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Abstract

Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging 

the brain’s white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI 

for tract reconstruction. Because the number of FOs in a voxel is usually small, dictionary-based 

sparse reconstruction has been used to estimate FOs. However, accurate estimation of complex FO 

configurations in the presence of noise can still be challenging. In this work we explore the use of 

a deep network for FO estimation in a dictionary-based framework and propose an algorithm 

named Fiber Orientation Reconstruction guided by a Deep Network (FORDN). FORDN consists 

of two steps. First, we use a smaller dictionary encoding coarse basis FOs to represent diffusion 

signals. To estimate the mixture fractions of the dictionary atoms, a deep network is designed to 

solve the sparse reconstruction problem. Second, the coarse FOs inform the final FO estimation, 

where a larger dictionary encoding a dense basis of FOs is used and a weighted ℓ1-norm 

regularized least squares problem is solved to encourage FOs that are consistent with the network 

output. FORDN was evaluated and compared with state-of-the-art algorithms that estimate FOs 

using sparse reconstruction on simulated and typical clinical dMRI data. The results demonstrate 

the benefit of using a deep network for FO estimation.
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1 Introduction

Diffusion magnetic resonance imaging (dMRI) is currently the only tool that enables 

reconstruction of in vivo white matter tracts [5]. By capturing the anisotropic water diffusion 

in tissue, dMRI infers information about fiber orientations (FOs), which are crucial features 

in white matter tract reconstruction [5].

Various methods have been proposed to estimate FOs. In particular, methods based on sparse 

reconstruction have shown efficacy in reliable FO estimation with a reduced number of 

gradient directions [8]. The sparsity assumption is typically combined with multi-tensor 

models [3,4,8], which leads to dictionary-based sparse reconstruction of FOs. However, 
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accurate estimation of complex FO configurations in the presence of noise can still be 

challenging.

In this work, we explore the use of a deep network to improve dictionary-based sparse 

reconstruction of FOs. We model the diffusion signals using a dictionary, the atoms of which 

encode a set of basis FOs. Then, FO estimation can be formulated as a sparse reconstruction 

problem and we seek to solve it with the aid of a deep network. The proposed method is 

named Fiber Orientation Reconstruction guided by a Deep Network (FORDN), which 

consists of two steps. First, a deep network that unfolds the conventional iterative estimation 

process is constructed and its weights are learned from synthesized training samples. To 

reduce the computational burden of training, this step uses a smaller dictionary that encodes 

a coarse set of basis FOs, and thus gives approximate estimates of FOs. Second, the final 

sparse reconstruction of FOs is guided by the FOs produced by the deep network. A larger 

dictionary encoding dense basis FOs is used, and a weighted ℓ1-norm regularized least 

squares problem is solved to encourage FOs that are consistent with the network output. 

Experiments were performed on simulated and typical clinical brain dMRI data, where 

promising results were observed compared with competing algorithms.

2 Methods

2.1 Background: FO Estimation by Sparse Reconstruction

Diffusion signals can be modeled with a set of fixed prolate tensors, each representing a 

possible FO by its primary eigenvector (PEV) [4,8]. Suppose the set of the basis tensors is 

 and their PEVs are , where N is the number of the basis tensors. In this work 

we use N = 289 [14], which results from tessellating an octahedron. The eigenvalues of the 

basis tensors can be determined by examining the diffusion tensors in regions occupied by 

single tracts [8].

For each diffusion gradient direction gk (k = 1, …, K) associated with a b-value bk, the 

diffusion weighted signal at each voxel can be represented as [8]

(1)

where S(0) is the baseline signal without diffusion weighting, fi is the unknown nonnegative 

mixture fraction (MF) for , and n(gk) represents image noise. By defining 

y(gk) = S(gk)/S(0) and η(gk) = n(gk)/S(0), we have

(2)

where y = (y(g1), …, y(gK))T, f = (f1, …, fN)T, η = (η(g1), …, η(gK))T, and G ∈ ℝK×N is a 

dictionary matrix with .
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Because the number of FOs at a voxel is small compared with that of gradient directions, 

FOs can be estimated by solving a sparse reconstruction problem

(3)

To solve Eq. (3), the constraint of ‖f‖1 = 1 is usually removed [4, 8]. Then, the problem can 

be solved by using iterative reweighted ℓ1-norm minimization [4] or by approximating the ℓ0-

norm with the ℓ1-norm [8]. The solution is finally normalized so that the MFs sum to one and 

basis directions associated with MFs larger than a threshold are set to be FOs [8].

2.2 FO Estimation Using a Deep Network

Consider the general sparse reconstruction problem

(4)

Using methods such as iterative hard thresholding (IHT) [2], Eq. (4) or its ℓ1-norm relaxed 

version can be solved by iteratively updating f. At iteration t + 1,

(5)

where W = GT, S = I − GT G, and hλ(·) is a thresholding operator with a parameter λ ≥ 0. 

Motivated by this iterative process, previous works have explored the use of a deep network 

for solving sparse reconstruction problems. By unfolding and truncating the process in Eq. 

(5), feed-forward deep network structures can be constructed for sparse reconstruction, 

where W and S are learned from training data instead of predetermined by G [11, 12]. As 

demonstrated by [12], these learned layer-wise fixed weights could guarantee successful 

reconstruction across a wider range of restricted isometry property (RIP) conditions than 

conventional methods such as IHT.

In this work, to solve Eq. (3) we construct a deep network as shown in Fig. 1, where the 

input is the diffusion signal y at a voxel and the output is the MF f. The layers L = 1, 2, …, 8 

correspond to the unfolded and truncated iterative process in Eq. (5) (assuming f0 = 0), 

where W and S (shared among layers) are learned. The thresholded rectified linear unit 

(ReLU) [7] is given by , where 1 is an indicator function, and is used in 

each of these layers. The thresholded ReLU yields the thresholding operator in IHT [2] (Eq. 

(5)). We empirically set λ = 0.01. Note that because of the nonnegative constraint on f in Eq. 

(3), [hλ(a)]i is always zero when ai < 0. A normalization layer is added before the output to 

enforce that the entries of f sum to one. To ensure numerical stability, we use f ← (f +τ1)/‖f 
+τ1‖1 for the normalization, where τ = 10−10. The network is implemented using the Keras 

library (http://keras.io/). We use the mean squared error as the loss function and the Adam 
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algorithm [6] as the optimizer; the learning rate is 0.001, the batch size is 64, and the 

number of epochs is 8, which achieves stable training loss in practice.

If the training data are generated by conventional algorithms, such as IHT, then the network 

only learns a strategy that approximates these suboptimal solutions [12]. Thus, we adopt the 

strategy of synthesizing observations [12] according to given FO configurations. However, 

synthesis of diffusion signals for all combinations is prohibitive. For example, for the cases 

of three crossing fibers, the total number of FO combinations is  and each 

combination requires sufficient training instances with noise sampling and different 

combinations of MFs. Thus, training the deep network using the full set of basis directions 

can be computationally intensive. Therefore, we use a two-step strategy to estimate FOs: 1) 

by using a smaller set of basis FOs, coarse FOs are estimated using the proposed deep 

network; 2) the final FO estimation is guided by these coarse FOs by solving a weighted ℓ1-

norm regularized least squares problem. Details of these two steps are described below.

Coarse FO Estimation Using a Deep Network—A smaller set of basis tensors 

 are considered for coarse FO estimation using the deep network. As 

discussed and assumed in the literature, we consider cases with three or fewer FOs in 

synthesizing the training data [4]. The cases of FO configurations can be given by applying 

an existing FO estimation method to the subject of interest. In this work we use CFARI [8] 

which estimates FOs using sparse reconstruction. Note that such a method does not need to 

provide accurate FO configurations at every voxel. Instead, it provides a good estimate of 

the set of FO configurations in the brain or a region of interest.

Because the original CFARI method can give multiple close FOs to represent a single FO 

that is not collinear with a basis direction, which unnecessarily increases the number of FOs, 

and that these FOs may not be collinear with the smaller set of basis directions considered in 

the deep network, we post-process the CFARI FOs by selecting the peak directions in terms 

of MFs and then map them to their closest basis directions in the coarse basis set.

The refined CFARI FOs in the brain or a brain region provide a set of training FO 

configurations. For each FO configuration with a single or multiple basis directions, 

diffusion signals were synthesized with a single-tensor or multi-tensor model using the 

corresponding basis tensors, respectively. For a single basis direction, its MF was set to one; 

for multiple basis directions, different combinations of their MFs from 0.1 to 0.9 in 

increments of 0.1 were used for synthesis (note that they should sum to one). Rician noise 

was added to the synthesized signals, and the signal-to-noise ratio (SNR) can be obtained, 

for example, by placing bounding boxes in background and white matter areas [13]. For 

each MF combination, 500 samples were generated for training.

We further reduce the computational cost of training by parcellating the brain into different 

regions, each containing a small number of FO configurations. This is achieved by 

registering the EVE template [10] to the subject using the fractional anisotropy (FA) map 

and the SyN algorithm [1]. A deep network is then constructed for each region using all the 
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FO configurations in that region, and thus each network requires a much smaller number of 

training samples.

In the test phase, the trained networks estimate the MFs in their corresponding parcellated 

brain regions. Like [8], the basis directions with MFs larger than a threshold of 0.1 are set to 

be the FOs. The FOs predicted by the deep networks are denoted by , where U 
is the cardinality of .

FO Estimation Guided by the Deep Network—The coarse FOs given by the deep 

networks provide only approximate FO estimates due to the low angular resolution of the 

coarse basis; however, they can guide the final sparse FO reconstruction that uses the larger 

set of basis directions. Specifically, at each voxel we solve the following weighted ℓ1-norm 

regularized least squares problem [13] that allows incorporation of prior knowledge of FOs,

(6)

Here, C is a diagonal matrix encoding the guiding FOs predicted by the deep network, and 

basis directions closer to the guiding FOs are encouraged. The diagonal weights are 

specified as [14]

(7)

When vi is close to the guiding FOs, Ci is small and therefore fi is encouraged to be large 

and vi is encouraged to be selected as an FO. Eq. (6) can be solved using the strategy in [13]. 

We set α = 0.8 as in [14], and selected β = 0.25 because the number of diffusion gradients 

used in this work is about half of that used in [14]. The MFs are normalized so that they sum 

to one, and the FOs are determined as the basis directions associated with MFs larger than 

0.1 [8].

3 Results

3.1 3D Digital Crossing Phantom

A 3D digital crossing phantom was created, where the tract geometries and diffusion 

parameters in [14] were used. The phantom consists of regions of single tracts, two crossing 

tracts, and three crossing tracts. Thirty gradient directions were applied with b = 1000 s/

mm2. Rician noise (SNR = 20 on the b0 image) was added to the diffusion weighted images 
(DWIs).

We quantitatively evaluated the accuracy of FORDN using the error measure in [14]. We 

compared FORDN with two sparse reconstruction based methods, CFARI [8] and L2L0 [4]. 

Note that in [14] CFARI has already been compared with techniques that are not based on 
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sparse reconstruction, where they achieve similar estimation performance. We also 

compared the final FORDN results with the intermediate output from the deep network 

(DN). The errors in the entire phantom and in each region containing noncrossing, two 

crossing, or three crossing tracts are shown in Fig. 2(a). In all cases, FORDN achieves more 

accurate FO reconstruction. In addition, the intermediate DN results already improves FO 

estimation in regions with crossing tracts compared with CFARI and L2L0.

The FO errors in Fig. 2(a) were also compared between FORDN and CFARI, L2L0, and DN 

using a paired Student’s t-test. In all cases, the FORDN errors are significantly smaller (p < 

0.001), and the effect sizes (Cohen’s d) are shown in Fig. 2(b). The effect sizes are larger in 

regions with three crossing tracts, indicating greater improvement in regions with more 

complex fiber structures.

3.2 Brain dMRI

FORDN was next applied to a dMRI scan of a random subject from the Kirby21 dataset [9].
1 DWIs were acquired on a 3T MR scanner (Achieva, Philips, Best, Netherlands). Thirty-

two gradient directions (b = 700 s/mm2) were used. The in-plane resolution is 2.2 mm 

isotropic and was upsampled by the scanner to 0.828 mm isotropic. The slice thickness is 

2.2 mm. We resampled the DWIs so that the resolution is 2.2 mm isotropic. The SNR is 

about 22 on the b0 image.

FOs in a region where the CC and SLF cross are shown in Fig. 3 and compared with CFARI 

and L2L0. FORDN better reconstructs the transverse CC FOs and the anterior–posterior 

SLF FOs than CFARI and L2L0 (see the high-lighted region). Fiber tracking was then 

performed using the strategy in [15], where seeds were placed in the noncrossing CC (see 

Fig. 4). The FA threshold is 0.2, the turning angle threshold is 45°, and the step size is 1 mm. 

The results are shown in Fig. 4, and each segment is color-coded using the standard color 

scheme—red: left–right; green: front–back; and blue: up–down. FORDN FOs do not 

produce the false (green) streamlines going in the anterior–posterior direction as in the 

CFARI and L2L0 results (see the zoomed region). Note that the streamlines tracked by 

FORDN propagate through multiple regions parcellated by the EVE atlas, which indicates 

that consistency of the streamlines is preserved although each region is associated with a 

different deep network.

4 Conclusion

We have proposed an algorithm of FO estimation guided by a deep network. The diffusion 

signals are modeled in a dictionary-based framework. A deep network designed for sparse 

reconstruction provides coarse FO estimation using a smaller set of the dictionary atoms, 

which then informs the final FO estimation using weighted ℓ1-norm regularization. Results 

on simulated and clinical brain dMRI have demonstrated promising results compared with 

the competing methods.

1Additional results can be found at http://arxiv.org/abs/1705.06870.
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Fig. 1. 
The structure of the deep network used in this work to guide FO estimation.
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Fig. 2. 
(a) Means and standard deviations of FO errors. (b) Effects sizes for the comparison between 

FORDN and other methods.
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Fig. 3. 
FO estimation results of brain dMRI overlaid on the FA map: an axial view of the crossing 

of the CC and SLF. Note the highlighted region for comparison.
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Fig. 4. 
Fiber tracking results seeded in the CC. Note the zoomed region for comparison.
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