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Abstract

To achieve improved understanding of white matter (WM) lesions and their effect on brain 

functions, it is important to obtain a comprehensive map of their connectivity. However, changes 

of the cellular environment in WM lesions attenuate diffusion MRI (dMRI) signals and make the 

robust estimation of fiber orientation distributions (FODs) difficult. In this work, we integrate 

techniques from image inpainting and compartment modeling to develop a novel method for 

enhancing FOD estimation in WM lesions from multi-shell dMRI, which is becoming increasingly 

popular with the success of the Human Connectome Project (HCP). By using FODs estimated 

from normal WM as the boundary condition, our method iteratively cycles through two key steps: 

diffusion-based inpainting and FOD reconstruction with compartment modeling for the successful 

restoration of FODs in WM lesions. In our experiments, we carry out extensive simulations to 

quantitatively demonstrate that our method outperforms a state-of-the-art method in angular 

accuracy and compartment parameter estimation. We also apply our method to multi-shell imaging 

data from 23 multiple sclerosis (MS) patients and one LifeSpan subject of HCP with WM lesion. 

We show that our method achieves superior performance in mapping the connectivity of WM 

lesions with FOD-based tractography.

1 Introduction

White matter (WM) lesions often occur in normal aging with vascular origins [1] or 

neurological disorders such as multiple sclerosis (MS) [2], but their impact on brain function 

often are not well understood. A comprehensive map of their connectivity to cortical and 

sub-cortical regions will not doubt improve our study and management these lesions [3]. 

Diffusion MRI(dMRI) has played a central role for the in vivo mapping of structural 

connectivity in human brain. The presence of extra-axonal fluid in the WM lesion due to 

pathology, however, dramatically attenuates the dMRI signals and reduces the signal to noise 

ratio (SNR), making it challenging to recover the underling fiber orientations and map lesion 

connectivity [4]. The emergence of multi-shell dMRI for connectome imaging studies[5] 
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allows the incorporation of compartment models and holds promise for more robust analysis 

of lesion connectivity, but the loss of SNR still poses serious challenges even for these 

advanced analysis techniques.

In this work we propose a novel method for more accurate estimation of fiber orientation 

distribution (FOD) in WM lesions from multi-shell dMRI. The main idea is the effective 

combination of an inpainting and estimation step with an operator splitting scheme [6]. For 

the processing of T1 or T2-weighted images in MS research, inpainting methods were 

applied to improve the robustness of image registration and segmentation [7–9]. Our work is 

novel in that we are processing high dimensional FODs from multi-shell diffusion imaging 

and we aim for the restoration of both the shape and magnitude of the FODs. We also 

incorporate the diffusion-based inpainting with data-driven restoration to improve the overall 

estimation of the FODs. In our experiments, we demonstrate our method on both simulations 

and multi-shell imaging data from a cohort of 23 MS patients and one LifeSpan subject from 

HCP [5]. In comparisons with a state-of-the-art method for FOD modeling from multi-shell 

imaging data [10], we show that our method achieves better performance for FOD 

estimation in WM lesions and produces more complete mapping of lesion connectivity with 

tractography.

2 Method

In Figure 1, we provide an overview of the proposed method with a 2D illustration. The 

normal tissue, ventricle and lesion voxels are labelled in white, black and grey, respectively. 

As a first step of our method, we compute the FODs for the whole brain mask using the 

multi-compartment algorithm in [10]. A subset of FODs within normal tissue are fixed as 

boundary condition (marked in yellow) for later inpainting iterations. Next, the magnitude of 

FODs in the lesion region are initialized from the fixed boundary and surrounding voxels in 

normal tissue to interior voxels. For example, the red dot in Figure 1 highlights one 

boundary lesion voxel with at least one of its four nearest neighbor voxels (marked in blue) 

belonging to normal tissue. The magnitude of the FOD at this lesion voxel is initialized as 

the weighted mean of FODs from neighboring voxels in normal tissue inside an image patch 

(marked in green) centered at the lesion voxel. After the initialization for all voxels are 

completed, we reconstruct the FODs in the WM lesion by iteratively cycling through an 

inpainting and restoration step until a stopping criteria is met. The inpainting step propagates 

information of FODs from the normal tissue to voxels inside the WM lesion, while the 

restoration step integrates this regularity with the dMRI signal for the calculation of the 

FOD. Next we will present the details of this algorithm.

2.1 Multi-compartment Modeling for FOD Reconstruction

Let ℬ ⊂ ℛD denotes a brain mask where D is image dimension. Let a vector sp(b) denote 

the diffusion imaging signal at voxel p with a b-value b and from N gradient directions 

where p ∈ ℬ. Following the multi-compartment model in [10], in this work sp(b) is 

represented as three compartment models: intra-axonal compartment with (i.e., a stick 

kernel), extra-axonal compartment (i.e., a sphere model) and the DOT model with negligible 

diffusion. Then sp(b) is defined as:
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(1)

where the matrix A represents the spherical convolution of the FOD and a stick kernel, x is 

the vector of spherical harmonics (SPHARM) coefficients for the FOD, β = [e−b1λisoe−b2λiso 

⋯ e−bNλiso]T with isotropic diffusivity λiso, ρ = [11 ⋯ 1]T with length N, and ζ is the vector 

of noise. Therefore, we can define and minimize the following energy function which 

consists of a data fidelity term and an L1 sparsity penalty term of FOD:

(2)

where ξ represents the weighting coefficient of sparsity term. Because the integral of all 

SPHARM basis with order l ≥ 1 is zero, we have the matrix representation of the sparsity 

term with  and the volume fractions of all three compartments should 

satisfy the normalization constraint Ix + α + γ= 1. CM denotes an adaptively computed 

constraint matrix to guarantee the nonnegativity of FOD [10]. To estimate the unknown x, α, 

λiso, γ, a coordinate descent algorithm is employed to optimize them iteratively using a 

quadratic programming step and a gradient descent step.

2.2 Initialization of Lesion FOD

Assume we have a well-defined lesion mask ℒ ⊂ ℬ and ventricle mask  ⊂ ℬ. For q ∈ ℒ, 

let ℘q be an image patch centered at q with hD – 1 voxels (i.e., voxel q is excluded). Let x′ 
= x/||x|| stand for the normalized x where || · || is the L2-norm. This means we can measure 

the similarity of normalized SPHARMs coefficients (i.e., FOD shape) regardless the FOD 

size. The dissimilarity measure  computes the difference of FOD shapes 

between voxel q and ∀n ∈ {n: n ∈ ℘q ∩ ℬ ∧ n ∉ ℒ ∪ } (i.e., all voxels of normal tissue 

within image patch ℘q). We select a subset of ℘q:

(3)

where Tsim is the threshold of similarity and Eq. (3) selects  with the differences of FOD 

shapes equal or smaller than Tsim. Then  which consists of the first m largest ||xn*|| 

(i.e., FOD size) can be chosen from  where  and |·| is the cardinality (i.e., 

number of voxels). This means the adjacent FODs which have similar shapes with xq will be 

selected and the voxels which are very close to the gray matter are expected to be excluded 

because of their small FOD sizes. Let w denote a vector consisting of intra-axonal fraction 

Ix, extra-axonal fraction α, DOT model fraction γ, and isotropic diffusivity λiso. Then the 

weighted mean for voxel q is computed as
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(4)

where η(||·||) is a Gaussian PDF with mean zero and standard deviation σw. With w̄q, we can 

calculate the recovery weighting factors through element-wise division of w̄q by wq and then 

multiply the corresponding factors back to xq, α, γ and λiso to enlarge the FOD magnitude 

of voxel q.

After the initialization of voxel q, it is temporarily removed from lesion mask ℒ and will be 

regarded as a normal voxel in the consequent initializations of other lesion voxels. The entire 

initialization process will end when ℒ = Ø.

2.3 Inpainting and Restoring Lesion FOD

After the initialization, the magnitudes of lesion FODs are recovered. However, the FOD 

shape of lesion voxel has still been deteriorated due to the poor dMRI signal of lesion 

region. In addition, we still need a buffing process to smooth the initialized compartment 

fractions of lesion FOD with its adjacent FODs. First, an anisotropic inpainting step is 

employed to bring the FOD regularity of fixed boundary condition to inner lesion region. 

Second, we minimize a new energy function derived from Eq. (2) with an additional spatial 

regularization term to balance the fidelity between initialized diffusion signal and 

anisotropic smoothing. Motivated by the operator splitting optimization [6], an iterative 

approach for the inpainting and restoration of lesion FOD is proposed in this work. With 

operator splitting, the two steps are executed iteratively until reaching a stopping criterion.

For the inpainting step, we assume the SPHARMs coefficients xq, extra-axonal fraction αq 

and DOT model fraction γ should be similar among the surrounding FODs. We follow the 

anisotropic diffusion in [11] to implement our high dimensional smoothing algorithm. As 

shown in Figure 1, one center voxel (marked as red dot) has 4 nearest-neighbor voxels 

(marked as blue dots) in 2D case. For 3D data, we apply the same scheme to one center 

voxel surrounded by 6 nearest-neighbor voxels. Let us denote . 

Then we can construct a vector  where υ1(q) = ||xq||, , 

υ3(q) = αq and υ4(q) = γq. By this means, the normalized  and its norm ||xq|| are separated 

as two elements of υ(q). The υ(nj) of one nearest neighbor nj can be defined similarly as 

. Then the anisotropically smoothed  is computed as:

(5)

where k ∈ [0, K] represents the iteration number, τ is the Gaussian diffusion duration. The 

anisotropic weight is g(||·||) = e−(||·||/σs)2 where σs controls the effect range of anisotropic 
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smoothing. Note that the smoothed SPHARMs coefficients  and then we 

have the smoothed ε̄k(q) = [x̄q, ᾱq, γ̄
q,]T.

Next, the energy function with auxiliary term is minimized for all q ∈ ℒ:

(6)

where ŝq is the initialized diffusion signal with enlarged FOD size. The last term in Eq. (6) 

introduces the anisotropic inpainting step to the optimization. Because less weight should be 

put on the auxiliary term if it is overly smoothed, the weight of last term is inversely 

proportional to τ in Eq. (5).

3 Experiments

3.1 Simulation

In this section, we applied our method to both simulated and in vivo multi-shell dMRI data. 

We compare out results with the multi-compartment method in [10], which we designate as 

the baseline method in our experiments. For real data, WM lesion masks were manually 

annotated from T2-weighted MRI, and the ventricle masks were obtained by manually 

correcting automated segmentation results. The weighting coefficient of sparsity term ξ was 

fixed to 0.2. The diffusion time τ was chosen as 0.15 for numerical stability. The patch size 

h in FOD initialization was 5 and 9 for simulation and real data, respectively. The threshold 

Tsim for FOD similarity was 0.7. In Eq. (4) the cardinality m was fixed to 3. The standard 

deviation σw in Eq. (4) was 0.4. For anisotropic regularization, σs in Eq. (5) was fixed to 0.5. 

The weighting factor ω in Eq. (6) was 20. We fixed the iteration numbers K = 20 on 

simulated data and K = 10 on real data.

In our simulation, we used a multi-shell diffusion protocol from the LifeSpan project of 

HCP that consists of b-values 1500s/mm2 and 3000s/mm2 and 98 gradient directions. For 

the normal voxel, the simulated intra-axonal, extra-axonal, and trapped water fractions were 

fixed as: 0.35, 0.5 and 0.15, respectively. Because the water diffusion in extra-axonal 

compartment should be lower than the intra-axonal compartment λ|| = 0.0017mm2/s, we 

picked the diffusivity of extra-axonal compartment as λiso = 0.0012mm2/s. Figures 2(a) and 

(e) show the two ground truth fiber patterns in the simulation. Figure 2(a) consists of signal 

fiber direction at 90°. Figure 2(e) contains two fiber directions at 90° and 60°. To simulate a 

3 × 3 lesion region (marked in red) located at the center of Figures 2(a) or (e), we modified 

the intra-axonal, extra-axonal, and trapped water fractions to 0.07, 0.7 and 0.23, respectively. 

Rician noise was added so that dMRI data within lesion region have an SNR = 3.

Figures 2(b) and (f) show the baseline reconstructions of the simulated FOD without 

applying the proposed approach. Figures 2(c) and (g) present the results after the 

initialization of lesion FODs, where we can see the magnitudes of FODs were recovered, but 

there are still false and random rotations in fiber directions. As shown in Figures 2(d) and 

(h), the results achieved by the proposed approach successfully restored the lesion FODs 
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with proper shapes and magnitudes. To quantitatively measure the reconstruction accuracy, 

we computed the average angular error (AAE) [10] for all the 3 × 3 lesion voxels. The AAE 

of each lesion voxel are summarized in Figure 3(a). Compared with the baseline results, the 

proposed method clearly improved the AAE accuracy. For the simulation data, the ground 

truth of extra-axonal fraction is 0.5. Thus we can compute the difference of the reconstructed 

extra-axonal fraction with the ground truth. From Figure 3(b), we can see the proposed 

approach also reduced the errors in measuring the volume fraction of the extra-axonal 

compartment. Figure 3(c) shows the convergence curve of the proposed approach during the 

optimization of Eqs. (5) and (6). The results con-firmed that the proposed algorithm 

converged to a local minima. It also shows that practically 10 iterations, which we will use 

for real data, would be a good balance between computational cost and reconstruction 

accuracy.

3.2 Multi-shell Imaging Data of Human Brains

We acquired in vivo data from 23 patients with multiple sclerosis (MS). The imaging 

protocol contains two shells with b-values 1000s/mm2, 2000s/mm2 and 45 gradient 

directions. In addition, the proposed approach was also applied to the multi-shell imaging of 

a HCP LifeSpan subject whose brain contains WM lesions due to aging.

The reconstruction results from an MS patient are first shown in Figure 4. Figure 4(a) shows 

the mask of WM lesions. In Figure 4(b) the FODs from the baseline method show strong 

attenuation due to the WM lesion. In contrast, Figure 4(c) presents the results achieved by 

the proposed approach. We can see the restored FODs demonstrate high coherence with the 

surrounding FODs in normal WM. Figures 4(d) and (e) show the track-density imaging 

(TDI) [12] results computed from 1 million fiber tracts by the MRTrix tool[13]. Due to the 

WM lesion, we can observe a clear loss of the fiber connectivity in Figure 4(d). As shown in 

Figure 4(e), the proposed approach restored the lost fiber connectivity.

To further compare the effect of different FOD reconstruction results on studying lesion 

connectivity, we ran FOD-based tractography from a randomly selected voxel around lesion 

center for each subject. The same tractography parameters of MRTrix were used for all 

subjects and methods: curvature=1.5; FOD threshold=0.05; maximum number of tracts = 

2000. Figure 5(a) shows three representative results of the fiber tracking based on the FOD 

computed by the baseline (see first row) and proposed (see second row) method. In contrast 

to the baseline results, the proposed method resulted in more complete reconstruction of 

lesion connectivity. To quantitatively measure the performance on each subject, we used 

TrackVis [14] to compute the tract volume. Figure 5(b) plots the results of tract volume on 

each subject, where the first 23 subjects are MS patients and the 24th subject is from the 

LifeSpan project of HCP. We can see the proposed approach improved the tract volume in all 

the subjects as consistent with the individual examples shown in Figure 5(a).

4 Conclusion

In this work we propose a novel approach for the restoration of FODs within WM lesions. 

Results from our simulation and real data demonstrate the potential of the proposed method 
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for more robust mapping of WM lesion connectivity. For future work, we will validate our 

method on WM lesions from both vascular origin and multiple sclerosis in clinical studies.
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Fig. 1. 
Illustration of the proposed FOD restoration approach for white matter lesion.
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Fig. 2. 
FOD on simulated data: (a) and (e) simulated fiber directions; (b) and (f) baseline; (c) and 

(g) initialized; (d) and (h) proposed.
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Fig. 3. 
Reconstruction results on simulated data: (a) mean average angular error with standard 

deviation; (b) mean extra-axonal fraction error with standard deviation (c) convergence 

curves.
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Fig. 4. 
FOD and TDI results from one subject. Results from one ROI shown in (a) are plotted in (b) 

and (c). (b) and (d) are baseline results. (c) and (e) are the results achived by our approach.
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Fig. 5. 
Fiber tracts constructed from random single seed voxels within lesion regions. The white 

disk indicates the seed location. (a) the first and second rows are the results of baseline and 

proposed approach, respectively. (b) tract volume (ml) on each subject.
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