data and estimate the 

regressed trajectory with a closed-form solution. Compared to the simple geodesic 

regression in [8], our approach is an order of magnitude faster and requires much less 

memory, with comparable accuracy for the estimated regression trajectories. This paves an 

efficient way to develop hierarchical regression model that processes large longitudinal 

datasets.

The group-level trend estimated by our method can be parallel transported to an individual’s 

baseline image to further predict following-up scans; however, parallel transport is non-
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trivial in a high-dimensional image space and will be considered in future work. Another 

promising direction is to generalize our model to polynomial regression that captures non-

linear anatomical changes, for instance, the saturation effects in the aging brain.
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Fig. 1. 
Images at time points t = 65, 75, 85, 95 obtained via forward/backward shooting the 

estimated initial image by the estimated initial velocity. Sagittal (top), coronal (middle), and 

axial (bottom) views are shown for healthy subjects and AD patients.
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Fig. 2. 
Comparison of our fast geodesic regression (FGR) with the simple geodesic regression 

(SGR) [8]. Left: Runtime in minutes and memory in MB. Right: Normalized sum-of-

squared-differences (SSD) between a test image and the corresponding image predicted by 

the model. There are 16 images in the test data set. The test image corresponding to the 

outlier on the top has quite difference image appearance from other images.

Hong et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1 Introduction
	2 Background: Geodesic Regression
	3 Fast Geodesic Regression
	4 Results
	Data
	Experiments
	Experimental Results

	5 Discussion and Conclusions
	References
	Fig. 1
	Fig. 2

