
Active Learning and Proofreading

for Delineation of Curvilinear Structures

Agata Mosinska∗

EPFL
Jakub Tarnawski†

EPFL
Pascal Fua

EPFL

{agata.mosinska, jakub.tarnawski, pascal.fua}@epfl.ch

March 14, 2017

Abstract

Many state-of-the-art delineation methods rely on supervised machine learning algo-
rithms. As a result, they require manually annotated training data, which is tedious to
obtain. Furthermore, even minor classification errors may significantly affect the topology
of the final result. In this paper we propose a generic approach to addressing both of these
problems by taking into account the influence of a potential misclassification on the result-
ing delineation. In an Active Learning context, we identify parts of linear structures that
should be annotated first in order to train a classifier effectively. In a proofreading context,
we similarly find regions of the resulting reconstruction that should be verified in priority
to obtain a nearly-perfect result. In both cases, by focusing the attention of the human
expert on potential classification mistakes which are the most critical parts of the delin-
eation, we reduce the amount of required supervision. We demonstrate the effectiveness of
our approach on microscopy images depicting blood vessels and neurons.

Keywords: Active Learning, Proofreading, Delineation, Light Microscopy, Mixed Integer
Programming

1 Introduction

Complex and extensive curvilinear structures include blood vessels, pulmonary bronchi, nerve
fibers and neuronal networks among others. Many state-of-the-art approaches to automatically
delineating them rely on supervised Machine Learning techniques. For training purposes, they
require annotated ground-truth data in large quantities to cover a wide range of potential vari-
ations due to imaging artifacts and changes in acquisition protocols. For optimal performance,
these variations must be featured in the training data, as they can produce drastic changes in
appearance. Furthermore, no matter how well-trained the algorithms are, they will continue to
make mistakes, which must be caught by the user and corrected. This is known as proofreading
– a slow, tedious and expensive process when large amounts of image data or 3D image stacks
are involved, to the point that it is considered as a major bottleneck for applications such as
neuron reconstruction [PLZM11].

In other words, human intervention is required both to create training data before running
the delineation algorithm and to correct its output thereafter. Current approaches to making
this less tedious focus on providing better visualization and editing tools [DHO14, PLZM11].

∗Supported by the Swiss National Science Foundation.
†Supported by ERC Starting Grant 335288-OptApprox.

ar
X

iv
:1

61
2.

08
03

6v
2

 [
cs

.C
V

]
 1

3
M

ar
 2

01
7

(a) (b) (c) (d)

Figure 1: Delineation workflow. (a) Input image with overcomplete graph overlaid. (b) The
high-probability edges are shown in purple and the others in cyan. (c) Automated delineation,
with connectivity errors highlighted by red circles. (d) Final result after proofreading. All
figures are best viewed in color.

(a) (b)
Figure 2: Misclassifying even a few edges may severely impact the final topology. (a) The two
edges indicated by the red arrows are falsely labeled as negatives. As a result, two pairs of
unrelated branches (green and yellow) are merged. (b) The true connectivity is recovered after
correcting the two edges.

While undoubtedly useful, this is not enough. We therefore propose an Active Learning
(AL) [Set10] approach to direct the annotator’s attention to the most critical samples. It
takes into account the expected change in reconstruction that can result from labeling specific
paths. It can be used both for fast annotation purposes and, later, to detect potential mistakes
in machine-generated delineations.

More specifically, consider an algorithm such as those of [SPHHP+15, ZWLS14, TBA+16,
NGN+15, PLM11], whose workflow is depicted by Fig. 1. It first builds a graph whose nodes are
points likely to lie on the linear structures and whose edges represent paths connecting them.
Then it assigns a weight to each edge based on the output of a discriminative classifier. Since
the result is critically dependent on the weights, it is important that the classifier is trained
well. Finally, the reconstruction algorithm finds a subgraph that maximizes an objective (cost)
function dependent on the edge weights, subject to certain constraints. However, even very
small mistakes can result in very different delineations, as shown in Fig. 2.

Our main insight is that the decision about which edges to annotate or proofread should be
based on their influence on the cost of the network. Earlier methods either ignore the network
topology altogether [FRD14] or only take it into consideration locally [MSGF16], whereas we
consider it globally. Our contribution is therefore a cost- and topology-based criterion for
detecting attention-worthy edges. We demonstrate that this can be used for both AL and
proofreading, allowing us to drastically reduce the required amount of human intervention
when used in conjunction with the algorithm of [TBA+16]. To make it practical for interactive
applications, we also reformulate the latter to speed it up considerably – it runs nearly in
real-time and it can handle much larger graphs than [TBA+16].

The remainder of this paper is organized as follows. First, in Section 2, we describe our
attention mechanism for selecting important edges in the delineation. In Section 3 we explain

2

how this mechanism can be used for Active Learning and proofreading purposes. Then, in
Section 4, we introduce a new, more efficient formulation of the state-of-the-art Mixed Integer
Programming delineation algorithm that ensures fast and reliable reconstruction. Finally, in
Section 5, we compare the performance of our algorithm against conventional techniques.

2 Attention Mechanism

2.1 Graph-Based Delineation

Delineation algorithms usually start by computing a tubularity measure [LC08, TBG+13, STLF16],
which quantifies the likelihood that a tubular structure is present at a given image location.
Next, they extract either high-tubularity superpixels likely to be tubular structure fragments
[SPHHP+15, ZWLS14] or longer paths connecting points likely to be on the centerline of such
structures [GFF08, BSBZ13, NGN+15, TBA+16]. Each superpixel or path is treated as an edge
ei of an over-complete spatial graph G (see Fig. 1(a)) and is characterized by an image-based
feature vector xi. Let E be the set of all such edges, which is expected to be a superset of the
set R of edges defining the true curvilinear structure, as shown in Fig. 1(d). If the events of
each edge ei being present in the reconstruction are assumed to be independent (conditional on
the image evidence xi), then the most likely subset R∗ is the one minimizing

c(R) =
∑
ei∈R

wi, with wi = − log
p(yi = 1|xi)

p(yi = 0|xi)
, (1)

where wi ∈ R is the weight assigned to edge ei and yi is a binary class label denoting whether
ei belongs to the final reconstruction or not. This optimization is subject to certain geometric
constraints; for example, a state-of-the-art method presented in [TBA+16] solves a more complex
Mixed Integer Program (MIP), which uses linear constraints to force the reconstruction to form
a connected network (or a tree). As described in Section 1 of the supplementary material, we
were able to reformulate the original optimization scheme and obtain major speedups which
make it practical even when delineations must be recomputed often. There, we also show
that it yields better results than using a more basic method Minimum Spanning Tree with
Pruning [GFF08], while also being able to handle non-tree networks. Let us remark that finding
the minimizing R is trivial to parallelize.

The probabilities appearing in Eq. 1 can be estimated in many ways. A simple and effec-
tive one is to train a discriminative classifier for this purpose [BSBZ13, ZWLS14, TBA+16].
However, the performance critically depends on how well-trained the classifier is. A few misclas-
sified edges can produce drastic topology changes, affecting the whole reconstruction, as shown
in Fig. 2. In this paper we address both issues with a single generic criterion.

2.2 Error Detection

The key to both fast proofreading and efficient AL is to quickly find potential mistakes, especially
those that are critical for the topology. In this work, we take critical mistakes to mean erroneous
edge weights wi that result in major changes to the cost c(R∗,W) of the reconstruction. In
other words, if changing a specific weight can significantly influence the delineation, we must
ensure that the weight is correct. We therefore measure this influence, alter the edge weights
accordingly, and recompute the delineation.

3

(a) (b)

Figure 3: (a) Two Gaussian distributions corresponding to positive (green) and negative (red)
classes of edges. (b) The effect of weight transformation; the original distributions are drawn
with solid lines, while the corresponding distributions after the transformation are drawn with
dashed lines. The described transformation causes ”swapping” of the distributions correspond-
ing to the two classes.

2.2.1 Delineation-Change Metric

We denote by R∗ the edge subset minimizing the objective (cost) function c(R,W) =
∑

ei∈Rwi

given a particular set W of weights assigned to edges in G. Changing the weight wi of edge ei
to w′i will lead to a new graph with optimal edge subset R′i. We can thus define a delineation-
change metric, which evaluates the cost of changing the weight of an edge ei ∈ E :

∆ci = c(R∗,W)− c(R′i,W′) . (2)

If ∆ci > 0, the cost has decreased; we can conjecture that the overall reconstruction benefits
from this weight change and therefore the weight value may be worth investigating by the
annotator as a potential mistake. The converse is true if ∆ci < 0. In other words, this
very simple metric gives us a way to gauge the influence of an edge weight on the overall
reconstruction.

2.2.2 Changing the Weights

For our cost change criterion to have practical value, we must alter weights in such a way that
∆ci is largest for edges which require the opinion of an annotator. In practice, the weights of
positive-class edges tend to follow a Gaussian distribution with negative mean and a variance
such that few of them are positive values, as shown in Fig. 3(a). Similarly, negative edges follow
a Gaussian distribution with positive mean, few of them being negative. As a result, most of
the mistaken edges have |wi| ≈ 0.

In order for our delineation-change metric to be informative, we must ensure that attention-
worthy edges (probable mistakes) have high values of ∆ci. To achieve this, we must not only
flip the sign of the weight (implying assigning it to the opposite class), but also increase the
absolute value of likely mistakes. Without this, many of the mistakes with |wi| ≈ 0 could be
omitted due to smaller values of ∆ci compared to edges with weights of higher absolute value,
which are much less likely to be mistakes.

4

The above requirements can be satisfied with the following transformation:

w′i =

{
A+ wi if wi > 0,

B + wi if wi < 0.
(3)

It is equivalent to swapping the distributions corresponding to positive and negative edges, as
shown in Fig 3(b).

We take A and B to be the 10% and 90% quantiles of the weight distribution (for robustness
to outliers). These are near-extreme values of the weights for the positive and negative classes
respectively, which we use as attractors for w′i: for small positive wi we want w′i to be close to A,
and for negative ones to B instead. The weight change is therefore likely to yield a significant
∆ci for probable mistakes.

Finally, for edges whose weight is negative but which nevertheless do not belong to the
graph, we take ∆ci to be w′i to ensure that it is positive and that more uncertain edges are
assigned higher ∆ci.

3 Active Learning and Proofreading

AL aims to train a model with minimal user input by selecting small subsets of examples that
are the most informative. Formally, our algorithm starts with a small set of labeled edges S0.
We then repeat the following steps: At iteration t, we use the annotated set of edges St−1 to
train classifier Ct−1 and select one or more edges to be labeled by the user and added to St−1
to form St. The edge(s) we select are those that maximize the criterion ∆c of Eq. 2.

By contrast, proofreading occurs after the classifier has been trained and a complete de-
lineation has been produced. At this point, the main concern is not to further improve the
classifier, but simply to correct potential mistakes. Therefore, the most crucial edges are those
that are misclassified and whose presence or absence most affects the topology of the delin-
eation. To find them, we again compute the ∆c value for each edge. However, some edges could
have a high ∆c because they are misclassified, even though they do not influence the topology
of the final delineation.

To focus on potential mistakes that do affect the topology strongly, we rely on the DIADEM
score [ASL10], which captures the topological differences between trees, such as connectivity
changes and missing or spurious branches. It ranges from 0 to 1; the larger the score, the more
similar the two trees are. More specifically, let R∗ be the optimal tree given the edge weights,
and let R′i be the tree we obtain when changing the weight of edge ei from wi to w′i, as described
in Section 2.2.2. To measure the importance of each edge, we compute the score

si =
∆ci

DIADEM(R∗,R′i)
(4)

and ask the user to check the highest-scoring one. The edge is assigned a weight equal to A
or B from Section 2.2.2 according to the user’s response. We then recompute R∗ and repeat
the process. Note that this is very different from traditional proofreading approaches, which
require the user to visually inspect the whole image. By contrast, our user only has to give an
opinion about one edge at a time, which is automatically selected and presented to them.

5

4 Fast Reconstruction of Curvilinear Structures

To delineate networks of curvilinear structures, we rely on the algorithm of [TBA+16], which
involves solving the following problem:

Min-Weight Tree Containing r (MinTree)

Given: A graph G = (V, E), a root vertex r ∈ V , weights on edges w : E → R. Weights may
be negative.

Find: A tree R ⊆ G containing the vertex r, minimizing the sum of weights of picked edges∑
e∈Rw(e).

In our approach, MinTree is used when we expect the ground-truth image to be a tree. If
such an assumption is not realistic (loopy networks, such as blood vessels), then we are instead
interested in the following problem MinSubgraph:

Min-Weight Connected Subgraph Containing r (MinSubgraph)

Given: A graph G = (V, E), a root vertex r ∈ V , weights on edges w : E → R. Weights may
be negative.

Find: A connected subgraph R ⊆ G which contains the vertex r (and is not necessarily a
tree), minimizing the sum of weights of picked edges

∑
e∈Rw(e).

Both problems are significantly harder than the Minimum Spanning Tree problem, because
R does not need to connect the entire graph and also the weights may be negative. In fact, both
problems are NP-complete; we demonstrate this later in Proposition 2. In both [TBA+16] and
our approach they are solved using a Mixed Integer Programming (MIP) formulation, which
is given as input to the Gurobi solver.1

However, the previously considered formulation (see the model Arbor-IP in [TBA+16] and
also the model M-DG in [BC15]) has |V ||E| variables and as many constraints. This makes
solving it costly for small graphs and impossible for larger ones. Our contribution is a new,
linear-size MIP model for this problem.

In Section 4.1 we introduce our formulation and argue about its correctness. In Section 4.2
we prove the NP-hardness of the considered problems. The major running time improvements
that the new formulation brings about are measured in Section 5.1.

Let us mention in passing that Blum and Calvo [BC15] also propose a “matheuristic” ap-
proach to solving MinTree – although with no optimality guarantees.

1[TBA+16] also introduce a more advanced algorithm, which uses a formulation with quadratic weights, i.e.,
weights on pairs of adjacent edges, rather than a linear weight function; this makes the computational burden
even heavier.

6

4.1 Our Formulation

First, we describe how to obtain a MIP for MinTree. We replace each undirected edge with
two directed edges, so as to work with a directed graph. Our objective is to find a directed tree
whose each edge is directed away from the root r (a so-called r-arborescence).

We associate a binary variable xuv ∈ {0, 1} with each directed edge (u, v) ∈ E , denoting the
presence of the edge in the solution R. The first two linear constraints to consider are:

• any vertex v has at most one incoming edge (r has none) (see equations (5–6) below),

• an edge (u, v) can be in the solution only if u has an incoming edge in the solution (or
u = r) (7).

These conditions almost require the solution to be an r-arborescence, but not quite; namely,
there can still appear directed cycles (possibly with some adjoined trees). One way to deal with
this issue is to enforce that every non-isolated vertex is connected to the root; this can be done
using network flows. The constraints in the previous formulation require that, for every v with
an incoming edge, there should exist a flow {fve }e∈E of value 1 from r to v. However, this leads
to a large program (|V ||E| variables).

Our way around this is to instead require the existence of a single flow {fe}e∈E from the
source vertex r to some set of sinks. The main constraints are that:

• for every vertex v 6= r, if v has an incoming edge (i.e., v is not an isolated vertex in the
solution, but is spanned by R), then the inflow into v is at least 1 more than the outflow
(otherwise it is greater or equal to the outflow) (8),

• f is supported only on the support of x (that is, the flow f only uses edges which are used
by the solution R) (9).

Since x has no edges into the root, neither does f . Thus f is indeed a flow (within the x-
subgraph) from the source r to the sink set being the set of all active vertices.

We write down our MIP formulation below. We use the following notation: x(F) =∑
e∈F x(e) for a subset F ⊆ E , δ+(v) is the set of (directed) edges outgoing from vertex v,

and δ−(v) is the set of (directed) edges incoming into vertex v. Thus e.g. f(δ+(v)) is the total
f -flow outgoing from vertex v.

minimize
∑

(u,v)∈E

w(u, v)xuv

subject to xuv ∈ {0, 1} ∀(u, v) ∈ E
x(δ−(v)) ≤ 1 ∀v ∈ V \ {r} (5)

x(δ−(r)) = 0 (6)

xuv ≤ x(δ−(u)) ∀(u, v) ∈ E , u 6= r (7)

f(δ−(v))− f(δ+(v)) ≥ x(δ−(v)) ∀v ∈ V \ {r} (8)

fuv ≥ 0 ∀(u, v) ∈ E
fuv ≤ (|V | − 1) · xuv ∀(u, v) ∈ E . (9)

The following proposition explains the correctness of our formulation.

7

Proposition 1. For any R ⊆ E, the corresponding vector x ∈ {0, 1}E is feasible for the MIP
formulation2 iff R is a tree containing the root r.

Proof. (=⇒) By (5), edges (u, v) with xuv = 1 form a (directed) subgraph where every vertex
has indegree at most 1. It is not hard to see that each connected component of such a graph
is either a tree or a cycle (possibly with adjoined trees); the cycle case is impossible if the
component contains r (by (6)). We show that actually there is no connected component except
the one containing r. Towards a contradiction suppose that S ⊆ V \ {r} is such a component;
we will show that the flow conservation constraints (8) must be violated. Denote by δ+(S) =
{(u, v) ∈ E : u ∈ S, v 6∈ S} the outgoing edges of S, and by δ−(S) the incoming edges. We have
x(δ+(S)) = x(δ−(S)) = 0 and thus, by (9), f(δ+(S)) = f(δ−(S)) = 0. However, by summing
up (8) over v ∈ S we get f(δ−(S))− f(δ+(S)) ≥

∑
v∈S x(δ−(v)); the left side is 0 but the right

side is positive, a contradiction.3

(⇐=) It is easy to see that constraints (5–7) are satisfied by x. To obtain the flow, we begin
with f = 0. Then, for each vertex v with x(δ−(v)) = 1, we route 1 unit of flow from r to v
inside R (that is, we only use edges e with xe = 1) and add that flow to f . (This is possible
since R is connected.) This way we will satisfy (8). Since the number of such vertices is at
most |V | − 1, any edge will hold at most |V | − 1 units of flow, thus satisfying (9).

So far we have discussed MinTree. To get a formulation for MinSubgraph, one only needs
to omit the constraint (5) and adjust the constraint (9) to become fuv ≤ |E| · xuv. Then x is
obtained from R by choosing any spanning tree of R and orienting tree edges to point away
from r and non-tree edges arbitrarily. In the proof of Proposition 1 we route x(δ−(v)) units of
flow (rather than 1 unit) for each v (now any edge holds at most |E| units of flow). These are
the only changes.

4.2 Hardness

In this section we argue that our problems are extremely unlikely to be solvable in polynomial
time. This makes solving MIP formulations using state-of-the-art solvers one of the most
natural and efficient methods available.

Proposition 2. The problems MinTree and MinSubgraph are NP-complete.

Proof. Clearly both are in NP. We will show an NP-hardness reduction from the Steiner tree
problem in graphs (STP), which is a well-known NP-hard problem. An instance of STP consists
of a graph G = (V,E) with weights on edges w : E → R+ and a set of terminal vertices T ⊆ V .
The objective is to find a minimum-weight tree in G which connects the set T . To obtain an
instance of MinTree (or MinSubgraph) from STP, we do the following for each t ∈ T : adjoin a
new vertex t′ to t using a new edge (t, t′) of weight −M , where M is a very large weight (say
M = 1 +

∑
e∈E |w(e)|). Then set the root r to be any of these new vertices.

To see that an optimal solution of the MinTree instance corresponds to an optimal solution
of the STP instance, note that the former must necessarily contain all the new edges (as we set
their weight to be so low that it makes sense to select them even if it requires us to also select
many positive-weight edges). Since the MinTree solution must be connected, it will therefore
connect all the terminal vertices; removing the new edges from the MinTree solution gives an
optimal STP solution. (The same reduction also works for MinSubgraph, since the weights of

2More precisely, there exists f ∈ RE+ such that (x, f) is feasible for the MIP formulation, where x is obtained
from R by directing all edges to point away from r.

3The observant reader will notice that the constraint (7) is redundant. However, we keep it for clarity of
exposition and because it makes solving the program faster in practice.

8

(a) (b) (c) (d)

Figure 4: Dataset images with the over-complete graphs overlaid. (a) Blood Vessels. (b) Axons.
(c) Brightfield Neurons. (d) Olfactory Projection Fibers.

Axons1 Axons2 Axons3 Axons4 Axons5 Axons6

edges 164 223 224 265 932 2638

MIP [TBA+16] 0.91 1.04 1.19 1.45 78.3 393.7

MIP ours 0.03 0.10 0.04 0.23 0.10 5.23

speedup 26.1x 10.1x 27.3x 6.3x 743.5 75.2x

BFNeuron1 BFNeuron2 OPF1 OPF2 BFNeuron3 BFNeuron4

edges 120 338 363 380 645 2826

MIP [TBA+16] 0.48 2.25 1.53 1.65 2.13 308.23

MIP ours 0.02 0.12 0.05 0.08 0.26 2.30

speedup 18.2x 17.7x 29.4x 19.9x 8.1x 134.0x

Table 1: Per-reconstruction runtimes (in seconds) of the MIP formulation of [TBA+16] and
ours for the proofreading task.

all original edges are positive and thus the optimal solution for MinSubgraph is the same as the
optimal solution for MinTree.)

5 Results

We tested our approach on 3-D image stacks depicting retinal blood vessels, rat brain axons and
dendrites, and drosophila olfactory projection fibers obtained using either 2-photon or brighfield
microscopes, shown in Fig. 4.

We rely on the algorithm of [TBA+16] for the initial overcomplete graphs, the corresponding
edge features and the final delineations. To classify edges as being likely to be part of an extended
linear structure or not on the basis of local image evidence, we use Gradient Boosted Decision
Trees [BRLF13].

5.1 Fast Reconstruction

The runtimes of our formulation compared to the one presented in [TBA+16] are shown in
Table 1. The optimization was executed on a 2x Intel E5-2680 v2 system (20 cores). Our
formulation can be solved under 6 seconds for all real-world graph examples we have tried; the
maximum for the formulation of [TBA+16] is over 6 minutes.

We also compared the runtimes on randomly generated graphs of various sizes – see Table 2.
The speed-ups remain similar. In Table 3 we collect runtimes of our method on larger randomly
generated graphs. If we assumed (more or less arbitrarily) 2 seconds to be the threshold of

9

edges 99 132 220 330 440 660 924 1320 1540

MIP [TBA+16] 0.16 0.30 1.13 3.39 8.35 29.35 73.16 112.59 149.01

MIP ours 0.03 0.04 0.06 0.12 0.15 0.29 0.36 0.67 0.42

speedup 6.1x 7.5x 17.9x 29.4x 53.9x 102.8x 201.8x 167.8x 348.1x

Table 2: Per-reconstruction runtimes (in seconds) of the MIP formulation of [TBA+16] and
ours on random graphs.

edges 1760 2420 3520 4400 5720 9900

MIP ours 1.60 2.71 6.59 9.57 15.52 81.55

Table 3: Per-reconstruction runtimes (in seconds) of our MIP formulation on random graphs.

what is practical in an interactive setting (given that this optimization needs to be run multiple
times), then we can see that the method of [TBA+16] can deal with graphs of size at most 300,
whereas our method copes with graphs having around 2000 edges.

One further practical method for speeding up the solver is to initialize it with a nonzero
feasible solution. In cases where we needed to explore a large number of reconstructions resulting
from altering just one weight at a time (which was the setting of our paper), we initialized
the new solution to the current optimal solution. Note that this scenario makes performance
considerations especially relevant, as |E| reconstructions need to be made; even though they
can be run in parallel, a high running time of a single MIP solution would make the approach
impractical.

5.2 Active Learning

For each image, we start with an overcomplete graph. The initial classifier is trained using
10 randomly sampled examples. Then, we query four edges at a time, as discussed in Sec-
tion 3, which allows us to update the classifier often enough while decreasing the computational
cost. We report results averaged over 30 trials in Fig. 5. Our approach outperforms both
naive methods such as Uncertainty Sampling (US) and more sophisticated recent ones such as
DPPS [MSGF16] and EMOC [FRD14]. DPPS is designed specifically for delineation and
also relies on uncertainty sampling, but only takes local topology into account when evaluating
this uncertainty. EMOC is a more generic method that aims at selecting samples that have
the greatest potential to change the output.

In Fig. 6 we can see that using MIP formulations indeed helps improve the AL results,
compared to a more basic method Minimum Spanning Tree with Pruning [GFF08] (MSTP),
as it produces more accurate reconstructions and thus we can more reliably detect mistakes.
This is visible especially in case of Blood Vessels, which in reality can form loops. Those can be
reconstructed using MinSubgraph MIP, but not with MSTP.

5.3 Proofreading

For each test image, we compute an overcomplete graph and classify its edges using a classifier
trained on 20000 samples. We then find four edges with the highest values of the score si of
Eq. 4 and present them to the user for verification. Their feedback is then used to update the
delineation.

The red curves of Fig. 7(a-c) depict the increase in DIADEM score. Rapid improvement
can be seen after as few as 15 corrections. Fig. 8 shows how the reconstruction evolves in a
specific case. For analysis purposes, we also reran the experiment using the ∆c criterion of

10

10 20 30 40 50 60 70 80 90 100

Number of queries

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

US
EMOC
DPPS
Ours

(a)

10 20 30 40 50 60 70 80 90 100

Number of queries

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
cc

ur
ac

y

US
EMOC
DPPS
Ours

(b)

10 20 30 40 50 60 70 80 90 100

Number of queries

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

A
cc

ur
ac

y

US
EMOC
DPPS
Ours

(c)

10 20 30 40 50 60 70 80 90 100

Number of queries

0.4

0.45

0.5

0.55

0.6

0.65

Ja
cc

ar
d

co
ef

fic
ie

nt

US
EMOC
DPPS
Ours

(d)

Figure 5: Active Learning. Accuracy as a function of the number of annotated samples.
(a) Blood vessels. (b) Axons. (c) Brightfield neurons. (d) Olfactory Projection Fibers. The
red curve denoting our approach is always above the others, except in the right-hand side of
(d): because this is a comparatively easy case, the delineation stops changing after some time
and error-based queries are no longer informative.

Eq. 2 (cost-only) instead of the more sophisticated one of Eq. 4 (cost and topology) to choose
the paths to be examined. The green curves in Fig. 7(a-c) depict the results. They are not
as good, particularly in the case of Fig. 7(c), because the highest-scoring mistakes are often
the ones that tend to be in the MIP reconstruction both before and after correcting mistakes.
It is therefore only by combining both cost and topology that we increase the chances that a
potential correction of the selected edge will improve the reconstruction. By contrast, paths
chosen by RS and US are not necessarily erroneous or in the immediate neighborhood of the
tree. As a result, investigating them often does not give any improvements.

5.4 Complete Pipeline

In a working system, we would integrate AL and proofreading into a single pipeline. To gauge
its potential efficiency, we selected 50 edges to train our classifier using the AL strategy of
Section 3. We then computed a delineation in a test image and proofread it by selecting 35
edges. For comparison purposes, we used either our approach as described in Section 3, RS, or
US to pick the edges for training and then for verification. In Fig. 7(d) we plot the performance
(in terms of the DIADEM score of the final delineation and of the ground truth) as a function
of the total number of edges the user needed to label manually.

11

10 20 30 40 50 60 70 80 90 100

Number of queries

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97
A

cc
ur

ac
y

MSTP
MIP

(a)

10 20 30 40 50 60 70 80 90 100

Number of queries

0.81

0.82

0.83

0.84

0.85

0.86

0.87

A
cc

ur
ac

y

MSTP
MIP

(b)

Figure 6: Comparison of our AL strategy when using MSTP and MIP. (a) Blood Vessels. (b)
Brightfield Neurons.

0 5 10 15 20 25 30

Number of queries

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

D
IA

D
E

M
 S

co
re

RS
US
cost only (ours)
cost and topology (ours)

(a)

0 5 10 15 20 25 30

Number of queries

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

D
IA

D
E

M
 S

co
re

RS
US
cost only (ours)
cost and topology (ours)

(b)

0 5 10 15 20 25 30

Number of queries

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

D
IA

D
E

M
 S

co
re

RS
US
cost only (ours)
cost and topology (ours)

(c)

0 5 10 15 20 25 30 35

Number of queries

0.3

0.35

0.4

0.45

0.5

0.55

D
IA

D
E

M
 S

co
re

RS
US
Ours

(d)

Figure 7: Focused proofreading. DIADEM score as a function of the number of paths examined
by the annotator. (a) Axons. (b) Brightfield Neuron. (c) Olfactory Projection Fibers. (d)
Combined AL and proofreading for Axons.

12

Figure 8: Proofreading. From left to right: initial delineation, delineations after 10 and 20
corrections, and ground truth.

6 Conclusions

We have presented an attention scheme that significantly reduces the annotation effort involved
both in creating training data for supervised Machine Learning and in proofreading results
for delineation tasks. It does so by detecting possibly misclassified samples and considering
their influence on the topology of the reconstruction. We showed that our method outperforms
baselines on a variety of microscopy image stacks and can be used in interactive applications
thanks to its efficient formulation.

References

[ASL10] G. Ascoli, K. Svoboda, and Y. Liu. Digital Reconstruction of Axonal and Den-
dritic Morphology DIADEM Challenge, 2010. URL: http://diademchallenge.
org/.

[BC15] C. Blum and B. Calvo. A matheuristic for the minimum weight rooted arbores-
cence problem. Journal of Heuristics, 21(4):479–499, 2015.

[BRLF13] C. Becker, R. Rigamonti, V. Lepetit, and P. Fua. Supervised Feature Learning
for Curvilinear Structure Segmentation. In MICCAI, September 2013.

[BSBZ13] D. Breitenreicher, M. Sofka, S. Britzen, and S.K. Zhou. Hierarchical Discrimina-
tive Framework for Detecting Tubular Structures in 3D Images. In International
Conference on Information Processing in Medical Imaging, 2013.

[DHO14] V. Dercksen, H. Hege, and M. Oberlaender. The Filament Editor: An Interactive
Software Environment for Visualization, Proof-Editing and Analysis of 3D Neuron
Morphology. Neuroinformatics, 12:325–339, 2014.

[FRD14] A. Freytag, E. Rodner, and J. Denzler. Selecting Influential Examples: Active
Learning with Expected Model Output Changes. 2014.

[GFF08] G. Gonzalez, F. Fleuret, and P. Fua. Automated Delineation of Dendritic Net-
works in Noisy Image Stacks. In ECCV, pages 214–227, October 2008.

[LC08] M.W. Law and A.C. Chung. Three Dimensional Curvilinear Structure Detection
Using Optimally Oriented Flux. In ECCV, 2008.

[MSGF16] A. Mosinska, R. Sznitman, P. Glowacki, and P. Fua. Active Learning for Delin-
eation of Curvilinear Structures. In CVPR, 2016.

13

http://diademchallenge.org/
http://diademchallenge.org/

[NGN+15] P. F. Neher, M. Götz, T. Norajitra, C. Weber, and K. H. Maier-Hein. A Machine
Learning Based Approach to Fiber Tractography Using Classifier Voting. In
Medical Image Computing and Computer-Assisted Intervention - MICCAI, pages
45–52, 2015.

[PLM11] H. Peng, F. Long, and G. Myers. Automatic 3D Neuron Tracing Using All-Path
Pruning. 27(13):239–247, 2011.

[PLZM11] H. Peng, F. Long, T. Zhao, and E.W. Myers. Proof-Editing is the Bottleneck of
3D Neuron Reconstruction: the Problem and Solutions. Neur. Inf., 9(2):103–105,
2011.

[Set10] B. Settles. Active Learning Literature Survey. Technical report, University of
Wisconsin–Madison, 2010.

[SPHHP+15] A. Santamaŕıa-Pang, P. Hernandez-Herrera, M. Papadakis, P. Saggau, and I.A.
Kakadiaris. Automatic Morphological Reconstruction of Neurons from Multipho-
ton and Confocal Microscopy Images Using 3D Tubular Models. Neur. Inf., pages
1–24, 2015.

[STLF16] A. Sironi, E. Turetken, V. Lepetit, and P. Fua. Multiscale Centerline Detection.
PAMI, 2016.

[TBA+16] E. Turetken, F. Benmansour, B. Andres, P. Glowacki, H. Pfister, and P. Fua. Re-
constructing Curvilinear Networks Using Path Classifiers and Integer Program-
ming. PAMI, 2016.

[TBG+13] E. Turetken, C. Becker, P. Glowacki, F. Benmansour, and P. Fua. Detecting
Irregular Curvilinear Structures in Gray Scale and Color Imagery Using Multi-
Directional Oriented Flux. In ICCV, December 2013.

[ZWLS14] J. A. Montoya Zegarra, J. D. Wegner, L. Ladicky, and K. Schindler. Mind the Gap:
Modeling Local and Global Context in (Road) Networks. In Pattern Recognition
- 36th German Conference, GCPR 2014, Münster, 2014.

14

