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Abstract

In this paper, we introduce a strategy for performing neighborhood matching on general non-

Euclidean and non-flat domains. Essentially, this involves representing the domain as a graph and 

then extending the concept of convolution from regular grids to graphs. Acknowledging the fact 

that convolutions are features of local neighborhoods, neighborhood matching is carried out using 

the outcome of multiple convolutions at multiple scales. All these concepts are encapsulated in a 

sound mathematical framework, called graph framelet transforms (GFTs), which allows signals 

residing on non-flat domains to be decomposed according to multiple frequency subbands for rich 

characterization of signal patterns. We apply GFTs to the problem of denoising of diffusion MRI 

data, which can reside on domains defined in very different ways, such as on a shell, on multiple 

shells, or on a Cartesian grid. Our non-local formulation of the problem allows information of 

diffusion signal profiles of drastically different orientations to be borrowed for effective denoising.

1 Introduction

Neighborhood matching techniques such as non-local means (NLM) [1–3] cater mostly to 

signals defined on Cartesian grids with local neighborhoods defined via a 2D or 3D block 

specified by a voxel radius. However, there exist many examples of data that are not defined 

on regular grids. For example, the q-space sampling domains of diffusion MRI data can vary 

drastically, ranging from Cartesian, shell-based, to even random. It is not immediately clear 

how neighborhood matching techniques can be extended to these data that reside on non-

Euclidean domains. Overcoming this challenge will allow neighborhood matching to be 

extended to data residing in curved space for applications such as data registration, 

interpolation, and denoising.

In this paper, we introduce a strategy for performing neighborhood matching in general 

curved non-Euclidean domains. This involves representing the domain as a graph, which can 

be seen as a representation of a manifold sampled at discrete points. We show how 

convolutions of functions defined on the graph can be performed, allowing different features 

to be computed for a local neighborhood. This will give us for each point on the domain, i.e., 
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each node of the graph, a feature vector that can be used for neighborhood matching. To 

allow for multiscale matching, we formulate the convolutions using graph framelet 

transforms (GFTs), as described next.

GFTs extend the concept of wavelet frames [4] for data defined on flat domains to curved, 

irregular, and unstructured domains [5]. The key idea of GFTs stems from the understanding 

of the eigenfunctions of the Laplace-Beltrami operator (graph Laplacian in the discrete 

setting) as Fourier basis on manifolds (graphs in the discrete setting) [5]. This allows quasi-

affine systems, generated by dilations and shifts of wavelet functions, to be defined on 

manifolds [4]. This in turn allows painless construction of various types of tight wavelet 

frames on manifolds/graphs.

We apply our framework to the denoising of diffusion MRI data. Our formulation of the 

problem allows one to respect the structure of the data by adapting GFTs to various 

sampling schemes used for data acquisition in diffusion MRI. Our approach extends NLM 

beyond x-space to include q-space, allowing information from white matter regions with 

high curvature to be used more effectively for denoising without introducing artifacts. 

Experiments with synthetic and real data confirm the effectiveness of our method, in 

comparison with methods such non-local means (NLM) [2], non-local spatial-angular 

matching (NLSAM) [6], and x-q space non-local means (XQ-NLM) [7].

2 Approach

In what follows, we will discuss (1) How GFTs allow multi-scale convolutions, giving 

information associated with multiple subbands; (2) How GFT features can be used for 

neighborhood matching, and (3) How these concepts can be incorporated into a non-local 

denoising framework for noise removal in diffusion MRI.

2.1 Graph Framelet Transforms (GFTs)

We denote a graph by  ≔ {ℰ, , }, where  ≔ { k ∈ ℳ : k = 0, …, K − 1} is a set of 

vertices representing points on a manifold ℳ, ℰ ⊂  ×  is a set of edges relating the 

vertices, and  : ℰ → ℝ+ is a weight function. The associated adjacency matrix  ≔ (

k,k′) is symmetric with k,k′ > 0 if k and k′ are connected by an edge in ℰ; otherwise k,k′ 
= 0. Given the degree matrix D ≔ diag{d[1], d[2], …, d[K]}, where d[k] ≔ Σk′ k,k′, the 

graph Laplacian, defined as ℒ ≔ D − , is consistent with the Laplace-Beltrami operator of 

the manifold.

The key idea involved in constructing wavelet frames on a graph is to view eigenvectors 

 of the graph Laplacian ℒ as Fourier basis on graphs and the associated eigenvalues 

 as frequency components [5]. One then slices the frequency spectrum in a multi-

scale fashion by using a set of masks {âr(·) : r = 0, …, R}, where â0(·) acts as a low-pass 

filter and âr(·) with 0 < r ≤ R as band-pass or high-pass filters. More specifically, given a 

function f defined on the graph , the graph framelet analysis transform up to level L is 

defined as
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(1)

with L ≔ {(1, 1), (1, 2), …, (1, R), (2, 1), …, (L, R)} ∪ {(L, 0)} and

(2)

where λ̃
k = (λk/λmax)π and γ > 1 is the dilation factor. Letting α ≔ W f and if the masks 

satisfy , which is one of the requirements of the unitary extension principle 

(UEP) [5], it is easy to show that the synthesis transform W⊤ α gives W⊤ α = W⊤W f = I f 
= f. Some examples of framelet masks are shown in Table 1. Note that operator W can be 

seen as performing convolutions on functions defined on the graph [8].

In diffusion MRI, the geometric structure of the sampling domain is captured using the 

adjacency matrix. Based on [9], we define the adjacency matrix  ≔ ( k,k′) by letting

(3)

where qk, qk′ ∈ ℝ3 are wavevectors, bk = t|qk|2 and bk′ = t|qk′|2 are the respective b-values 

with t being the diffusion time, and αp and σp are the tuning parameters used to control the 

penalization of dissimilar gradient directions and diffusion weightings, respectively.

2.2 Neighborhood Matching Using GFTs

For the k-th node of the graph , we can define a feature vector: ϕ[k] ≔ {αl,r[k] : (l, r) ∈ 

L}. The matching weight k;l between the k-th node and the l-th node is defined as

(4)

where Zk is a normalization constant to ensure that the weights sum to one and hGFT(k) is a 

parameter controlling the attenuation of the exponential function.

2.3 Non-local Denoising of Diffusion MRI in x-q Space

Our method utilizes neighborhood matching in both x-space and q-space for effective 

denoising. For each voxel at location xi ∈ ℝ3, the diffusion-attenuated signal measurement 

S(xi, qk) corresponding to the wavevector qk is denoised by averaging over non-local 

measurements that have similar q-neighborhoods. To take into account the change in spatial 

location and diffusion weighting, we extend (4) to become
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(5)

Hence

(6)

where hb controls the attenuation of the second exponential function and i,k is the search 

neighborhood in x-q space associated with S(xi, qk), which is determined using an x-space 

search radius s and a q-space search angle θ. As in [2], we set

(7)

where β is a constant, |ϕi[k]| denotes the length of the vector ϕi[k] and  is the signal 

standard deviation, which is computed spatial-adaptively [2]. Similarly, we set , 

where σb is a scale parameter.

We estimate the denoised signal NL(S)(xi, qk) as

(8)

where ci,k;j,l is a variable used to compensate for differences in signal levels due to spatial 

intensity inhomogeneity and signal decay in q-space, which is defined as the difference 

between the low-pass signals at the two nodes. The low-pass signal is given by the 

component with the lowest frequency given by the GFT.

2.4 Adaptation to Noncentral Chi Noise

The classic NLM is designed to remove Gaussian noise and needs to be modified for the 

noncentral chi (NCC) noise distribution typical in acquisition using multichannel receiver 

coils. Based on [2,3], we define the unbiased denoised signal UNLM(S)(xi, qk) as

(9)

Chen et al. Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where σ is the Gaussian noise standard deviation that can be estimated from the image 

background [2], N is the number of receive channels. When there is only one receive 

channel (i.e., N = 1), the noncentral chi distribution reduces to a Rician distribution.

3 Experiments

3.1 Datasets

Synthetic Data—Using phantomαs [10], a synthetic multi-shell dataset was generated for 

quantitative evaluation of the proposed method. The parameters used in synthetic data 

simulation were consistent with the real data described next: b = 1000, 2000, 4000 s/mm2, 

81 non-collinear gradient directions per shell, 128 × 128 voxels with 2 × 2mm2 resolution. 

Four levels of 32-channel NCC noise (3%, 6%, 9%, and 12%) were added to the resulting 

ground truth data. The Gaussian distribution used to construct NCC noise follows the 

distribution (0, (p/100)) with noise variance determined based on noise-level percentage 

p and maximum signal value  [2].

Real Data—The real dataset was acquired using the same gradient directions and b-values 

as the synthetic dataset. A Siemens 3T TRIO MR scanner was used for data acquisition. The 

imaging protocol is as follows: 96×128 imaging matrix, 2 × 2 × 2 mm3 resolution, TE=145 

ms, TR=12,200 ms, 32-channel receiver coil.

3.2 Parameter Settings

For all experiments, we used the quadratic masks and set the decomposition level to L = 20 

for rich characterization of diffusion signal profiles. The parameters used for x-q space non-

local denoising were as follows:

1. Coupé et al. [2] suggested to set s = 2 voxels and β = 1, we followed the former, 

but for the latter we set β = 0.1 since we have a greater number of patch 

candidates by considering the joint x-q space. Based on the theory of kernel 

regression, reducing the bandwidth when the sample size is large reduces bias.

2.
The typical value for  is around 10 (e.g., ). 

We set σb = 10/2 = 5.

3. Since we were using shell-sampled data in our evaluations, we set σp to a small 

value (0.1) for greater localization.

4. In our case, the minimal angular separation of the gradient directions is around 

15° for each shell. We set the q-space search angle to twice of this value, i.e., θ = 

2 × 15° = 30°.

5.
Since the minimal angular separation is 15°, we set .

6. N = 32 based on the imaging protocol.

We compared our method with NLM [2], NLSAM [6], and XQ-NLM [7]. Their parameters 

were set as suggested in [2,6,7]. We used the peak-to-signal ratio (PSNR) as the 

performance metric.
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3.3 Results

For synthetic data, Fig. 1 indicates that the proposed method, GF-XQ-NLM, gives greater 

PSNR values than other denoising methods for all noise levels. The largest improvement of 

GF-XQ-NLM over the next best method, XQ-NLM, is 2.1 dB at 3% noise.

Regional close-up views of diffusion-weighted (DW) images, shown in Fig. 2, demonstrate 

the remarkable edge-preserving property of XQ-NLM and GF-XQ-NLM. The advantages of 

GF-XQ-NLM over XQ-NLM can be observed from the top row of Fig. 2, where GF-XQ-

NLM does not over-smooth the image, unlike XQ-NLM.

For real data, Fig. 3 confirms that both XQ-NLM and GF-XQ-NLM are effective in 

preserving edges while removing noise. In contrast, NLSAM and NLM blur structural 

boundaries. The bottom two rows of Fig. 3 also demonstrate that GF-XQ-NLM is more 

capable in preserving edge information than XQ-NLM.

To further demonstrate the benefits of using GFTs, we investigated the influence of 

denoising on the fiber orientation distribution functions (ODFs). The results, shown in Fig. 

4, indicate that GF-XQ-NLM reduces spurious peaks caused by noise and gives cleaner and 

more coherent ODFs than XQ-NLM.

4 Conclusion

In this paper, we extend neighborhood matching to curved domains using GFTs. We apply 

this technique to robust denoising of diffusion MRI data in a NLM framework that harnesses 

the multi-scale representation capability of GFTs for neighborhood matching. 

Comprehensive evaluations using synthetic data and real data demonstrate that the proposed 

method produces denoising results with greater PSNR, better preserved edges, and 

significantly reduced spurious fiber ODF peaks.
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Fig. 1. PSNR Comparison
Quantitative evaluation using synthetic data.
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Fig. 2. DW Images – Synthetic Data
(A) Ground truth DW image. (B) DW image with 3% noise. Denoised images given by (C) 

NLM, (D) NLSAM, (E) XQ-NLM, and (F) GF-XQ-NLM.
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Fig. 3. DW Images – Real Data
Close-up views of (A) noisy DW image and denoised images given by (B) NLM, (C) 

NLSAM, (D) XQ-NLM, and (E) GF-XQ-NLM.
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Fig. 4. Fiber ODFs
Comparison of white matter fiber ODFs given by XQ-NLM and GF-XQ-NLM.
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Table 1

Framelet masks.
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