
Automatic Estimation of Verified Floating-Point
Round-Off Errors via Static Analysis

Mariano Moscato1, Laura Titolo1⋆, Aaron Dutle2, and César A. Muñoz2
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Abstract. This paper introduces a static analysis technique for comput-
ing formally verified round-off error bounds of floating-point functional
expressions. The technique is based on a denotational semantics that
computes a symbolic estimation of floating-point round-off errors along
with a proof certificate that ensures its correctness. The symbolic es-
timation can be evaluated on concrete inputs using rigorous enclosure
methods to produce formally verified numerical error bounds. The pro-
posed technique is implemented in the prototype research tool PRECiSA
(Program Round-off Error Certifier via Static Analysis) and used in the
verification of floating-point programs of interest to NASA.

1 Introduction

Floating-point arithmetic is the most commonly used representation of real arith-
metic in computer programs. One significant problem of floating-point arithmetic
is the presence of round-off errors that can make a numerical computation sig-
nificantly different from the actual real arithmetic computation. These errors
are especially problematic in safety-critical applications such as aerospace and
avionics software, where even small computation errors can lead to catastrophic
consequences. Having a correct and externally verifiable estimation of how close
a computed result is to the ideal real number computation is fundamental to the
safety analysis of such systems.

This paper presents a modular static analysis technique for computing prov-
ably sound over-approximations of floating-point round-off errors. Given a set
of functions over floating-point values, symbolic upper bounds on the round-off
error of these functions are automatically computed by using a denotational se-
mantics framework. Additionally, proof certificates assuring the correctness of
such bounds are also generated. The main features of the proposed technique
are: (1) automatic generation of proof certificates that provide an externally ver-
ifiable guarantee that the computed error estimations are correct; (2) modularity
and reusability, due to being defined by a compositional denotational semantics

⋆ Research by the first two authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.



that symbolically models the accumulation of floating point round-off errors in
functional expressions; (3) correctly handling of conditional expressions, i.e., the
stable test hypothesis is not assumed in conditional if-then-else expressions where
the logical value of the condition is compromised by round-off errors; (4) extensi-
bility, i.e., new floating-point operations can be integrated into the denotational
semantic framework assuming they satisfy some basic properties; and (5) com-
putation of accurate round-off errors via a generic branch-and-bound algorithm
that supports several rigorous enclosure methods, e.g., interval arithmetic, affine
arithmetic [7], and Bernstein polynomials [14].

The static analysis presented in this paper has been implemented in a proto-
type tool called PRECiSA (Program Round-off Error Certifier via Static Analy-
sis). The current implementation of PRECiSA uses SRI’s Prototype Verification
System (PVS) [21], but the theoretical framework presented in this paper can
be implemented in any modern interactive proof assistant. PRECiSA accepts
as input a program composed of a set of functional floating-point expressions.
The output of the tool is a PVS theory that consists of a set of lemmas stat-
ing accumulated round-off error estimations for each function in the program.
These lemmas are equipped with PVS proof scripts that automatically discharge
them. When numerical values for the input variables appearing in the program
are provided, PRECiSA also generates PVS lemmas stating concrete numeri-
cal bounds on the round-off errors, along with corresponding proof scripts to
discarge them without user intervention. PRECiSA is publicly available under
NASA’s Open Source Agreement3 and can be used, without installation, through
a web interface4.

The paper is organized as follows. A formalization of floating-point round-
off errors is presented in Section 2. This formalization enables the generation
of proof certificates and the computation of provably correct bounds. In Sec-
tion 3, a compositional denotational semantics modeling the accumulation of
floating-point round-off errors is defined. This semantics is the core of the pro-
posed analysis and it computes a symbolic over-approximation of the round-off
error of a given function, along with a proof certificate ensuring its correctness.
PRECiSA, an implementation of the proposed analysis, is presented in Section 4.
This implementation is illustrated with an example taken from a verification ef-
fort at NASA. Experimental results and comparison to similar tools are shown
in Section 5. Related work is discussed in Section 6.

2 Formalization of Floating-Point Round-off Errors

The NASA PVS Library5 includes two formalizations of floating-point numbers:
a hardware-level model of the IEEE-854 floating-point standard [16] and high-
level model of the IEEE-754 standard [1]. These formalizations are related by
functions that translate from one representation into the other. In the high-level

3 https://github.com/nasa/PRECiSA.
4 http://precisa.nianet.org.
5 https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library
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model, a floating-point number, or simply a float, is defined as a pair of integers
(m, e), where m is called the significand and e the exponent of the float. A
conversion function R ∶ F↦ R is defined to refer to the real number represented
by a given float, i.e., R((m, e)) =m ⋅βe , where β ∈ N is called the base or radix of
the system. IEEE-754 formats, e.g., binary single and double precisions, can be
defined in this formalization by instantiating specific theory parameters. As this
representation is redundant, notions about normality and canonicity are also
defined (see [1] for details). By abuse of notation, ṽ will be used to represent a
floating-point number in F and its real value R(ṽ).

Since not every real number can be exactly represented by a float, a notion of
representation error is defined as follows. Let ṽ be a floating-point number that
represents a real number r , the difference ∣ṽ − r ∣ is called the round-off error (or
rounding error) of ṽ with respect to r . The closest floating-point to r , denoted

F(r), is defined as a floating-point number for which the round-off error with
respect to r is minimal. In cases where this float is not unique, the IEEE-754
standard defines several rounding modes such as the round-ties-to-even mode,
where the float with even significand is chosen, and the round-ties-to-away mode,
where the float with the greater absolute value is chosen.

The unit in the last place (ulp) is a measure of the precision of a floating-point
number ṽ as a representation of a real number. It can be defined as ulp(ṽ) = βeṽ ,
where eṽ is the exponent of the canonical form of ṽ . Note that the canonical
form of a given float depends on the format being used (single precision, double
precision, etc.). Then, the ulp also depends on the format. The ulp of a floating
point can be used as a bound of the round-off error since, as shown in [1], if ṽ is
the closest representation of some real r , the two numbers are apart from each
other for no more than half of the ulp of ṽ . The ulp of a real number is defined
as the ulp of the canonical form of its closest floating-point representation, i.e.,
ulp(r) = ulp(F(r)). Then, the previous bound can be stated as follows [11].

∣ṽ − r ∣ ≤ 1
2
ulp(r). (2.1)

The work presented in this paper extends the high-level model with a for-
malization of round-off errors of floating-point expressions õp(ṽ1, . . . , ṽn) with
respect to a real-valued expression op(r1, . . . , rn), where õp is a floating-point
operator representing a real-valued operator op and ṽi is a floating-point value
representing a real value ri, for 1 ≤ i ≤ n. For that purpose, it is necessary to
consider: (a) the error introduced by the application of õp versus op and (b)
the propagation of the errors carried out by the arguments, i.e., the difference
between ṽi and ri, for 1 ≤ i ≤ n, in the application. In the case of arithmetic
operators, the IEEE-754 standard states that every operation should be per-
formed as if it would be calculated with infinite precision and then rounded to
the nearest floating-point value. Then, from Formula (2.1), the application of
an n-ary floating-point operator õp to the floating-point values ṽ1, . . . , ṽn must
fulfill the following condition.

∣õp(ṽi)
n
i=1 − op(ṽi)

n
i=1∣ ≤

1
2
ulp(op(ṽi)

n
i=1), (2.2)
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where the notation f(xi)
n
i=1 is used to represent f(x1, . . . , xn).

To estimate how the errors of the arguments are propagated to the result of
the application of the operator, it is necessary to bound the difference between
the application of the real operator on real values and the application of the same
operator on the floating-point arguments. The expression εop(ei)

n
i=1 is used to

represent such difference, where each ei is a bound of the round-off error carried
by every floating point ṽi representing a real value ri, i.e., ∣ṽi−ri∣ ≤ ei. Therefore,
εop(ei)

n
i=1 satisfies the following condition.

∣op(ṽi)
n
i=1 − op(ri)

n
i=1∣ ≤ εop(ei)

n
i=1. (2.3)

The following bound of the round-off error between the floating-point expres-
sion and the real-valued counterpart follows from Formula (2.2), Formula (2.3),
the triangle inequality, and the fact that ulp is monotonically increasing on non-
negative inputs [1].

∣õp(ṽi)
n
i=1 − op(ri)

n
i=1∣ ≤ εõp(ri, ei)

n
i=1, (2.4)

where εõp(ri, ei)
n
i=1 = εop(ei)

n
i=1+

1
2
ulp(υ(ri, ei)

n
i=1) and υ(ri, ei)

n
i=1 is a real-valued

expression that satisfies ∣op(ṽi)
n
i=1∣ ≤ υ(ri, ei)

n
i=1.

Additional restrictions on the variables in Formula (2.4) are needed when the
operators are not total. For example, when dealing with the division operation,
it is necessary to guarantee that the second argument of both the floating-point
operator and the real-valued operator is not zero. The expressions ηop(ri)

n
i=1 and

ηõp(ṽi)
n
i=1 will be used to represent any such conditions on the arguments of the

operators.
In this work, the operators õp and op in Formula (2.4) are generic. They can

be instantiated with any floating point operation and its real counterpart as long
as Formula (2.4) holds for all ṽ1, . . . , ṽn ∈ F, ri, . . . , rn ∈ R, e1, . . . , en ∈ R≥0, when
∣ṽi − ri∣ ≤ ei with 1 ≤ i ≤ n, ηop(ri)

n
i=1, and ηõp(ṽi)

n
i=1. Some examples of round-off

error approximation functions for arithmetic operators are presented below. It is
worth noting how the additional constraints are used in the division and in the
square root to guarantee the validity of the output, and in the subtraction and
arctangent to improve the precision of the error approximation. For example, as
mentioned in [1], the floating point subtraction ṽ1 −̃ ṽ2 can be exactly computed

when ṽ2 /̃2 ≤ x ≤ 2 ∗̃ ṽ2. This property is captured by the error approximation
function ε−̃′ and corresponding constraint η−̃′ shown below.

– ε+̃(r1, e1, r2, e2) ∶= e1 + e2 + 1/2ulp(∣r1 + r2∣ + e1 + e2).
– ε−̃(r1, e1, r2, e2) ∶= e1+e2+1/2ulp(∣r1−r2∣+e1+e2), η−̃(ṽ1, ṽ2) ∶= (ṽ2/2 > ṽ1) ∨ (ṽ1 > 2ṽ2).
– ε−̃′(r1, e1, r2, e2) ∶= e1 + e2, η−̃′(ṽ1, ṽ2) ∶= (ṽ2/2 ≤ ṽ1 ≤ 2ṽ2).
– ε∗̃(r1, e1, r2, e2) ∶= ∣r1∣e2 + ∣r2∣e1 + e1e2 + 1/2ulp((∣r1∣ + e1)(∣r2∣ + e2)).
– ε/̃(r1, e1, r2, e2) ∶= ∣r1 ∣e2+∣r2 ∣e1

r2r2−e2 ∣r2 ∣
+ 1/2ulp ( ∣r1 ∣+e1

∣r2 ∣−e2
), η/(r1, r2) ∶= (r2 ≠ 0), and

η/̃(ṽ1, ṽ2) ∶= (ṽ2 ≠ 0).
– ε−̃(r , e) ∶= e.
– εãbs(r , e) ∶= e.
– εfl̃oor(r , e) ∶= e +max(⌊r⌋ − ⌊r − e⌋, ⌊r⌋ − ⌊r + e⌋) + 1/2ulp(∣⌊r⌋∣ + e).
– εs̃qrt(r , e) ∶= √

e + 1/2ulp(
√

r + e), ηsqrt(r) ∶= (r ≥ 0), and ηs̃qrt(ṽ) ∶= (ṽ ≥ 0).
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– εs̃in(r , e) ∶= min(2, e) + 1/2ulp(∣sin(r)∣ +min(2, e)).
– εc̃os(r , e) ∶= min(2, e) + 1/2ulp(∣cos(r)∣ +min(2, e)).
– εãtan(r , e) ∶= e + 1/2ulp(atan(∣r ∣ + e)), ηatan(r , e) ∶= (∣r ∣ ≤ e).
– εãtan′(r , e) ∶= e

min((r−e)2,(r+e)2) +
1
2
ulp(atan(∣r ∣ + e)),ηatan′(r , e) ∶= (∣r ∣ > e).

The fact that the previous definitions satisfy Formula (2.4) is formally proven in
PVS and the proofs are electronically available in the NASA PVS Library.

3 Denotational Semantics

In this section, a denotational semantics for a declarative expression language that relies
on the floating-point formalization presented in Section 2 is defined. This semantics
computes a symbolic expression representing the round-off error of the program and
collects the information needed to provide a certificate that guarantees its soundness.

In the following, the sets of arithmetic and boolean expressions over reals are de-
noted as A and B, respectively. The floating point counterparts of A and B are denoted
as Ã and B̃, respectively. The expression language considered in this paper contains
conditionals, let expressions, and function calls. Given a set Ω of pre-defined arith-
metic floating-point operations, a set Σ of function symbols, and a denumerable set V
of variables, Ẽ denotes the set of program expressions, which syntax is given by the
following grammar.

Ã ∶∶= k̃ ∣ x ∣ õp(Ã, . . . , Ã) B̃ ∶∶= true ∣ false ∣ B̃ ∧ B̃ ∣ B̃ ∨ B̃ ∣ ¬B̃ ∣ Ã < Ã ∣ Ã = Ã

Ẽ ∶∶= Ã ∣ if B̃ then Ẽ else Ẽ ∣ let x = Ã in Ẽ ∣ f̃(Ã, . . . , Ã)

where Ã ∈ Ã, B̃ ∈ B̃, Ẽ ∈ Ẽ, k̃ ∈ F, x ∈ V, õp ∈ Ω, and f̃ ∈ Σ.
A program is defined as a set of function declarations of the form f̃(x1, . . . , xn) = Ẽ ,

where x1, . . . , xn are pairwise distinct variables in V and all free variables appearing
in Ẽ are in {x1, . . . , xn}. The natural number n is called the arity of f̃ . Henceforth,
it is assumed that programs are well-formed in the sense that for every function call
f̃(x1, . . . , xn) that occurs in a program P̃ , a unique function f̃ of arity n is defined in
P̃ . The set of programs is denoted as P̃.

The proposed semantics collects, for each program path, the corresponding path
conditions (for both the real and the floating-point flow), and two symbolic arithmetic
expressions representing (1) the value of the output assuming the use of real arith-
metic and (2) an upper bound for the accumulated round-off error that the result
might include due to floating-point operations. Furthermore, the semantics computes a
symbolic proof of the correctness of the computed round-off error. The set of symbolic
proofs that can be generated by the semantics is denoted by Π . The previous informa-
tion is stored in a conditional error bound, which is a tuple on the form (η, η̃, r, e, π)
where η ∈ B, η̃ ∈ B̃, r, e ∈ A, π ∈ Π , and such that η ≠ false and η̃ ≠ false. Intuitively,
(η, η̃, r, e, π) means that if the conditions η and η̃ are true, then the output of the ideal
real numbers implementation of the program is r, and π is a formal proof that the
round-off error of the floating-point implementation is bounded by e.

Both real and floating-point path conditions are collected in order to detect the
presence of the program flow anomaly usually referred to as unstable test.

Definition 1 (Test Stability). Let RB ∶ B̃→ B be the function converting a floating-
point expression to a real one, by simply replacing each operation on floating-point with
the corresponding operation on reals and by applying R to the floating-point values.
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A conditional expression if φ̃ then Ẽ1 else Ẽ2 is said to be unstable when it exists
an assignment for the variables in φ̃ to F such that φ̃ and RB(φ̃) evaluate to a different
boolean value. Otherwise the conditional expression is said to be stable.

The presence of unstable tests makes the floating-point control flow different from the
real arithmetic execution flow, and leads to unsound results when rounding errors pro-
voke the unsound evaluation of conditionals. By separately collecting the information
about real and floating-point flows, it is possible to consider the additional error of tak-
ing the incorrect branch in the cases in which the flows do not match. This guarantees
a sound treatment of unstable tests in the proposed semantics.

Let C be the set of all conditional error bounds, and C ∶= ℘(C) be the domain
formed by sets of conditional error bounds, which is the support domain of the proposed
semantics. An environment is defined as a function mapping a variable to a set of
conditional error bounds, i.e., Env = V → C. The empty environment is denoted as
�Env and maps every variable to the empty set ∅.

The semantics of arithmetic expressions is a function A ∶ Ã × Env → C defined as
follows, where σ ∈ Env , x ∈ V, and φr , φe ∶ V→ V are two functions that associate to each
variable x a fresh variable representing the real value and the error of x, respectively.
Let õp be an n-ary floating-point operator in Ω such that its real-valued counterpart
is denoted as op. As stated in Section 2, it is assumed that there exists a function εõp
such that Formula (2.4) holds and let πõp(πi)ni=1 be a proof for that statement, which
is defined in function of the proofs πi corresponding to õp operands. Furthermore,
πcnst and πvar are the proofs of Formula (2.4) for the constant and variable cases,
respectively, which must be provided according to the formalization of Section 2.

AJk̃Kσ ∶= {(true, true, k̃ ,0, πcnst)} AJF(k)Kσ ∶= {(true, true, k, ∣k −F(k)∣, πcnst)}

AJxKσ ∶=
⎧⎪⎪⎨⎪⎪⎩

{(true, true, φr(x), φe(x), πvar(x))} if σ(x) = ∅
σ(x) otherwise

AJõp(Ãi)ni=1Kσ ∶=

⋃{(
n

⋀
i=1
ηi ∧ ηop(ri)ni=1,

n

⋀
i=1
η̃i ∧ ηõp(Ãi)ni=1,op(ri)ni=1, εõp(ei)ni=1, πõp(πi)ni=1)

∣ ∀1 ≤ i ≤ n∶ (ηi, η̃i, ri, ei, πi) ∈ AJÃiKσ, ηop(ri)ni=1 ∈ B, ηõp(Ãi)ni=1 ∈ B̃,
n

⋀
i=1
ηi ∧ ηop(ri)ni=1 ≠ false,

n

⋀
i=1
η̃i ∧ ηõp(Ãi)ni=1 ≠ false}

No rounding error is associated to a floating-point constant k̃ , while the error of
rounding a real constant k is the difference between its real value and its rounding. The
semantics of a variable x ∈ V is composed of two cases. If x belongs to the environment,
then the variable has been previously bound to an arithmetic expression Ã through a
let-expression. In this case, the semantics of x is exactly the semantics of Ã. If x is not
in the environment, then x is a parameter of the function. Here, a new conditional error
bound is added with two fresh variables, φr(x) and φe(x), representing the real value
and the error of x, respectively. In the case of a floating-point arithmetic operation õp,
the new error bound is obtained by applying εõp to the errors and real values of the
operands and the new conditions are obtained as the combination of the conditions of
the operands. Predicates ηop and ηõp represent the additional constraints needed when
op and õp are not total (as explained in Section 2). The proof for õp is defined by
merging πõp with the proofs of its operands.
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Let K ∶= {f̃(x1, . . . , xn) ∣ f̃ ∈ Σ,x1, . . . , xn ∈ V} be the set of all possible function
calls. An interpretation is a function ρ∶K → C modulo variance. The set of all inter-
pretations is denoted as Int . The empty interpretation is denoted as �Int and maps
everything to the empty set. Given σ ∈ Env and ρ ∈ Int , the semantics of program
expressions, E ∶ Ẽ × Env × Int → C, returns the set of conditional error bounds repre-
senting an upper bound of the round-off error for each execution path, together with
the corresponding conditions.

EJÃKρσ ∶= AJÃKσ

EJlet x = Ã in ẼKρσ ∶= EJẼKρ
σ[x↦AJÃKσ]

EJif B̃ then Ẽ1 else Ẽ2Kρσ ∶= EJẼ1Kρσ ⇓(RB(B̃),B̃) ∪ EJẼ2Kρσ ⇓(¬RB(B̃),¬B̃) ∪

⋃{(η1 ∧ η2, η̃1, r2, e1 + ∣r1 − r2∣, πun(r1, r2, π1)) ∣ (η1, η̃1, r1, e1, π1) ∈ EJẼ1Kρσ,

(η2, η̃2, r2, e2, π2) ∈ EJẼ2Kρσ, η1 ∧ η2 ≠ false} ⇓(¬RB(B̃),B̃) ∪

⋃{(η1 ∧ η2, η̃2, r1, e2 + ∣r1 − r2∣, πun(r1, r2, π2))) ∣ (η1, η̃1, r1, e1, π1) ∈ EJẼ1Kρσ,

(η2, η̃2, r2, e2, π2) ∈ EJẼ2Kρσ, η1 ∧ η2 ≠ false} ⇓(RB(B̃),¬B̃)

EJf̃(Ãi)ni=1Kρσ ∶= ⋃{(η ∧
n

⋀
i=1
ηi, η̃ ∧

n

⋀
i=1
η̃i, r̄, ē, π̄) ∣ (η, η̃, r, e, π) ∈ ρ(f̃ (x1 . . . xn)),

∀1 ≤ i ≤ n∶ (ηi, η̃i, ri, ei, πi) ∈ AJÃiKσ, r̄ = r[φr(x1)/r1, . . . , φr(xn)/rn],
ē = e[φe(x1)/e1, . . . , φe(xn)/en], π̄ = π[φr(x1)/r1, . . . , φr(xn)/rn, φe(x1)/e1,

. . . , φe(xn)/en, πvar(x1)/π1, . . . , πvar(xn)/πn], η ∧
n

⋀
i=1
ηi ≠ false, η̃ ∧

n

⋀
i=1
η̃i ≠ false}

Intuitively, the semantics of the expression let x = Ã in Ẽ updates the current environ-
ment by associating to variable x the semantics of expression Ã.

The semantics of the conditional uses an auxiliary operator ⇓ for propagating new
information in the conditions. Given b ∈ B and b̃ ∈ B̃, (η, η̃, r, e, t) ⇓(b,b̃)= (η ∧ b, η̃ ∧
b̃, r, e, t) if η ∧ b ≠ false and η̃ ∧ b̃ ≠ false, otherwise it is undefined. The definition
of ⇓ naturally extends to sets of conditional error bounds: given C ⊆ C, C ⇓(b,b̃)=
⋃c∈C c ⇓(b,b̃). Tests in conditionals need to be treated carefully to guarantee soundness.

Consider the conditional if B̃ then Ẽ1 else Ẽ2. The semantics of Ẽ1 and Ẽ2 are enriched
with the information about the fact that real and floating-point flows match, i.e., both
B̃ and RB(B̃) have the same value. If real and floating point flows do not coincide,
the error of taking one branch instead of the other has to be considered. For example,
if B̃ is satisfied but RB(B̃) is not, the then branch is taken in the floating point
computation, but the else would have been taken in the real one. In this case, the
error is the difference between the real value of the result of Ẽ2 and the floating point
result of Ẽ1. It is easy to show that this error is bounded by the round-off error of Ẽ1

plus the difference between the real values of Ẽ1 and Ẽ2. The condition (¬RB(B̃), B̃)
is propagated in order to model that B̃ holds but RB(B̃) does not. The proof πun

formalizes the previous argumentation in terms of the formal development defined in
Section 2.

The semantics of a function call combines the conditions coming from the inter-
pretation of the function and the ones coming from the semantics of the parameters.
Variables representing real values and errors of formal parameters are replaced with
the symbolic expressions coming from the semantics of the actual parameters, and the
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Fig. 1. PRECiSA architecture.

proofs for the variables representing formal parameters are replaced by the proofs for
the actual parameters.

The semantics of a program is a function F ∶ P̃×Env → C defined as the least fixed
point (lfp ) of the immediate consequence operator P ∶ P̃ × Env × Int → C, i.e., given
P̃ ∈ P̃, FJP̃ K ∶= lfp(PJP̃ K�Int

�Env
), which is defined as PJP̃ Kρσ(f̃ (x1 . . . xn)) ∶= EJẼKρσ for each

function symbol f̃ defined in P̃ such that f̃ (x1 . . . xn) = Ẽ ∈ P̃ . The least fixed point
of P is guaranteed to exist from the Knaster-Tarski Fixpoint theorem [25]. In fact, it
is easy to see that (C,⊆,∪,∩,C,∅) is a complete lattice and P is monotonic over C,
since at each iteration new conditional error bounds are added but not removed. When
the program terminates in a finite number of steps for any possible input, this fixpoint
computation converges in a finite number of steps. While this is a restrictive assumption
in general, it is not unreasonable in avionics or embedded software, which tends to
avoid recursion. However, in the future, the use of precise widening operators [3] on
abstractions of this semantics will be explored in order to ensure the convergence for
a wider variety of programs.

The semantics presented in this section allows for a static analysis that is compo-
sitional and parametric with respect to the functions used to approximate the round-
off error of the arithmetic operations. Indeed, any floating-point operation õp can be
supported by this analysis, as long as an approximation error function εõp satisfying
Formula (2.4) is provided.

4 PRECiSA

PRECiSA (Program Round-off Error Certifier via Static Analysis) is a prototype im-
plementation of the static analysis proposed in Section 3. PRECiSA accepts as input a
floating-point program in the grammar defined in Section 3 and automatically gener-
ates an estimation of the floating-point round-off error together with proof certificates
in PVS ensuring this estimation is correct.

Fig. 1 depicts the functional architecture of PRECiSA. Given an input program, its
semantics as defined in Section 3 is computed. This semantics is instantiated with the
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error approximation functions of the floating-operators from Section 2. Additionally, in
order to improve the precision, PRECiSA distinguishes special cases in which the error
estimation can be refined depending on the input. These cases include the subtraction
x −̃ y when y /̃2 ≤ x ≤ 2 ∗̃ y, and the multiplication for a non-negative power of 2, which
can be computed exactly.

For each function f̃ in the input program, a set of conditional error bounds is
generated. Each conditional error bound, corresponding to a possible computational
flow of f̃ , is then translated into a PVS lemma stating that, provided the conditions
are satisfied, the floating-point value resulting from the execution of f̃ on floating-
point values differs from the exact real-number computation by at most the round-off
error approximation computed by the semantics. The translation of a conditional error
bound (η, η̃, r, e, π) into a PVS lemma is straightforward. The hypotheses of the lemma
are η and η̃. The conclusion states that the difference between r and the output of f̃
using floating-point arithmetic is at most e. Since proving lemmas in PVS can be a
tedious task and it often requires a high level of expertise, PRECiSA generates the
proof script corresponding to each generated PVS lemma from the symbolic proof π.

PRECiSA computes round-off errors in symbolic form so that the analysis is modu-
lar and independent from the initial values of the input variables. As explained above,
PRECiSA translates this symbolic information into PVS lemmas and proofs. Addi-
tionally, given some initial ranges for the input variables, PRECiSA computes concrete
numerical estimations of these symbolic error expressions. Furthermore, it also gener-
ates PVS lemmas (and proof scripts) stating the correctness of such concrete bounds,
and an additional lemma assuring the overall concrete round-off error of the function,
independently from the chosen computational flow.

In order to compute the concrete numerical bounds, the branch-and-bound algo-
rithm presented in [20] has been enhanced to support the symbolic error expressions
produced by PRECiSA. This branch-and-bound algorithm relies on a parametric enclo-
sure method for computing provably correct approximations of real-valued arithmetic
expressions. PRECiSA currently uses interval arithmetic, but other enclosure meth-
ods such as Bernstein polynomials and affine arithmetic can be used since they are
already defined in PVS [17,19]. The algorithm recursively splits the domain of the
function into smaller subdomains and computes an enclosure of the original expression
in these subdomains. The recursion stops when a precise enclosure is found, based on
a given precision, or when the maximum recursion depth is reached. The output of
the algorithm is a numerical enclosure for the error expression. If the error expression
is undefined for the range of the input values, e.g., when the range of an input value
includes zero and that value is used in a division, the algorithm returns an error. This
enhanced branch-and-bound algorithm is specified and formally verified in PVS. Hence,
the numerical bounds of the error expressions are provably sound concretizations of
the symbolic bounds generated using the semantics of Section 3.

As shown in Fig. 1, the current version of PRECiSA outputs two different PVS
files: one containing the lemmas and proofs on the symbolic error bounds and one
including the lemmas and proofs on the concrete numerical error bounds computed
assuming specific initial ranges for the input variables. These files can be automatically
discharged in PVS with no user intervention.

The rest of this section illustrates the use of PRECiSA in the formal analysis of the
Compact Position Reporting (CPR) algorithm, which is part of the Automatic Depen-
dent Surveillance Broadcast (ADS-B) protocol. This protocol, which is a safety-critical
component of advanced air traffic operational concepts, ensures that every aircraft
automatically and periodically broadcast its current position and velocity vectors to
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nearby aircrafts and ground stations. The CPR algorithm is used to encode and decode
the aircraft position (latitude and longitude). The standard organizations responsible
for this protocol (RTCA in the US and EUROCAE in Europe) are currently studying
reports of numerical stability issues in CPR. As part of the work presented in this
paper, the authors have confirmed that under some circumstances, CPR may report
incorrect aircraft positions that are several miles off of the actual position.

The CPR decoding function rLat is presented below. This function recovers the cur-
rent latitude of the aircraft starting from the received encoded latitude YZ and a given
reference latitude LatS (in degrees). The reference latitude, in general, corresponds to
a previously decoded latitude.

j(LatS ,YZ) = fl̃oor((LatS /̃(360 /̃59) −̃(YZ /̃131072)) +̃0.5)
rLat(LatS ,YZ) = 360 /̃59 ∗̃(j(LatS ,YZ) +̃(YZ /̃131072))

PRECiSA is able to differentiate the cases in which the accumulated error in the
argument of the floating-point floor operation is large enough to make its result different
from the ideal result for at least one unit. In cases where the accumulated error does not
affect the result of the floor, PRECiSA computes a round-off error of 6.547117 × 10−14

on rLat assuming double precision floating-point arithmetic and the following ranges
for the inputs: LatS ∈ [−90,90] and YZ ∈ [0,131071]. The symbolic bound is generated
in 0.18s and the concrete value is computed in 1.31s. For these cases, it can be proved
that the latitude decoded by the double precision floating-point procedure corresponds
to its ideal definition.

On the contrary, when the accumulated error affects the result of the floor, PRE-
CiSA computes an error bound of ≈ 6.1, which corresponds to several hundred nautical
miles off with respect to the original position. The characterization of the input values
to CPR that cause the floor operation to be unstable is still a matter of research.

5 Experimental Results

In this section, PRECiSA is compared in terms of accuracy and performance with the
following floating-point analysis tools: Gappa (ver. 1.3.1) [6], Fluctuat (ver. 3.1376) [8],
FPTaylor (ver. 0.9) [24] and Real2Float [15] (see Section 6 for a description of each
tool). This comparison was performed using benchmarks taken from the FPTaylor
repository. The selected benchmarks involve nonlinear expressions and polynomial ap-
proximations of functions, taken from well-known equations used in physics, control
theory, and biological modeling. The experimental environment consisted of a 2.5 GHz
Intel Core i7-4710MQ with 24 GB of RAM, running under Ubuntu 16.04 LTS. The
benchmarks presented in this section and the corresponding PVS certificates are avail-
able as part of the PRECiSA distribution.

Table 1 shows the the round-off error bounds computed by the aforementioned
tools. Since FPTaylor offers two different modes for the analysis, only the best esti-
mation obtained with either mode is reported in the table. Gappa and Fluctuat allow
the user to manually provide hints to obtain tighter error bounds. However, for the
sake of uniformity in the comparison, the table only shows error estimations that are
fully automatically computed. For the same reason, for all examples and tools, input
variables and constants are assumed to be real numbers. This means that they carry a
round-off error that has to be taken into consideration in the analysis.
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Gappa Fluctuat Real2Float FPTaylor PRECiSA

carbonGas 2.61e-08 4.51e-08 2.21e-08 8.06e-09 7.32e-09
verhulst 4.18e-16 5.51e-16 4.66e-16 2.47e-16 2.91e-16
predPrey 2.04e-16 2.49e-16 2.51e-16 1.59e-16 1.77e-16
rigidBody1 2.95e-13 3.22e-13 5.33e-13 2.95e-13 2.95e-13
rigidBody2 3.61e-11 3.65e-11 6.48e-11 3.61e-11 3.60e-11
doppler1 2.02e-13 3.90e-13 7.65e-12 1.58e-13 1.99e-13
doppler2 3.92e-13 9.75e-13 1.57e-11 2.89e-13 3.83e-13
doppler3 1.08e-13 1.57e-13 8.59e-12 6.62e-14 1.05e-13
turbine1 8.40e-14 9.20e-14 2.46e-11 1.67e-14 2.33e-14
turbine2 1.28e-13 1.29e-13 2.07e-12 1.95e-14 3.07e-14
turbine3 3.99e+01 6.99e-14 1.70e-11 9.64e-15 1.72e-14
sqroot 5.71e-16 6.83E-16 1.28e-15 5.02e-16 4.29e-16
sine 1.13e-15 7.97E-16 6.03e-16 4.43e-16 5.96e-16
sineOrder3 8.89e-16 1.15E-15 1.19e-15 5.94e-16 1.11e-15

Table 1. Experimental results for absolute round-off error bounds (bold indicates the
best approximation, italic indicates the second best.)

It can be seen in Table 1 that FPTaylor and PRECiSA produce more tight results
than the other approaches. This is probably because both tools use accurate symbolic
error expressions and optimization techniques to compute the numerical error bounds.

The times for the computation of the bounds in Table 1 are shown in Table 2.6 It
can be noticed that Gappa and Fluctuat are the fastest approaches. However, Gappa
sometimes produces too coarse over-estimates (see for example turbine3 in Table 1)
presumably because it uses interval arithmetic to compute the bounds. Unlike the other
tools considered here, Fluctuat does not produce certificates for the soundness of its
results.

PRECiSA, FPTaylor, and Real2Float show similar performance in half of the cases.
However, in the other half, PRECiSA takes much longer in computing the bounds.
This difference in the performance may be due to the fact that the calculation of the
concrete bounds is performed inside the theorem prover. Conversely, the rest of the
tools use specific developments that allow them to perform more efficiently. A possible
enhancement for PRECiSA is to use a more performant tool to compute the bounds
such as the Kodiak solver [23], a C++ implementation of the same branch and bound
algorithm used by PRECiSA.

6 Related Work

Diverse techniques to estimate round-off error of floating-point computations can be
found in the literature. Fluctuat [8] is a commercial analyzer that accepts as input
a C (or ADA) program with annotations about input ranges and uncertainties, and
produces bounds for the round-off error of the program expressions decomposed with

6 Times for PRECiSA do not include type-checking of the PVS formalization, which
takes approximately 4 min. However, this type-checking only occurs once at the
beginning of the same PVS session used to compute all the bounds in Table 1.
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Gappa Fluctuat Real2Float FPTaylor PRECiSA

carbonGas 0.152 0.025 0.815 1.209 3.830
verhulst 0.034 0.043 0.465 0.812 0.789
predPrey 0.052 0.031 0.735 0.916 0.477
rigidBody1 0.086 0.029 0.494 0.877 0.653
rigidBody2 0.112 0.024 0.287 1.115 0.565
doppler1 0.057 0.025 5.998 3.026 107.696
doppler2 0.069 0.029 5.993 3.008 26.520
doppler3 0.063 0.029 5.970 21.927 45.875
turbine1 0.165 0.028 67.960 2.906 110.272
turbine2 0.100 0.026 3.972 1.939 7.145
turbine3 0.130 0.026 67.460 3.430 351.022
sqroot 0.281 0.024 0.712 1.157 0.343
sine 0.145 0.025 0.948 1.296 6.023
sineOrder3 0.114 0.026 0.304 0.847 1.616

Table 2. Times in seconds for the generation of round-off error bounds and certificates.

respect to its provenance. Fluctuat provides support for iterative programs and unsta-
ble tests. It uses a zonotopic abstract domain [9] that is based on affine arithmetic.
The prototype implementation presented in this paper is not competitive with Fluc-
tuat in terms of speed. However, PRECiSA, which is publicly available under NASA’s
Open Source Agreement, provides a formal proof certificate of the correctness of the
computed error estimation. The experimental evaluation shows that, for the considered
benchmarks, both Fluctuat and PRECiSA provide similar results in terms of accuracy.

The tool FPTaylor [24] uses symbolic Taylor expansions to approximate floating-
point expressions and applies a global optimization technique to obtain tight bounds
for round-off errors. In addition, FPTaylor emits certificates for HOL Light [12], sim-
ilarly to PRECiSA. Because of the technique used by FPTaylor, it is restricted to
smooth functions. Therefore, it is not able to deal with non-derivable functions such as
absolute value or floor, which are used, for example, in the CPR algorithm considered
in Section 4. Unlike PRECiSA, which targets programs with conditional and function
calls, FPTaylor is designed to analyze arithmetic expressions.

VCFloat [22] is a tool that automatically computes round-off error terms for nu-
merical C expressions along with their correctness proof in Coq. This tool uses interval
arithmetic to approximate the error bounds and generates validity conditions on the
expressions. VCFloat computes the ulp by using the maximum exponent allowed in the
floating-point representation, while PRECiSA computes the actual exponent for the
maximum absolute value in the expression bounds, leading to more accurate estima-
tions.

Real2Float[15] computes certified bounds for round-off errors by using an optimiza-
tion technique employing semidefinite programming and sum of square certificates.
Real2Float handles the ulp in the same way as VCFloat, which can result in coarser
error approximations.

Gappa [6] computes enclosures for floating-point expressions via interval arithmetic.
This enclosure method enables a quick computation of the bounds, but sometimes it
can result in pessimistic error estimations. This tool also generates a proof of the results
that can be checked in the Coq proof assistant. In Gappa, the bound computation, the
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certification construction, and their verification may require hints from the user. Thus,
some level of expertise is required, unlike PRECiSA which is fully automatic.

Rosa [4] automatically compiles an ideal real number program to a floating-point
one with the aim of minimizing the overall round-off error. In the same line, FPTuner [2]
implements a rigorous approach to precision allocation supporting also mixed-precision.

7 Conclusion

In this paper, a static analysis technique for estimating floating-point round-off errors
is presented. The analysis enables the automatic generation of formal proof certificates
of the correctness of such estimations. The analysis enjoys several useful features. It is
defined in a compositional way, which allows for an incremental, modular, and efficient
treatment of the program being analyzed. It is fully automatic, thus no human inter-
vention is required to generate and formally verify the error estimations. The technique
supports the generation of formal certificates that can be checked by an external tool.
The proposed static analysis is sound with respect to unstable conditions. In the liter-
ature, the stable test hypothesis is widely used to deal with this problem. However, this
hypothesis may yield unsound results when the real flow does not correspond to the
floating-point one. To the best of the authors’ knowledge, the only other techniques that
are sound with respect to unstable tests are the one presented in [10] for the Fluctuat
analyzer and Rosa [4]. The proposed analysis is parametric with respect to floating-
point precision and rounding mode. Finally, it can be extended with any floating-point
operator provided the existence of a round-off error estimation that satisfies some basic
properties.

The proposed technique is implemented in the prototype tool PRECiSA. PRECiSA
is fully automatic and generates PVS certificates that guarantee the correctness of the
error bounds with respect to the floating-point IEEE-754 standard. Furthermore, given
concrete ranges for the input variables of a program, the numerical estimations com-
puted by PRECiSA are provably sound over-approximations of the possible round-off
error that can occur in the program. The current implementation of PRECiSA supports
single and double-precision floating-point formats and provides all the to-the-nearest
rounding modalities introduced in the IEEE-754 standard. In the implementation of
PRECiSA, the semantics-based analysis and the PVS floating-point formalization are
completely independent from the numerical evaluation of the error expression. This
means that different techniques can be used for the concrete bound estimation depend-
ing on the expression type and on the desired precision/efficiency trade-off. Currently,
PRECiSA uses a branch-and-bound algorithm based on interval arithmetic. Prelim-
inary experimental results are encouraging for the applicability of PRECiSA in the
formal verification of software of interest to NASA.

The floating-point round-off error formalization presented in this paper is available
as part of the NASA PVS Library (https://github.com/nasa/pvslib). It consists of
more than 150 PVS theories and several new proof strategies. Although the frame-
work can be implemented in any modern proof assistant, the choice of PVS for this
research project is convenient for the following reasons. First, PVS is used in the veri-
fication and validation of algorithms and concepts developed under NASA’s Safe Au-
tonomous Systems Operations (SASO) Project such as separation assurance algorithms
for unmanned aircraft systems [18]. These algorithms, which involve critical numerical
computations, are used as test cases for the framework and tool proposed here. Sec-
ond, the NASA PVS Library includes independently developed hardware-level [16] and
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high-level [1] formalizations of floating-point arithmetic, which are proved to be equiv-
alent. The latter formalization is used and extended in this paper. Third, the NASA
PVS Library also includes several formalizations of enclosure methods such as interval
arithmetic [5], Bernstein polynomial basis [19], and affine arithmetic [17], which can
be easily integrated in PRECiSA for computing concrete bounds of round-off errors.
Finally, because of the automation support provided by PVS, no expertise in theorem
proving is actually required to use the formalization presented in this paper.

The main drawback of the proposed approach is that it can generate large certifi-
cates for programs with nested conditionals. In fact, the number of conditional error
bounds may grow exponentially in some cases due to the unstable tests handling (four
different conditional error bounds may be generated for each conditional). In order
to deal with this problem, an abstract semantics collapsing conditional error bounds
produced after a given depth is being defined and will be integrated into PRECiSA in
the near future. In this way, the number of elements in the semantics is reduced and
consequently also the size of the generated proof certificate. Alternatively, the stable
test hypothesis can be optionally enabled by the user in order to reduce the number of
generated lemmas as done in most tools, although this may come at the cost of sound-
ness. The support of recursion and loops will also be considered by defining abstractions
on the domain of conditional error bounds and widening operators on these domains.
Another future direction is the automatic generation of ACSL annotations related to
round-off errors of C programs. The annotated program could then be automatically
verified in a tool like Frama-C [13].
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5. M. Daumas, D. R. Lester, and C. Muñoz. Verified real number calculations: A
library for interval arithmetic. IEEE Trans. on Computers, 58(2):226–237, 2009.

6. F. de Dinechin, C. Lauter, and G. Melquiond. Certifying the floating-point imple-
mentation of an elementary function using Gappa. IEEE Trans. on Computers,
60(2):242–253, 2011.

7. L. H. de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and applications.
Numerical Algorithms, 37(1-4):147–158, 2004.

8. E. Goubault and S. Putot. Static analysis of numerical algorithms. In Proceedings
of SAS 2006, volume 4134 of LNCS, pages 18–34. Springer, 2006.

9. E. Goubault and S. Putot. Static analysis of finite precision computations. In
Proceedings of VMCAI 2011, volume 6538 of LNCS, pages 232–247. Springer, 2011.

10. E. Goubault and S. Putot. Robustness analysis of finite precision implementations.
In Proceedings of APLAS 2013, volume 8301 of LNCS, pages 50–57. Springer, 2013.

14



11. J. Harrison. A machine-checked theory of floating point arithmetic. In Proceedings
of TPHOLs ’99, pages 113–130. Springer, 1999.

12. J. Harrison. HOL light: An overview. In Proceedings of TPHOLs 2009, volume
5674 of LNCS, pages 60–66. Springer, 2009.

13. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-c:
A software analysis perspective. Formal Aspects of Comp., 27(3):573–609, 2015.

14. G. G. Lorentz. Bernstein Polynomials. Chelsea Publishing Company, 1986.
15. V. Magron, G. Constantinides, and A. Donaldson. Certified roundoff error bounds

using semidefinite programming. CoRR, abs/1507.03331, 2015.
16. Paul Miner. Defining the IEEE-854 floating-point standard in PVS. Technical

Report TM-1995-110167, NASA, 1995.
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