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Abstract

We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber 

parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-

shell data is represented in a dictionary form using a non-monoexponential decay model of 

diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with 

predefined orientations, which are the unknown parameters, form the dictionary weights. These 

unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian 

learning algorithm. A localized learning of hyperparameters at each voxel and for each possible 

fiber orientations improves the parameter estimation. Our experiments using synthetic data from 

the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome 

Project demonstrate the improvements.
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1 Introduction

Acquisition of images using diffusion MRI (dMRI) and representation of the MR signal 

using compartment models facilitate extraction of microstructural features of brain white 

matter [1]. In particular, estimation of orientations and volume fractions of the anisotropic 

compartments in these models helps infer the white matter fiber anatomy [2]. Accurate 

estimation of these parameters is challenged by the relatively limited spatial and angular 

resolutions of acquired dMRI data. Advances in magnetic field strength have significantly 

improved spatial resolution [3], though it may lead to increased scanning time. Recently 

developed multi-shell dMRI acquisition protocols, which improved the angular resolution, 

may further increase the length of the scanning time. Compressed sensing methods, which 
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require fewer measurements within a voxel, are effective ways to deal with the increased 

scan time.

Finding volume fractions and fiber directions with a large number of possible fiber 

orientations is an ill-posed problem. Considering the fact that the number of crossing fiber 

populations within a voxel is limited, we propose a sparse signal recovery algorithm, to 

address this issue. The algorithm which is based on sparse Bayesian learning (SBL) [4], is 

useful for improved inference from data with under-sampled q-space (i.e. lower number of 

diffusion encoding directions).

The seminal work by Tipping on SBL [4] using automatic relevance determination (ARD) 

[5] provides a framework for obtaining sparse solutions to regression and classification 

problems. The sparsity of parameters is enforced by selection of appropriate prior 
probability distributions for the parameters to be estimated. A mixture of zero-mean 

Gaussian distributions with individual hyperparameters for variance prior distributions 

promotes relevance learning [4]. The hyperparameters associated independently with every 

weight moderate the strength of the prior and govern the variances of the Gaussian scale 

mixture, by learning the hyperparameters from the data. We exploit this learning approach in 

SBL and estimate the fiber orientations and corresponding volume fractions from a 

dictionary representation of dMRI data. We use SBL for selection of the fiber orientations 

from a large number of possible fiber orientations and for un-mixing the corresponding 

volume fractions.

Our approach is different from existing methods [6–10] for reconstruction from under-

sampled dMRI data in several aspects. The above works utilized basis-based transforms and 

exploited the sparsity in the basis dictionary representation. In this work we use a dictionary 

formulation of the dMRI data, but we consider the multiple anisotropic components 

(corresponding to fibers) and the single isotropic component in the diffusion model as the 

end-members in an un-mixing problem [11], and recover these end-members using an SBL 

based linear un-mixing approach. Previous study [12] has shown that l1 norm minimization 

based approaches for promoting sparsity, which are widely used in spherical deconvolution 

based methods, have the drawback of inconsistency with the sum-to-one constraint (i.e., the 

physical constraint that the volume fractions of anisotropic and isotropic compartments 

within a voxel sum to unity). We demonstrate that sparse Bayesian learning within a linear 

un-mixing framework can address the sum-to-one and non-negativity (volume fractions ≥ 0) 

constraints, simultaneously promoting sparsity. The approach in SBL is typically much 

sparser as it is based on the notion of setting weights to zero (rather than constraining them 

to small values), and as it offers probabilistic predictions without the need to set additional 

regularization parameters.

ARD has been used for data-adaptive estimation of fiber parameters [2], avoiding data 

unsupported model complexities. The relevance learning in the proposed approach, which 

explicitly models sparsity, enhances the relevance determination by tuning the variance prior 

hyperparameters individually and independently for each possible fiber orientations. The 

proposed algorithm exploits the spatial redundancy in data representation better, and it 

improves the estimation of fiber orientations and volume fractions. We extend a dictionary 
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formulation of the dMRI data [13], using a multi-shell non-monoexponential model of 

diffusion [14], and propose an SBL based estimation algorithm for improved inference from 

single resolution multi-shell dMRI.

2 Methods

2.1 Dictionary Representation of Multi-shell Data

Multi-shell acquisitions using high b-values have the benefit of improved angular contrast, 

compared to single-shell acquisition schemes. The diffusion decay curve along any given 

gradient direction is shown to depart from monoexponetial decay to non-monoexponential 
decay, especially at b-values > 1500 s/mm2. To address this issue, Jbabdi et al. proposed a 

non-monoexponential model [14] with a continuous gamma distribution of diffusivities, as 

an extension to the ball & stick model [1]. We use the non-monoexponential model for the 

dictionary representation of the dMRI data. The attenuation signal is given by [14],

(1)

where Sk is the signal after application of kth diffusion-sensitizing gradient with direction gk 

and b-value bk, S0 is the signal without diffusion gradient, Ak(d) is the attenuation signal 

given by ball & stick model corresponding to a single diffusivity d, and p(d) = Γ(δ, β).

The integral in Equation (1) is evaluated analytically to represent the attenuation signal as 

[14],

(2)

where fn is the volume fraction of anisotropic compartment with orientation υn. The 

measured signal at a voxel is the sum of the attenuation signal and measurement noise,

(3)

Based on (2) and (3), the measured signal along all K diffusion-sensitizing directions can be 

written in a dictionary form (4) as

(4)
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where , fn ≥ 0. Hence y = Ef+η, where E represents the local dictionary 

matrix for the diffusion data and f is the sparse vector representation of the data in the 

dictionary E. The non-zero entries in f define the number and volume fraction of fibers in a 

voxel. The possible orientations of anisotropic components in the dictionary (second column 

onwards) are pre-specified and formed using a 5th order icosahedral tessellation of the 

sphere with 10242 points. With this dictionary formulation the problem of finding the 

number of fibers, volume fractions and orientations reduces to accurately estimating the 

sparse vector f. The estimation of f is detailed in the following sections.

2.2 Hierarchical Bayesian Framework

The learning algorithm in SBL is based on a hierarchical Bayesian Framework (Fig. 1). A 

mixture of zero-mean Gaussian distributions with individual hyperparameters controlling the 

variances is used as the prior on the parameter to be estimated (the volume fractions with 

predefined orientations here). Gamma distributions are used as hyperpriors, which form the 

priors over the hyperparameters. The mixture of Gaussians with hyperparameters associated 

independently with every weight was shown equivalent to using a product of Student-t 
priors, once the hyperparameters are integrated out [4]. Mathematically the prior over 

volume fractions is given by,

(5)

where the hyper-parameter αn controls the variance of individual Gaussians. The update 

procedure for αi (detailed in Subsection 2.3) is such that many of the α are pushed to higher 

values, adapting to the data. The variance 1/α of the corresponding Gaussians are pushed 

towards zero which forces the corresponding weights to be zero (or negligibly small), 

leading to a sparse solution.

2.3 Sparse Bayesian Learning Based Linear Un-mixing Inference

Assuming Gaussian noise, the likelihood of the data can be expressed as

(6)

where σ2 is the variance of the error in representation of y using dictionary E and volume 

fractions f. Let f+ = [f1, …, fn0]T be the volume fractions with n0 non-zero anisotropic 

components, then f+ belongs to a simplex S,

(7)
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We follow the sparse inference procedure detailed in [4] (page 215, equations (7) to (13)) 

with a modification to resolve the linear un-mixing constraints [11]. We introduce non-

negativity and sum-to-one constraints to the volume fractions posterior computation, to 

propose sparse linear un-mixing inference:

(8)

where

(9)

and

(10)

with u a 1 × n0 vector, [1, …, 1]T, and A = diag(α0, α1, …, αN).  contains the columns 

of E that correspond to n0 non-zero coefficients in f+ (the effective dictionary) and e0 is the 

first column in the dictionary, which corresponds to the isotropic compartment. 1S(f+) in (8) 

is 1 if f+ ∈ S and 0 otherwise.

Each hyper-parameter αn in A are updated iteratively [4] as per  where γn = 1 

− αn * Λnn and Λnn is the nth diagonal element of the posterior volume fractions covariance 

(9). The noise variance σ2 is updated as

(11)

3 Experiments and Results

3.1 Synthetic Data from HARDI Reconstruction Challenge

We performed experiments using the test dataset from the HARDI reconstruction challenge 
organized as part of the ISBI 2012 conference [15]. The synthetic data is generated using the 

test data phantom (16×16×5 voxels) and the data simulation algorithm the challenge 

organizers released. Rician noise is added to the data with SNR 10. We used the gradient 

tables from the Human Connectome Project (HCP) [16] to simulate the data. The full dataset 

had 270 diffusion measurements (and 18 b0 measurements) with three b-values (1000, 2000, 

and 3000 s/mm2). We under-sampled the data by a factor of up to 6 (45 measurements) in 

our experiments.

Daducci et al. [15] reported the results of the challenge and compared 20 algorithms used for 

recovering the intra-voxel fiber structures. We used the reported results in [15] as well as the 
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results of BedpostX algorithm [2] for comparison of our results. The algorithm performance 

is evaluated using two criteria, the correct assessment of the number of fiber populations: 

success rate (12) and the error in orientation estimation: angular precision (13) [15]

(12)

where Mtrue and Mestimated are, respectively, the true and estimated number of fiber 

compartments in a voxel.

(13)

where dtrue and destimated are, respectively, the true and estimated fiber orientations in a 

voxel.

Fig. 2 compares the mean SR and AP (across 1280 voxels) of our algorithm with that of 

BedpostX (multi-shell) [2] under different under-sampling factors, as well as with the top 

five algorithms reported in [15]. It also shows the standard deviation in AP as error bar. On 

comparison with BedpostX, the proposed SBL based approach provides higher SR and 

improved AP (lower error), with lower uncertainty. The algorithm provides reasonably stable 

performance with increase in under-sampling factor. On comparison with the top five 

algorithms [17, 7, 18–20] reported in [15] (which are not matched for the number of 

diffusion measurements), the proposed method provides the best performance in terms of SR 

as well as AP when the full dataset (270 samples) is used. The proposed method also 

provides the best success rate (69.70%) even with an under-sampling factor of 6 (45 

samples), but at this under-sampling factor the AP of the algorithm decreases below two of 

the compared methods (NN-L2 [7] and L2-L2 [19]) which used similar number of samples 

(48 and 37 respectively).

3.2 In-vivo Data from the Human Connectome Project

We performed in-vivo experiments using the exemplar dataset (subject ID: 100307) from the 

HCP [16]. The image size is 145×174×145, with 1.25 mm3 isotropic resolution. The full 

dataset has 270 diffusion measurements. The reported results (Fig. 3, upper panels and lower 

left panel) are with an under-sampling factor of two (135 samples). Our results are compared 

with multi-shell BedpostX [2] and the multi-shell multi-tissue constrained spherical 

deconvolution (msmt-CSD) [21] (the implementation available in MRtrix3 is used, with the 

default parameters). We used the Connectome Workbench [22] from the HCP for visualizing 

the results of our algorithm and BedpostX. MRtrix (mrview) is used for visualizing the 

orientation distribution functions (ODFs) from CSD.

On comparison the proposed method provides better detection of crossing fibers 

(highlighted with red and blue arrows in Fig. 3). The lower estimation uncertainty of the 

proposed method on comparison to BedpostX can be observed in the areas with cleaner 
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orientations (highlighted with green arrows). The improved detection of second and third 

fibers is also demonstrated through a graph (Fig. 3, lower-right panel) showing detected 

second and third fiber crossings at two representative regions of interests (ROIs); the left 

superior longitudinal fasciculus (SLF) and left posterior corona radiata (PCR), with respect 

to acceleration (under-sampling from 270 to 67 samples). On comparison to BedpostX, the 

proposed method exhibits greater robustness in the number of detected crossings with 

increase in acceleration (for example, only 1.2% decrease in the number of detected second 

fibers in the left PCR compared to a 17.3% decrease withBedpostX, at an acceleration factor 

of four). We noted similar comparisons for the corresponding ROIs on the right side too.

4 Discussion and Conclusion

We proposed an SBL based sparse signal recovery algorithm for estimation of white matter 

fiber parameters from multi-shell single resolution dMRI data. The elements of our 

overcomplete dictionary for each voxel are obtained from an icosahedral tessellation of the 

sphere, with 10242 possible fiber directions. The estimated fiber orientations are 

approximated to the nearest pre-specified orientation during the learning process. The worst-

case error due to this approximation is 1.18 degrees. The number of possible fiber directions 

can be increased for slightly better orientation accuracy, at the expense of computational 

time. The major benefit from the SBL based algorithm is the more accurate estimation of 

dictionary weights: the improved detection of single and crossing fiber populations, as 

reflected by the reported higher success rates. The algorithm has also shown very good 

performance in orientation estimation and reliability with under-sampling. The results from 

the HCP data we presented are well-representative of the results in other subjects we 

analyzed. We did not note any significant bias with Rician noise, though our model assumed 

Gaussian noise.

The current implementation of our algorithm takes about 5.7 seconds to process one voxel 

with a CPU speed of 2.6 GHz, which is approximately 2 times slower compared to 

BedpostX. To speed-up the processing, we parallelized the algorithm using OpenMP. It takes 

an average time of 219 milliseconds / voxel on a server with 26 processors. The 

computational performance of the algorithm will be improved using GPU/CUDA in our 

future work.
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Fig. 1. 
The hierarchical Bayesian framework used in the proposed algorithm. yk is the measured 

signal along diffusion gradient direction k. fn is the n-th component of the anisotropic 

volume fractions vector and αn is the hyperparameter in the prior distribution of fn.
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Fig. 2. 
Comparison of SR and AP (mean across 1280 voxels). Left panel shows the variation in SR 

and AP with increase in acceleration (under-sampling factor). The error bars shown 

represent the standard deviation in AP. Right panel shows comparisons with top five 

algorithms reported in [15].
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Fig. 3. 
Comparison between proposed method, CSD, and BedpostX. Upper panels and lower-left 

panel show color coded orientation estimates (ODFs in the case of CSD) at the pons region 

highlighted in the inset view. The background is the sum of anisotropic volume fractions for 

the proposed method and BedpostX, and FA for the CSD. The areas highlighted with arrows 

depict the improvements; the better detection of fiber crossings (red and blue arrows) and the 

lower estimation uncertainty (green arrows). Lower right panel shows the detected number 

of second (blue) and third (red) fiber crossings at two representative ROIs, and its variation 

with acceleration (under-sampling factor).
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