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Abstract. Fluorescence microscopy images usually show severe aniso-
tropy in axial versus lateral resolution. This hampers downstream pro-
cessing, i.e. the automatic extraction of quantitative biological data.
‘While deconvolution methods and other techniques to address this prob-
lem exist, they are either time consuming to apply or limited in their
ability to remove anisotropy. We propose a method to recover isotropic
resolution from readily acquired anisotropic data. We achieve this us-
ing a convolutional neural network that is trained end-to-end from the
same anisotropic body of data we later apply the network to. The net-
work effectively learns to restore the full isotropic resolution by restoring
the image under a trained, sample specific image prior. We apply our
method to 3 synthetic and 3 real datasets and show that our results im-
prove on results from deconvolution and state-of-the-art superresolution
techniques. Finally, we demonstrate that a standard 3D segmentation
pipeline performs on the output of our network with comparable accu-
racy as on the full isotropic data.

1 Introduction

Fluorescence microscopy is a standard tool for imaging biological samples [16].
Acquired images of confocal microscopes [4] as well as light-sheet microscopes [5],
however, are inherently anisotropic, owing to a 3D optical point-spread function
(PSF) that is elongated along the axial (z) direction which typical leads to a 2
to 4-fold lower resolution along this axis. Furthermore, due to the mechanical
plane-by-plane acquisition modality of most microscopes, the axial sampling is
reduced as well, further reducing the overall resolution by a factor of 4 to 8. These
effects later render downstream data analysis, e.g. cell segmentation, difficult.
To circumvent this problem, multiple techniques are known and used: Clas-
sical deconvolution methods [13,10] are arguably the most common of these.
They can be applied on already acquired data, however, their performance is
typically inferior to other more complex techniques. Some confocal systems, e.g.
when using two-photon excitation with high numerical aperture objectives and
an isotropic axial sampling, can acquire almost isotropic volumes [4, 11] (cf. Fig-
ure 3). Downsides are low acquisition speed, high photo toxicity/bleaching, and
large file sizes. Light-sheet microscopes, instead, can improve axial resolution
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Fig.1: a) 3D images acquired on light microscopes are notoriously anisotropic due to
axial undersampling and optical point spread function (PSF) anisotropy. b) The IsoNet-
2 architecture has a U-net [14] like topology and is trained to restore anisotropically
blurred/downsampled lateral patches. After training it is applied to the axial views.

by imaging the sample from multiple sides (views). These views can then be
registered and jointly deconvolved [12]. The disadvantage is the reduced effec-
tive acquisition speed and the need for a complex optical setup. A method that
would allow to recover isotropic resolution from a single, anisotropic acquired
microscopic 3D volume is therefore highly desirable and would likely impact the
life-sciences in fundamental ways.

Here we propose a method to restore isotropic image volumes from anisotropic
light-optical acquisitions with the help of convolutional networks without the
need for additional ground truth training data. This can be understood as a
combination of a super-resolution problem on subsampled data, and a deconvo-
lution problem to counteract the microscope induced optical PSF. Our method
takes two things into account: () the 3D image formation process in fluorescence
microscopes, and (7¢) the 3D structure of the optical PSF. We use and compare
two convolutional network architectures that are trained end-to-end from the
same anisotropic body of data we later apply the network to. During training,
the network effectively learns a sample specific image prior it uses to deconvolve
the images and restore full isotropic resolution.

Recently, neural networks have been shown to achieve remarkable results for
super-resolution and image restoration on 2D natural images where sufficient
ground truth data is available [3,2, 7]. For fluorescence microscopy data there is,
unfortunately, no ground truth (GT) data available because it would essentially
require to build an ideal and physically impossible microscope. Currently there
is no network approach for recovering isotropic resolution from fluorescence mi-
croscopy images. Our work uses familiar network architectures [14, 1], and then
applies the concept of self super-resolution [6] by learning from the very same
dataset for which we restore isotropic resolution.



2 Methods

Given a true fluorophore distribution f(z,y, z) the acquired volumetric image g
of a microscope can be approximated by the following process
9="P[S;(h® )] +1 1)
where h = h(x,y, z) is the point spread function (PSF) of the microscope, ® is
the 3D convolution operation, S, is the axial downsampling/slicing operator by a
factor o, P is the signal dependent noise operator (e.g. poisson noise) and 7 is the
detector noise. As the PSF is typically elongated along z and o > 1, the lateral
slices g, of the resulting volumetric images show a significant higher resolution
and structural contrast compared to the axial slices g, and g,. (cf. Figure 1a).

2.1 Restoration via convolutional neural networks

The predominant approach to invert the image formation process (1) is, in cases
where it is possible, to acquire multiple viewing angles of the sample, and register
and deconvolve these images by iterative methods without any sample specific
image priors [10, 13,12]. In contrast to these classical methods for image restora-
tion, we here try to directly learn the mapping between blurred and downsampled
images and its true underlying signal. As no ground truth for the true signal is
available, we make use of the resolution anisotropy between lateral and axial
slices and aim to restore lateral resolution along the axial direction. To this end,
we apply an adapted version of the image formation model (1) to the lateral
slices g,y of a given volumetric image

Pzy = SU(E ® gzy) (2)
with a suitable chosen rotated PSF h. To learn the inverse mapping Py — gay We
assemble lateral patches (gzy,n, Pay,n)n and train a fully connected convolutional
neural network [9] to minimize the pixel wise PSNR loss

L= Z —[201log, max goy,n — 101081 |gay,n — §my,n|2} 3)

where g,y is the output of the network when applied to psy.,. For choosing
the best h we consider the two choices (4) full: h= hrot Where h,o; is a rotated
version of the original PSF that is aligned with the lateral planes, and (i:) split:
h = hspiir which is the solution to the deconvolution problem Aot = hiso ®
hspiie and hje, is the isotropic average of h. The later choice is motivated by
the observation that convolving lateral slices with hgp: leads to images with a
resolution comparable to the axially ones. After training we apply the network
on the unseen, anisotropically blurred, bicubic upsampled axial slices g, of the
whole volume to get the final estimation output.

2.2 Network architecture and training

We propose and compare two learning strategies, IsoNet-1 and IsoNet-2 , which
are implementing two different established network topologies. The notation for



the specific layers is as follows:

Ch.w,n Convolutional layer with n filters of size (w, h)
M, , Max pooling layer with a subsample factor of (p, )
Up,q Upsampling layer with a subsample factor of (p, q)

In conjunction with the two different methods of training data generation (full,
split), the specific topologies are:

Isonet-1 Which is the proposed network architecture of [1] used for super reso-
lution:

Ce4,99 —Cs255 —C155 —Cr11
Here the first layer acts as a feature extractor whose output is mapped non-
linearly to the resulting image estimate by the subsequent layers. After each
convolutional layer a rectifying activation function (ReLu) is applied.

Isonet-2 Which is similar to the proposed network architecture of [14] for seg-
mentation which consists of a contractive part

Cie7,7— Moo —Csanr— Moo —Cearr — Uz —Caa70—Us o —Clierr—Cia

that learns sparse representations of the input and skip connections that are sen-
sitive to image details (cf. Figure 1b). In contrast to [14], however, the network
learns the residual to the input. ReLu activation is used throughout.

For all datasets, both architectures were trained for 100 epochs with the
Adam optimizer [8] and a learning rate 5- 1072 . We furthermore use a dropout
of 20% throughout and apply data augmentation (flipped and rotated images)
where it is compatible with the symmetries of the PSF.

3 Results

3.1 Synthetic Data

We use 3 synthetic datasets, as shown in Figure 2. The uppermost row shows
small axial crops from a volume containing about 1500 simulated nuclei. The
middle row shows crops of membrane structures as they are frequently seen in
tightly packed cell epithelia. The third and last row shows both, simulated cell
nuclei and surrounding labeled membranes. Note that the first column shows the
ground truth images that were used to generate the isotropic ground truth, by
convolving with the isotropic PSF, and the blurred images that were subsampled
and convolved with realistic PSFs in order to resemble microscopic data. This
third column (blurred) is then used as the input to all our and other tested
methods. The subsequent 6 columns show the results of (i) Richardson-Lucy
deconvolution [10], (i4) pure SRCNN [1], i.e. disregarding the PSF, (iii) the
IsoNet-1 using the full PSF, (iv) the IsoNet-1 using the anisotropic component
of the PSF hgpit, (v) the IsoNet-2 using the full PSF, and (vi) the IsoNet-2 using
the split PSF. In addition to the visuals given in the figure, Table 1 compares



GT GT blurred deconv.  SRCNN IsoNet-1 IsoNet-1 IsoNet-2 IsoNet-2
isotropic  (input) (RL) full split full split

Fig. 2: Comparison of results on synthetic data. Rows show axial slices of 3D nu-
clei data, membrane data, and a combined dataset, respectively. The columns are:
(7) ground truth phantom fluorophore densities, (i7) the same ground truth convolved
with an isotropic PSF, (#i¢) anisotropically blurred isotropic GT image (the input im-
ages to all remaining columns, (iv) deconvolved images using Richardson-Lucy [13, 10],
(v) SRCNN [1], (vi) IsoNet-1 with one (full) PSF, (vii) IsoNet-1 making use of the
split PSFs, (viii/iz) IsoNet-2 with full PSF and split PSFs, respectively.

the PSNR of the full volumes with the two ground truth versions. As can be
seen, our method performs best in all cases. Note that the failing to incorporate
the PSF (as with pure SRCNN) results in an inferior reconstruction.

volume blurred  deconv.  SRCNN IsoNet-1 IsoNet-2
(PSF/scale)  (input) (RL) full split full split
nuclei 25.28 26.98 25.41 31.24  31.58 33.99 34.60
(gaussian/8)
23.19 27.72 26.27 29.35 29.21 30.16 29.74
membranes 22.13 17.58 21.98 19.84 26.51 19.45 27.67

(confocal/4)
15.98 30.14 29.04 30.05 29.42 30.26 29.28

nuclei-+memb. 27.91 24.29 28.47 25.33  30.00 25.15 30.72

(light-sheet /6)
24.25 26.78 24.64 26.96 26.15 27.71 26.57

Table 1: Computed PSNR values against isotropic GT (upper rows), and against GT
(lower rows). PSF types are: gaussian (0., /0. = 2/8); confocal with numerical aperture
NA = 1.1; light-sheet with NAgjetect = 0.8 and NAijum = 0.1.

Simple 3D Segmentation To give a simple example of how the improved im-
age quality helps downstream processing we applied a standard 3D segmentation
pipeline on the simulated nuclei data (cf. Fig. 2). The segmentation pipeline con-
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Fig. 3: Our results on fluorescence microscopy images of liver tissue (data taken from
[11]). Nuclei (DAPI) and membrane (Phalloidin) staining of hepatocytes, imaged with a
two-photon confocal microscope (excitation wavelength 780nm, NA=1.3, oil immersion,
n=1.49). We start from an isotropic acquisition (ground truth), simulate an anisotropic
acquisition (by taking every 8th slice), and compare the isotropic image to the IsoNet-2
recovered image. Scalebar is 50um.

sists of 3 simple steps: First, we apply a global threshold that is calculated using
the intermodes method [15]. Then, holes in thresholded image regions are closed.
Finally, cells that clump together are separated by applying a 3D watershed al-
gorithm on the euclidian distance transform (computed in 3D). This pipeline is
freely available to a large audience in tools like Fiji or KNIME. We applied this
pipeline to the isometric ground truth data, the blurred and subsampled input
data, and the result produced by the IsoNet-2 . The final segmentation results in
Table 2 demonstrate the effectiveness of the IsoNet-2 in facilitating downstream
segmentation.

isotropic (GT) anisotropic IsoNet-2
SEG 0.923359 0.741533  0.912790

Table 2: Segmentation results on synthetic nuclei data. Evaluation metric is SEG (ISBI
Tracking Challenge in 2013), the average intersection over union of matching cells when
compared to the ground truth labels. SEG takes values in [0, 1], where 1 corresponds
to a perfect voxel-wise matching.
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Fig. 4: IsoNet-2 applied to Drosophila (left) and C. elegans (right) volumetric images.
We train on XY slices, and then apply the trained IsoNet-2 on the raw YZ input slices
(upper row). The image quality of the recovered IsoNet-2 YZ slices (middle row) is
significantly improved and shows similar isotropic resolution when compared to the
XY slices (lower row).

3.2 Real Data

Furthermore, we validate our approach on confocal and light-sheet microscopy
data and demonstrate the perceptual isotropy of the recovered stacks.

First we show that artificially subsampled two-photon confocal acquisitions
can be made isotropic using IsoNet-2. As can be seen in Figure 3 the original
isotropic data is nearly perfectly recovered from the 8-fold subsampled data
(by taking every 8th axial slice). Second, we show that single view light-sheet
acquisitions can be made isotropic. Fig. 4 shows stacks from two different sample
recordings where we trained IsoNet-2 to restore the raw XZ slices. The final
results exhibit perceptual sharpness close to that of the higher quality raw XY
slices, demonstrating the ability to restore isotropic resolution from a single
volume in different experimental settings.

4 Discussion

We presented a method to enhance the axial resolution in volumetric microscopy
images by reconstructing isotropic 3D data from non-isotropic acquisitions wit
convolutional neural networks. This can be understood as restoring isotropy by
deconvolving the image under the trained, sample specific image prior. Train-
ing is performed unsupervised and end-to-end, on the same anisotropic image
data for which we recover isotropy. We have showed results on 3 synthetic and
3 real datasets and compared our results to the ones from Richardson-Lucy de-
convolution [13,10] and state-of-the-art super resolution methods. We finally
further showed that a standard 3D segmentation pipeline performed on outputs
of IsoNet-2 are essentially as good as on full isotropic data.

It seems apparent that approaches like the ones we suggest bear a huge
potential to make microscopic data acquisition significantly more efficient. For



the liver data, for example, we show (Figure 3) that only 12.5% of the data yields
isotropic reconstructions that appear on par with the full isotropic volumes. This
would potentially reduce memory and time requirements as well as laser induced
fluorophore and sample damage by the same factor. Still, this method can, of
course, not fill in missing information: If axial sample rate would drop below
the Shannon limit (with respect to the smallest structures we are interested in
resolving), the proposed networks will not be able to recover the data.
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