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We study asymptotic lower and upper bounds for the sizes of constant
dimension codes with respect to the subspace or injection distance, which is
used in random linear network coding. In this context we review known upper
bounds and show relations between them. A slightly improved version of
the so-called linkage construction is presented which is e.g. used to construct
constant dimension codes with subspace distance d = 4, dimension k = 3 of
the codewords for all field sizes ¢, and sufficiently large dimensions v of the
ambient space, that exceed the MRD bound, for codes containing a lifted
MRD code, by Etzion and Silberstein.
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1 Introduction

Let V = F? be a v-dimensional vector space over the finite field F, with ¢ elements.

By [‘lg] we denote the set of all k-dimensional subspaces in V', where 0 < k < v,
which has size [], = Hle %. More general, the set P(V') of all subspaces of
V forms a metric space with respect to the subspace distance defined by ds(U, W) =
dim(U + W) — dim(U N W) = dim(U) + dim(W) — 2dim(U N W), see [32], and the

injection distance defined by d;(U, W) = max{dim(U), dim(W)} — dim(U N W), see [40].
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Coding Theory on P(V) is motivated by Kétter and Kschischang [32] via error correcting
random network coding, see [4]. In this context it is natural to consider codes C C P(V)
where each codeword, i.e., each element of C, has the same dimension k, called constant
dimension code (cdc), since this knowledge can be exploited by decoders. For constant
dimension codes we have dg(U, W) = 2d;(U, W), so that we will only consider the subspace
distance in this paper. By (v, N, d; k), we denote a cdc in V' with minimum (subspace)
distance d and size N, where the dimensions of each codeword is k € {0,1,...,v}. As
usual, a cde C has the minimum distance d, if d < dg(U, W) for all U # W € C and
equality is attained at least once. If #C = 1, we set the minimum distance to co. The
corresponding maximum size is denoted by A,(v,d; k), where we allow the minimum
distance to be larger than d. In [32] the authors provided lower and upper bounds for
Aq(v,d; k) which are less than a factor of 4 apart. For increasing field size ¢ this factor
tends to 1. Here, we tighten the corresponding analysis and end up in a factor of less
than 2 for the binary field ¢ = 2 and a strictly better factor for larger values of ¢. With
respect to lower bounds, we slightly generalize the so-called linkage construction by
Gluesing-Luerssen, Troha / Morrison [22, 21] and Silberstein, (Horlemann-)Trautmann
[38]. This improvement then gives the best known lower bounds for A,(v,d; k) for many
parameters, cf. the online tables http://subspacecodes.uni-bayreuth.de|associated
with [23]. For codes containing a lifted maximum rank distance (LMRD) code as a
subcode an upper bound on the size has been presented in [16] for some infinite series of
parameters. Codes larger than this MRD bound are very rare. Based on the improved
linkage construction we give an infinite series of such examples.

In this context we mention the following asymptotic result based on the non-constructive
probabilistic method. If the subspace distance d and the dimension k of the codewords
is fixed, then the ratio of the lower and upper bound tends to 1 as the dimension v of
the ambient space approaches infinity, see [I8, Theorem 4.1}, which is implied by a more
general result of Frankl and Rodl on hypergraphs. The same result, with an explicit
error term, was also obtained in [8 Theorem 1]. If d and v — k is fixed we have the same
result due to the orthogonal code. If the parameter k£ can vary with the dimension v,
then our asymptotic analysis implies there is still a gap of almost 2 between the lower
and the upper bound of the code sizes for d = 4 and k = |v/2], which is the worst case.

The remaining part of the paper is organized as follows. In Section [2] we collect the
basic facts and definitions for constant dimension codes. Upper bounds on the achievable
codes sizes are reviewed in Section [3] Here, we partially extend the current knowledge
on the relation between these bounds. While most of them are known around 2008 there
are some recent improvements for the subclass of partial spreads, where d = 2k, which
we summarize in Subsection In Section [4] we present the mentioned improvement
of the linkage construction. Asymptotic bounds for the ratio between lower and upper
bounds for code sizes are studied in Section [5| We continue with the upper bound for
constant dimension codes containing a lifted MRD code in Section [6] including some
numerical results, before we draw a short conclusion in Section [7}
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2 Preliminaries

For the remainder of the paper we set V' = F(, where ¢ is a prime power. By v we
denote the dimension of V. Using the language of projective geometry, we will call the
1-dimensional subspaces of Fy points and the 2-dimensional subspaces lines. First, we
observe that the ¢g-binomial coefficient [} ] o indeed gives the cardinality of [‘g] To this
end, we associate with a subspace U € [Z] a unique k£ X v matrix Xy in row reduced
echelon form (rref) having the property that (Xy) = U and denote the corresponding
bijection
[i}l]} —{Xy € ]FI(;X”] rk(Xy) = k, Xy is in rref}

by 7. An example is given by Xy = (99) € F3*3, where U = 7~ }(Xy) € []1«‘23} is a line
that contains the three points (1,0,0), (1,1,1), and (0,1,1). Counting those matrices
gives

k-1 _ E o v—k+i _
#0) =TT 52 I =1,
=0 i=
for all integers 0 < k < v. Especially, we have [7], = [§], = 1. Given a non-degenerate
bilinear form, we denote by U~ the orthogonal subspace of a subspace U, which then has
dimension v — dim(U). Then, we have ds(U, W) = ds(U+, W), so that (K], = [U”k]q.
The recurrence relation for the usual binomial coefficients generalize to [}, ] =q [” 1}q +

[Z:Hq. In order to remove the restriction 0 < k < v, we set [§], = 0 for a € N> and
b € Z, whenever b < 0 or a < b. This extension goes in line with the interpretation of
the number of b-dimensional subspaces of Fy and respects the orthogonality relation.
In order to write Z;f;(l) ¢ =[] , for positive integers ¢ in later formulas, we apply the
definition of [} ], also in cases where ¢ is not a prime power and set [;]; = (}) for ¢ =1.

Using the bijection 7 we can express the subspace distance between two k-dimensional
subspaces U, W € [‘ﬂ via the rank of a matrix:

ds(U, W) = 2dim(U + W) — dim(U) — dim(W) = 2 Qk(j{%) - k) : (1)

Using [‘,ﬁ] as vertex set, we obtain the so-called Grassmann graph, where two vertices
are adjacent iff the corresponding subspaces intersect in a space of dimension k — 1. It
is well-known that the Grassmann graph is distance regular. The injection distance
di(U, W) corresponds to the graph distance in the Grassmann graph. Considered as an
association scheme one speaks of the g-Johnson scheme.

If C C [‘g] is a cde with minimum subspace distance d, we speak of a (v, #C, d; k)
constant dimension code. In the special case of d = 2k one speaks of so-called partial
spreads, i.e., collections of k-dimensional subspaces with pairwise trivial intersection.

Besides the injection and the subspace distance we will also consider the Hamming
distance dy(u,w) = #{i | u; # w;}, for two vectors u,w € FY, and the rank distance
d (U, W) = rtk(U — W), for two matrices U, W € Fy**". The latter is indeed a metric,
as observed in [20]. A subset C C F{"*" is called a rank metric code. If the minimum



rank-distance of C is given by d,., we will also speak of an (m x n, #C, d,), rank metric
code in order to specify its parameters. A rank metric code C C Fj"*™ is called linear if
C forms a subspace of Fy**", which implies that #C has to be a power of the field size g.

Theorem 1. (see [20]) Let m,n > d be positive integers, q a prime power, and C C Fy*>™
be a rank metric code with minimum rank distance d. Then, #C < g@ax{n.m}-(min{n,m}—d+1)

Codes attaining this upper bound are called maximum rank distance (MRD) codes.
They exist for all (suitable) choices of parameters, which remains true if we restrict to
linear rank metric codes, see [20]. If m < d or n < d, then only #C = 1 is possible, which
can be achieved by a zero matrix and may be summarized to the single upper bound
#C < [qma"{"’m}'(mm{"’m}*dH)] . Using an m x m identity matrix as a prefix one obtains
the so-called lifted MRD codes.

Theorem 2. [39, Proposition 4] For positive integers k,d,v with k < v, d < 2min{k,v—
k}, and d even, the size of a lifted MRD code in [‘é] with subspace distance d is given by

M(q, k,v, d) = qmax{k’,v—k}~(min{k,v—k}—d/2+1)'

If d > 2min{k,v — k}, then we have M(q,k,v,d) := 1.

The Hamming distance can be used to lower bound the subspace distance between
two codewords (of the same dimension). To this end let p : {M € FE*|rk(M) =
k,Mis in rref} — {z € F§ | >, x; = k} denote the pivot positions of the matrix in
rref. For our example X7 we we have p(Xy) = (1,1,0). Slightly abusing notation we
also write p(U) for subspaces U € [ ] instead of p(7(U)).

Lemma 1. [15, Lemma 2] For two subspaces U,W < Fy, we have ds(U, W) > dn(p(U), p(W)).

3 Upper Bounds

In this section we review and compare known upper bounds for the sizes of constant
dimension codes. Here we assume that v, d, and k are integers with 2 < k < v — 2,
4 < d < 2min{k,v — k}, and d even in all subsequent results. The bound 0 < k < v
just ensures that [ ¥ ] is non-empty. Note that ds(U, W) < 2min{k,v — k} and ds(U, W)
is even for all U, W € [‘é] Restricting to the set case, we trivially have A,(v,d; k) =
#[‘,ﬁ] = [%]q for d < 2 or k < 1, so that we assume k¥ > 2 and d > 4, which then
implies £k < v — 2 and v > 4. We remark that some of the latter bounds are also valid
for parameters outside the ranges of non-trivial parameters considered by us. Since the
maximum size of a code with certain parameters is always an integer and some of the
latter upper bounds can produce non-integer values, we may always round them down.
To ease the notation we will commonly omit the final rounding step.

The list of known bounds has not changed much since [29], see also [I7]. Comparisons
of those bounds are scattered among the literature and partially hidden in comments,
see e.g. [6]. Additionally some results turn out to be wrong or need a reinterpretation at
the very least.



Counting k-dimensional subspaces having a large intersection with a fixed m-dimensional
subspace gives:

Lemma 2. For integers 0 <t <k <wv and k —t <m < v we have
t . .
#{U e V] |dmUNW)>k—t} = Zq(m—f—z—k)z ], [v;m]W
i=0
where W <V and dim(W) = m.

Proof. Let us denote dim(U N W) by k — i, where max{0,k — m} < i < min{t,v —m}.
With this, the number of choices for U is given by
(qm _ q0) . (qm _ ql) .. (qm _ qk—i—l) . (qv _ qm+1) . (qv _ qm+i—1)
(¢" —¢% - (a"—¢") - (¢" — ¢*1)

RN [v5m], = g, [,

7 -t 7

Finally apply the convention [‘;]q = 0 for integers with b < 0 or b > a.
U

Note that dim(U N W) > k — t is equivalent to ds(U, W) < m — k + 2t. The fact that
the Grassmann graph is distance-regular implies:

Theorem 3. (Sphere-packing bound)[32, Theorem 6]
L]y
32 v—
q [ ];: } q [ % g } q

We remark, that we can obtain the denominator of the formula of Theorem [3| by setting
m==kFk, 2t=d/2—11in Lemmaand applying [klii]q = [’f]q. The right hand side is
symmetric with respect to orthogonal subspaces, i.e., the mapping k — v — k leaves it
invariant.

By defining a puncturing operation one can decrease the dimension of the ambient

space and the codewords. Since the minimum distance decreases by at most two, we can

iteratively puncture d/2 — 1 times, so that A,(v,d; k) < [Z:Zgi”q _ {”Tfﬁiﬂ]q since

Aq(va da k) S

L(d/2-1)/2]
2

=0

A (W 25K = [U;]q. Considering either the code or its orthogonal code gives:

Theorem 4. (Singleton bound)[32, Theorem 9]

Agfv.di ) < [ il ]



Referring to [32] the authors of [29] state that even a relaxation of the Singleton bound
is always stronger than the sphere packing bound for non-trivial codes. However, for
qg=2,v=28,d=06, and kK = 4, the sphere-packing bound gives an upper bound of
200787/451 ~ 445.20399 while the Singleton bound gives an upper bound of [§], = 651.
For ¢ =2, v =28, d =4, and k = 4 it is just the other way round, i.e., the Singleton
bound gives [£], = 11811 and the sphere-packing bound gives [§], = 200787. Examples
for the latter case are easy to find. For d = 2 both bounds coincide and for d = 4 the
Singleton bound is always stronger than the sphere-packing bound since [”gl]q <[] g
The asymptotic bounds [32, Corollaries 7 and 10], using normalized parameters, and [32]
Figure 1] suggest that there is only a small range of parameters where the sphere-packing
bound can be superior to the Singleton boundH

Given an arbitrary metric space X, an anticode of diameter e is a subset whose elements
have pairwise distance at most e. Since the ¢-Johnson scheme is an association scheme the
Anticode bound of Delsarte [I1] can be applied. As a standalone argument we go along
the lines of [2] and consider bounds for codes on transitive graphs. By double-counting

the number of pairs (a,g) € A- Aut(T"), where g(a) € B, we obtain:

Lemma 3. [2, Lemma 1], cf. [3, Theorem 1°] Let T' = (V, E) be a graph that admits a
transitive group of automorphisms Aut(I') and let A, B be arbitrary subsets of the vertex
set V.. Then, there exists a group element g € Aut(I") such that

o) 0Bl _ 4]
Bl |V
Corollary 1. [2, Corollary 1], cf. [3, Theorem 1] Let Cp C [V ] be a code with (injection

or graph) distances from D = {dy,...,ds} C {1,...,v}. Then, for an arbitrary subset
B C [V] there exists a code Cy(B) C B with distances from D such that

(Bl [o]
B ST

ly
If Cp C [‘lg] is a constant dimension code with minimum injection distance d, i.e.,
D ={d,...,v}, and B is an anticode with diameter d — 1, we have #C},(B) = 1, so that
we obtain Delsarte’s Anticode bound
[1]
#Cp < 7[; (2)

The set of all elements of [ ] which contain a fixed (k —d/2+ 1)-dimensional subspace
v—k+d/2—1
d/2—1

of all elements of [Z] which are contained in a fixed (k + d/2 — 1)-dimensional subspace

is also an anticode of diameter d — 2 with [k"'df_l} = [k+d/271
q

is an anticode of diameter d — 2 with [ } elements. By orthogonality, the set
q

d/2—1
and Wilson proved in [I9] Theorem 1] that these anticodes have the largest possible size,
which implies:

} elements. Frankl
q

!By a tedious computation one can check that the sphere-packing bound is strictly tighter than the
Singleton bound iff ¢ = 2, v = 2k and d = 6.



Theorem 5. (Anticode bound)

(k]
Aq (’U, d; k) < [max{k,v—k}+d/2—1:|
d/2—1
q
Using different arguments, Theorem [5] was proved in [42, Theorem 5.2] by Wang, Xing,
Safavi-Naini in 2003. Codes that can achieve the (unrounded) value
[k, / max{k’s/_;_}f /271 | are called Steiner structures. It is a well-known and seemingly

very hard problem to decide whether a Steiner structure for v =7, d =4, and k = 3
exists. For ¢ = 2 the best known bounds are 333 < A3(7,4;3) < 381. Additionally it is
known that a code attaining the upper bound can have automorphisms of at most order
2, see [30]. So far, the only known Steiner structure corresponds to Ay(13,4;3) = 1597245
[9]. The reduction to Delsarte’s Anticode bound can be found e.g. in [I7, Theorem 1].

Since the sphere underlying the proof of Theorem [3|is also an anticode, Theorem (3] is
implied by Theorem [5| For d = 2 both bounds coincide. In [43], Section 4] Xia and Fu
verified that the Anticode bound is always stronger than the Singleton bound for the
ranges of parameters considered by us.

Mimicking a classical bound of Johnson on binary error-correcting codes with respect
to the Hamming distance, see [28, Theorem 3] and also [41], Xia and Fu proved:

Theorem 6. (Johnson type bound I) [{3, Theorem 2]
If (qk - 1)2 > (¢ —1) (qk’_d/2 - 1), then

(qk _ qk—d/2) (qv _ 1)
(¢" — 1)2 —(q" — 1) (qkfd/Z _ 1) '

However, the required condition of Theorem [6]is rather restrictive and can be simplified
considerably.

Aq(% da k) S

Proposition 1. For 0 < k < v, the bound in Theorem@ is applicable iff d = 2min{k,v —
k} and k > 1. Then, it is equivalent to
q"—1

Aq(v, d; k) < quin{kv—k} _ 1

Proof. If k = 0 we have (qk’ — 1)2 = 0, so that we assume k£ > 1 in the following. If
k<v—kandd<2k— 2, then

¢>2,k>1 2

Ifk>v—k+1andd<2v—2k—2, then

(¢°=1) (qk*’/Q—1> > (=1 (¢2-1) T2 (q(”+1)/2 - 1)2 > (qk—l)Q-

If d = 2min{k,v — k}, ¢ > 2, and k > 1, then it can be easily checked that the condition
of Theorem [f] is satisfied and we obtain the proposed formula after simplification.
O



For k = v Theorem |§| gives Ay(v,d;v) <1 which is trivially satisfied with equality. In
Subsection [3.1] we will provide tighter upper bounds for the special case where d = 2k,
i.e., partial spreads. Indeed, the bound stated in Proposition [1] corresponds to the most
trivial upper bounds for partial spreads that is tight iff £ divides v, as we will see later on.
So, due to orthogonality, Theorem [6]is dominated by the partial spread bounds discussed
later on.

While the previously mentioned generalization of a classical bound of Johnson on binary
error-correcting codes yields the rather weak Theorem |§|7 generalizing [28] Inequality (5)],
see [43] yields a very strong upper bound:

Theorem 7. (Johnson type bound II) [/5, Theorem 3], [17, Theorem 4,5]

Ay, dik) < Zk_iAq(v C1dik—1) (3)
Afvdik) < LA —1di (4)

Note that for d = 2k Inequality gives A4(v,2k; k) < [g;:” since we have A, (v —

1,2k;k — 1) = 1 by definition. Similarly, for d = 2(v — k), Inequality gives Ag(v,2v —
2h:k) < | 75 .

Some sources like [43] Theorem 3] list just Inequality and omit Inequality {4l This goes
in line with the treatment of the classical Johnson type bound II for binary error-correcting
codes, see e.g. [35, Theorem 4 on page 527|, where the other bound is formulated as
Problem (2) on page 528 with the hint that ones should be replaced by zeros. Analogously,

we can consider orthogonal codes:

Proposition 2. Inequality (@) and Inequality are equivalent using orthogonality,
cf. [17, Section III, esp. Lemma 13].

Proof. We have

v_1
Ayv,dik) = Ag(v,div—k) < fleAq(v 1,d;v—k—1)
k=
v_1
= 37]@ A‘](v 1)da k)7
q
which is Inequality , and
v_1
Ayv,dik) = Ag(v,div—k) < Z“f— Ay —1,d;v — k)
q¢"—1
= 7 1Aq(v—1,d;k—1),

which is Inequality .



Of course, the bounds in Theorem [7] can be applied iteratively. In the classical Johnson
space the optimal order of the corresponding inequalities is unclear, see e.g. [35, Research
Problem 17.1]. Denoting the maximum size of a binary constant-weight block code
of length n, Hamming distance d and weight k& by A(n,d,w), the two corresponding
variants of the inequalities in Theorem [7|are A(n,d,w) < [n/w-A(n —1,d,w —1)| and
A(n,d,w) < |n/(n —w)-A(n —1,d,w)|. Applying the first bound yields

A(28,8,13) < [28/13 - A(27,8,12)] < |28/13 - 10547 = 22716
while applying the second bound yields
A(28,8,13) < [28/15- A(27,8,13)] < |28/15-11981| = 22364
using the numerical bounds from
http://webfiles.portal.chalmers.se/s2/research/kit/bounds/cw.html, cf. [I].

The authors of [17, 29] state that the optimal choice of Inequality or Inequality
is unclear, too. However, this question is much easier to answer for constant dimension
codes.

Proposition 3. For k < v/2 we have
Ez_iAq(v —1,dsk - 1)J < {qfka_llAq(v 1, k:)J ,
where equality holds iff v = 2k.
Proof. By considering orthogonal codes we obtain equality for v = 2k. Now we assume
k < v/2 and show
q"—1

q"—1
Fo1 Ag(v = 1,d; k), (5)

qvfk_ 1779

Ao -1,d;k—1)+1<

which implies the proposed statement. Considering the size of the LMRD code we can
lower bound the right hand side of Inequality to

v o__ 1 L B
 qR D (k—d/241)

q’' —1 q
71Aq(“ —1,d;k) >

qvfk _ q
Since
k-1 v—k+i_q
v—1 [l Y k=1 oy koti k—1
[kfl}q _ =1 ¢ ! < g _(v—k)(k—d/2) H 1
v—ktd/2—1 d2-1 = g-1 1 1—q
-1 |, % i=d/2 i=d/?2
qlf

i=1
we can use the Anticode bound to upper bound the left hand side of Inequality to
" -1 ¢" -1

qk_lAq(v—l,d;k:—l)—}—lqu_l

qERE=A) e 1 d/2,q) + 1,


http://webfiles.portal.chalmers.se/s2/research/kit/bounds/cw.html

a o
where p(a,b,q) ;== [[ (1—q7") ' Thus, it suffices to verify
i=b

gFd/2 41

Tl‘u(k—l,d/Q,q)—F

. <1 (6)

| =

where we have divided by

f = ¢ —1 .q(v—k—l)(k—d/2+1) _ q" -1 _q(v—k—l)(k—d/Z)
qv—k q

o0 o o0 .~
Since d > 4, we have u(k —1,d/2,q) <[] (1 —q¢7") ' < [T(1-27) ' < 1.74. Since
i=2 =2

) k—d/2+1
vz4andq22,wehave%§ % Smcek'22,Wehzweqq,vi_1 < ng—il,

% for ¢ > 3. Thus, Inequality @ is valid for all ¢ > 3.

A

which is at most
If d > 6 and g =2, then p(k — 1,d/2,q) < [] (1-27) "' < 1.31 and "
1=3

that Inequality @ is satisfied.

In the remaining part of the proof we assume d = 4 and ¢ = 2. If k = 2, then
k—d/2+1

1
—— < 3,850

p(k—1,d/2,q) = Land 250 = 2 1k =3, then p(k—1,d/2,q) = 4 and © = = 4
If £ > 4, then % < 1%, plk —1,d/2,q) < 1.74, and % < % due to v > 2k > 8.

Thus, Inequality @ is valid in all cases.
O

Knowing the optimal choice between Inequality (3] and Inequality , we can iteratively
apply Theorem m in an ideal way initially assuming k < v/2:

Corollary 2. (Implication of the Johnson type bound II)

qv_l qv—l_l qv—k+d/2+1_1 ‘
o Lk_l_l | Ag(o—k+df2,d;d/2) | ...

We remark that this upper bound is commonly stated in an explicit version, where

v—k+d/2_1

and [43], Corollary 3]. However, currently much better bounds for partial spreads are
available.

It is shown in [43] that the Johnson bound of Theorem [7|improves on the Anticode

bound in Theorem [5, see also [6]. To be more precise, removing the floors in the upper

A‘I(va d; k) S \‘

is inserted, see e.g. [I7, Theorem 6], [29, Theorem 7],

bound of Corollary [2 and replacing A,(v — k + d/2,d;d/2) by % gives
k—d/2 A k—1 gv~i—1
Pomicr o o e=—= [,
k—i _ 1~ 1rk—1 vl [v—k+d/2-1]
i—o ¢ 1 Hi:kfd/2+1 gkﬂ'—1 [U d;rg_/l L

which is the right hand side of the Anticode bound for £ < v — k. So, all upper
bounds mentioned so far are (weakly) dominated by Corollary [2| if we additionally

10



assume k < v — k. As a possible improvement [2, Theorem 3] was mentioned as [29,
Theorem 8]. Here, we correct typos and give a slightly enlarged proof, thanks to a
personal communication with Aydinian.

Theorem 8. [2, Theorem 3] For integers 0 <t <r <k, k—t<m<wv,andt<v—m
we have "

[k]qu(m,% —2t;k —t)
Zﬁzo qi(m+i—k) [k@i]q [v—im]q

Proof. Let W be a fixed subspace with dim(WW) = m and define

Ay(v,2r k) <

B={U¢€e[Y]|dmUnW)>k—t},

so that #B is given by Lemma Consider a (v, #C*,d; k) code C* C B and take
C' := C* N W noting that the latter has a minimum distance of at least 2r — 2t. Two
arbitrary codewords Uy # Us € C' have distance dg(Uy, Us) > 2r — 2t + i + j, where we
write dim(Uy) = k —t + i and dim(Uz) = k — t + j for integers 0 < 4,j < t. Replacing
each codeword of C’' by an arbitrary k — ¢t-dimensional subspace, we obtain a cdc C with
a minimum distance of at least 2r — 2¢. Since t < r we have #C* = #C' = #C, so that
Corollary (1] gives the proposed upper bound.

O

As Theorem [§ has quite some degrees of freedom, we partially discuss the optimal choice
of parameters. For ¢ =0 and m < v — 1, we obtain Aq(v,d; k) < [}], /[ ], - Ag(m, d; k),
which is the (v — m)-fold iteration of Inequality of the Johnson bound (without
rounding). Thus, m = v — 1 is the best choice for ¢ = 0, yielding a bound that is
equivalent to Inequality . For t =1 and m = v — 1 the bound can be rewritten to
Ag(v,d; k) < Ag(v —1,d — 2;k — 1), see the proof of Proposition |4 For ¢ > v — m the
bound remains valid but is strictly weaker than for ¢ = v — m. Choosing m = v gives the
trivial bound Ag4(v, 2r; k) < Ag(m, 2r — 2t; k —t). For the range of parameters 2 < ¢ <9,
4 < v < 100, limited facing nerve-jangling numerical pitfalls, and 4 < d < 2k < v,
where ¢ is of course a prime power and d is even, the situation is as follows. If d # 2k,
there are no proper improvements with respect to Theorem [7] For the case d = 2k, i.e.,
partial spreads treated in the next subsection, we have some improvements compared
to [(¢” — 1)/(¢* — 1) which is the most trivial bound for partial spreads. Within our
numerical range, most of them are covered by the following proposition, where we apply
Theorem [8| with t =1 and m = v — 1 to A4(v, 2k; k). The other cases are due to the fact
that Theorem [14]is tighter than Theorem [16| for larger values of z. In no case a proper
improvement with respect to the tighter bounds from the next subsection emerged.

Proposition 4. For w > 1 and k > ¢* + 3 we have Ay(2k + w, 2k; k) <

[2k+w]qu(2k+w_1’2k—2;k—1) Lq2k+w_1J :qk+w+qw

k
Zilzo giHw—1+0) [2k7€rwf1]q [(2k+w)—(2k+w—1)} gt —1
q

—1 i
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Proof. Note that k > ¢ 4+ 3 implies w < k. The left hand side simplifies to
[25Fe], A2k +w — 1,2k — 2,k — 1)

S gitru—1+0) [2%@;1](1 [(2k+w)—§2k+w_1)

— Ag(2k +w—1,2k — 2k — 1).
q

Then we apply Theorem [16| with ¢t = 2, » = w + 1, and z = [{], — 1, which yields
A2k +w—1,2k =2k — 1) < W 4 1+ gV —qg< " + gV for k— 1> g% + 2.
O

We remark that applying Theorem [14] and Theorem [16] directly is at least as good as
the application of Theorem 8 with ¢t =1 and m = v — 1 for d = 2k.

The Delsarte linear programming bound for the g-Johnson scheme was obtained in [12].
However, numerical computations indicate that it is not better than the Anticode bound,
see [0]. For d # 2min{k,v — k}, i.e., the non-partial spread case, besides the stated
bound only the following two specific bounds, based on extensive computer calculations,
are known:

Theorem 9. [26, Theorem 1] A2(6,4;3) =77
Proposition 5. [2]] A5(8,6;4) < 272

As the authors of [24] have observed, the Johnson bound of Theorem (7| does not
improve upon Corollary 2] when applied to Theorem [9] or Proposition

If we additionally restrict ourselves to constant dimension codes, that contain a lifted
MRD code, another upper bound is known:

Theorem 10. [16, Theorem 10 and 11] Let C C [ig} be a constant dimension code,
with v > 2k and minimum subspace distance d, that contains a lifted MRD code.

o Ifd=2(k—1) and k >3, then #C < ¢*V® + A (v — k,2(k — 2);k — 1);

v

o ifd =k, where k is even, then #C < ¢(v—F)(k/2+1) 1. [7&5} %4—1411(0—]6, ki k).
q

3.1 Upper bounds for partial spreads

The case of constant dimension codes with maximum possible subspace distance d = 2k is
known under the name partial spreads. Counting points, i.e., 1-dimensional subspaces, in
[y and IF]; gives the obvious upper bound A4(v, 2k; k) < [7], / [’f]q =(¢"-1)/ (qk -1).
In the case of equality one speaks of spreads, for which a handy existence criterion is
known from the work of Segre in 1964.

Theorem 11. [37, §VI] [y contains a spread if and only if k is a divisor of v.

If k is not a divisor of v, far better bounds are known including some recent improve-
ments, which we will briefly summarize. For a more detailed treatment we refer to e.g.
[27]. The best known parametric construction was given by Beutelspacher in 1975:

12



Theorem 12. [7/ For positive integers v, k satisfyingv =tk+r,t >2and1 <r <k-—1
we have Ay(v,2k; k) > 1+ Zf;% gkt = % with equality for r = 1.

The determination of As(v,6;3) for v =2 (mod 3) was achieved more than 30 years
later in [I4] and continued to As(v,2k;k) for v = 2 (mod k) and arbitrary k in [34].
Besides the parameters of Ay(8 + 31,6;3), for | > 0, see [14] for an example showing
Ay(8,6;3) > 34, no partial spreads exceeding the lower bound from Theorem are
known.

For a long time the best known upper bound on A4 (v, 2k; k) was the one obtained by
Drake and Freeman in 1979:

Theorem 13. [13, Corollary 8] If v =kt + r with 0 < r < k, then

t—1
Ag(v,2k;k) < ¢ — 0] —1=¢"

7

qkt_l

A g -1

Il
o

where 20 = /1 + 4¢*(¢* — ¢") — (24" — 2¢" + 1).
Quite recently this bound has been generalized to:

Theorem 14. [33, Theorem 2.10] For integers r > 1, t > 2, y > max{r,2}, z > 0 with
v—k__,r

A=q¢", y<k k=[1],t1-2z>r,v=Fki+r, andl:qqkilq , we have Aq(v,2k; k) <
Iq" + P\—%—%\/1—%4)\()\—(z—l—y—l)(q—l)—l)-‘.

The construction of Theorem [12]is asymptotically optimal for k > r = v mod k, as
recently shown by Nastase and Sissokho:

Theorem 15. [36, Theorem 5] Suppose v =tk +r witht > 1 and 0 <r <k. Ifk > [1],

then Ag(v,2k; k) =1+ Y121 giktr = %.

Applying similar techniques, the result was generalized to k < []] ¢
Theorem 16. [33, Theorem 2.9] For integersr>1,t>2, u >0, and 0 < z <[] q /2

k_

with k = [1],+1—2+u>r we have Aq(v,2k; k) < 1" +142(q—1), where | = qqk
and v =kt +r.

T

q
-1

Using Theorem [14] the restriction z < [1], /2 can be removed from Theorem see
[27].

Currently, Theorem[I1] Theorem [I4] and Theorem [I6] constitute the tightest parametric
bounds for A4(v,2k; k). The only known improvements, by exactly one in every case, are
given by the 21 specific bounds stated in [33], which are based on the linear programming
method applied to projective ¢*~!-divisible linear error-correcting codes over F, with
respect to the Hamming distance, see [27]. As this connection seemed to be overlooked
before, it may not be improbable that more sophisticated methods from classical coding
theory can improve further values, which then imply improved upper bounds for constant
dimension codes via the Johnson bound of Theorem [7l

13



4 The linkage construction revisited

A very effective and widely applicable construction of constant dimension codes was
stated by Gluesing-Luerssen and Troha:

Theorem 17. [22, Theorem 2.3], cf. [38, Corollary 39] Let C; be a (vi, Ni, d;; k)q constant
dimension code for i = 1,2 and let C, be a (k X va, Ny, d,)q linear rank metric code. Then

{T_I(T(U) |M):UeC,MeC,}U {T_I(Okmlh(W)) W e Oy}
is a (v1 +v2, N1Ngr + Na,min{d1, d2,2d, }; k)4 constant dimension code.

Here A|B denotes the concatenation of two matrices with the same number of rows and
Omxn denotes the m x n-matrix consisting entirely of zeros. The resulting code depends
on the choice of the codes C, Co, C, and their representatives within isomorphism
classes, so that one typically obtains many isomorphism classes of codes with the same
parameters.

We remark that [38, Theorem 37] corresponds to the weakened version of Theorem
where the codewords from the cdc Cy are not taken into account, cf. [21I, Theorem 5.1].
In [38, Corollary 39] Silberstein and (Horlemann-)Trautmann obtain the same lower
bound, assuming d; = do = 2d,., which is indeed the optimal choice, and 3k < UE|

The main idea behind Theorem [17]is to consider two sets of codewords with disjoint
pivot vectors across the two sets and to utilize the interplay between the rank and the
subspace distance for a product type construction. Using Lemma [I] the restriction of the
disjointness of the pivot vectors can be weakened, which gives the following improvement:

Theorem 18. Let C; be a (v, N;, di; k)g constant dimension code for i =1,2, d € 2N>g
and let C, be a (k x (v2 — k +d/2), Ny,d,)q linear rank metric code. Then

C={r"'(r(U) | M):U € C,M € CrU{rT™ (Opx(vn—rraj)|T(W)) : W € Co}
is a (v1 +v2 —k+d/2, N\Ngr + N2, min{d1, d2, 2d,, d}; k)4 constant dimension code.

Proof. The dimension of the ambient space and the codewords of C directly follow from
the construction. Since the constructed matrices all are in rref and pairwise distinct, C is
well defined and we have #C = N1 Ngr 4+ No. It remains to lower bound the minimum
subspace distance of C.

Let A,C € Cy and B,D € C,. If A # C, we have

A | B o) | oy =2 (xk (T 5) - +)

> 2 (rk (:Eé;) - k:) = dy(4,0) > dy

It can be verified that for 2k < v < 3k — 1 the optimal choice of A in [38, Corollary39] is given
by A = v — k. In that case the construction is essentially the union of an LMRD code with an
(v — k,#C’,d;k)q code C'. Note that for v — k < A < v the constructed code is an embedded
(A, #C',d; k)4 code C'.

14



using Equation in the first step. If A = C but B # D, we have

A () | B).7 ) o) =2 (s (T 7) = +)

> 9 (rk (T(OA) D?B) —k) — 2k 4+ rk(D — B) — k) > 2d,.

For A’ # C' € Cy applying Equation gives

ds(77 Ok (g —k+dy2) | T(A)), T O 0y —kay2) | T(C'))) = ds(A,C") > ds.

Last, for two codewords U € {r~Y(r(U) | M) | U € C;,M € C,} and W €
{7 Ok (or—ttas2) | TOW)) | W € Ca}, we can use the shape of the pivot vectors
and apply Lemma The pivot vector p(U) has its k ones in the first v; positions
and the pivot vector p(WW) has its k ones not in the first v; — k + d/2 positions, so
that the ones can coincide at most at the positions {v; — k +d/2+1,...,v1}. Thus,
dn(p(U),p(W)) > k — (k — d/2) + k — (k — d/2) = d. Lemma [I] then gives dy(U, W) > d.

O

An example where Theorem yields a larger code than Theorem is e.g. given
for the parameters ¢ = 2, v = 7, d = 4, and k = 3. In order to apply Theorem
we have to choose v1 +v2 =7, 3 < wv; <4, and 3 < vy < 4. For vi = 3 we obtain
#C1 < A2(3,4;3) =1 and #Co < Az(4,4;3) = 1. Since the size of the rank metric code
is bounded by {24(3*2“)] = 28 the constructed code has a size of at most 1-2% +1 = 257.
For v; = 4 the roles of C7 and Cs interchange. Since the size of the rank metric code is
bounded by [23(3*2“)] = 26 the constructed code has a size of at most 1-2° 4 1 = 65.
In Theorem [I§ we can choose d = 4, so that we can drop one column of the zero matrix
preceding the matrices of the second set of codewords, i.e., v1 +vo =7+ 1 = 8. Choosing
v; = 3 and vy = 5 we can achieve #C1 = A3(3,4;3) = 1 and #C> = As(5,4;3) = 0.
Since the size of the rank metric code can attain {24(3*2“)] = 2% we can construct a
code of size 1-28 4+ 9 = 265. While for these parameters sill larger codes are known, the
situation significantly changes in general. Considering the range of parameters 2 < ¢ < 9,
4 < v <19 and 4 < d < 2k < v, where ¢ is of course a prime power and d is even,
Theorem (17| provides the best known lower bound for A,(v,d; k) in 41.8% of the cases,
while Theorem provides the best known lower bound in 65.6% of the cases. Since
the sizes of both constructions can coincide, the sum of both fractions gives more than
100%. In just 34.4% of the cases strictly superior constructions are known compared to
Theorem where most of them arose from the so-called Echelon-Ferrers construction
or one of their variants, see [23] and the corresponding webpageﬁ

If one is interested in codes of large size, then one should choose the parameters di, da,
dy, and d, in Theorem as small as possible in order to maximize the sizes Ny, No,
and N,, i.e., we can assume d; = do = 2d, = d. Moreover, the codes C7, (5, and C,.
should have the maximum possible size with respect to their specified parameters. For

3Entries of type improved_linkage(m) correspond to Corollary [4| with m chosen as parameter.
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C, the maximum possible size is M(q, k,va + d/2,d) and for C; the maximum possible
size is Aq(v1,d; k), where i = 1, 2.

Corollary 3. For positive integers k < min{vi,v2} and d =0 (mod 2) we have Ay(v1 +
ve —k+d/2,d; k) > Ag(vi,d; k) - M(q, k,v2+d/2,d) + Ag(v2, d; k).

Instead of Ay(vi,d;k) or Ay(ve,d; k) we may also insert any lower bound of these
commonly unknown values. By a variable transformation we obtain:

Corollary 4. For positive integers k < m < v —d/2 and d = 0 (mod 2) we have
Ag(v,ds k) > Ag(m,d; k) - M(q, k,v —m+k,d) + Ag(v —m+k —d/2,d; k).

For the parameters of spreads the optimal choice of the parameter m in Corollary
can be determined analytically:

Lemma 4. If d =2k and k divides v, then Corollary gives Aq(v,d; k) > Z:j for all

m=Fk,2k,...,v—k and smaller sizes otherwise.

Proof. Using A,(v',2k; k) = (¢ —1)/(¢" — 1) for all integers v’ being divisible by k, we
obtain

Ag(v,dyk) > Ag(m,d;k) - M(q, k,v—m+ k,2k) + Ag(v —m, 2k; k)
o qv—m_l B qv_l
¢k —1 |

if k divides m. Otherwise, A,(m,2k;k) < (¢™ —1)/(¢¥ — 1) — 1 gives a lower bound.
O

We remark that the tightest implications of Corollary [4 can be evaluated by dynamic
programming. To this end we consider fixed parameters ¢, d, k and use the abbreviations
a(n) := Aq4(n,d; k) and b(n) := M(q, k,n + k, d) for integers n, so that the inequality of
Corollary [4 reads

a(v) > a(m)-blv —m)+alv—m+k —d/2). (7)

For a given maximal value v we initialize the values a(n) for 1 < n < v by the best known
lower bounds for A,(n,d; k) from other constructions. Then we loop over n from k to v
and eventually replace a(n) by

max{a(m)-b(n—m)+an—m+k—d/2) | k<m<n-—d/2}.
By an arithmetic progression we can use in order to obtain a lower bound for
a(v) = Ay(v,d; k) given just two initial a(i)-values.
Proposition 6. For positive integers k < vy, 2s > d, and [ > 0, we have

a(vo +1s) > alvo) - b(s) + a(s — d/2 + k) H]b(s) .

If additionally, vo > 2k — d/2 and k > d/2, then we have

_ no—k+d/2
a(vo +15) > a(s + k- d/2) - (¢ a(eo).
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Proof. Using Inequality with v = vg + Is and m = vg + (I — 1)s gives
a(vg +1s) > a(vo + (I —1)s) - b(s) + a(s + k —d/2).
By induction, we obtain
a(vg +1s) > a(vo + (I —i)s) - b(s)" +a(s + k — d/2) K

for all 0 <4 <.
For the second part, applying Inequality with v = vg+1s and m = s+ k — d/2 gives

a(vo+1s) >a(s+k—d/2) - blvg+ (I —1)s —k+d/2) + a(vy + (I — 1)s).

By induction, we obtain
a(vo+1s) > a(s + k—d/2)- > bvo+ (I = j)s — k+d/2) + a(vy + (I —i)s)
j=1
for all 0 <7 <.
If vg > 2k — d/2 and k > d/2, then

b(uo + (L= j)s — k +d/2) = (g~ D

so that
. ! .
S b(vo+ (1 — )5 — i+ df2) = 3 (g ey DR
=1 =1
-1
B vo—k+d/2 (b r - vo—htd/2
(g H/2+1y™ 3 (@A) = (gEma/ (1] gstkmarasn -
r=0

O]

Example 1. Using A2(13,4;3) = 1597245 [9] and A2(7,4;3) > 333 23], applying
Proposition [6| with s = 6 gives

4096' — 1
Ay(13 +61,4;3) > 4096 - 1597245 + 333 - ————
4095
and
4096! — 1
Ap(13 + 61,4;3) > 333 - 16777216 - — -o— + 1597245
for alll > 0.

In the next section we will see that the first lower bound almost meets the Anticode
bound.

We remark that Theorem [18| can be easily generalized to a construction based on a
union of m > 2 sets of codewords.
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Corollary 5. For positive integers k, m, andi=1,...,m let
e C; be an (vi, Nj,d;; k)q constant dimension code,
® §; € N>g, 0, =0,
o CE be a (kx v, NE dlt), linear rank metric code, where v}t = Z;;ll(vj —0;) and
i 7& 1,
e C=0,vf =0, Nt =1, and dff =
Then .
U7 O omiimory [ 7(U) | M3) 2 Us € Ci, M; € CF}
i=1
is a (v, N,d; k)q constant dimension code with
o v=>37"(vi—d),
e N=Y" N, -NE, and
e d=min{d;,2d%,2(k—¢&)|i=1,...,m}.
Proof. We prove by inductively applying Theorem [18|m — 1 times. Denote
Ci = {77 Ope ooy | T(U) | Mi) - Ui € Ci, My € Cf

fori=1,...,m,ie., Ciisa padded (Uﬁ—vR N;-Nft min{d;, 2d®}; k), constant dimension
code. Applymg Theorem 8| for Cy and Cs with d =2(k—041) y1elds a (v + vy — 51, Ny +
Ny - NE min{dy, ds,2d¥,2(k — 61)}; k), constant dimension code. If the first m’ codes,
C1,...,Cpy yield an (EZ_,l(vi —5) +5m,zl | N; - NE min{d;,2d%,2(k — &) | i =
1,...,m'}; k), constant dimension code C1, ., then perforrnmg Theorem (18| for this
code and ém’+1 with d = 2(k — d,,) yields an (Zizll(vl —0i) 4 Opy + N2 — O ,Zizl N; -
N+ Nyyyq - NE | min{d;, 2d5,2(k — &;) | i = 1,...,m’ 4+ 1}; k)4 constant dimension
code.

(]

Since the proof uses multiple applications of Theorem [18| this code can be found by
the dynamic programming approach based on Theorem i.e., Corollary 5| is redundant.
However, it can be used to prove:

Corollary 6 (cf. [22, Theorem 4.6]). Let CT be an (k x vi + va,d), linear MRD code,
where k < v, fori=1,2 and let C; be an (vi—2, N, 2d; k)4 constant dimension codes for
i =3,4. Then

{7 Ikxi | A) | A€ CT}
U{T ™ (O | 7(A) | Opxoy) | A € Cs}
U{T " Ok | Ok, | T(A)) | A € Cu}

is a (v1 +vo+k, g Tv2)b=d+D) L Ny Ny 9 min{d, k}; k)q constant dimension code. Note
that k < d implies N3, Ny < 1.
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Proof. Applying Corollary [5] with
e m=3
o 1 =0Cy, Cy = Cs,
o C3= {1 (Ixx)} (ie., an (k, 1, 00; k), constant dimension code)
© 1 =02=063=0
. CR=

CR = {Ogxuv,} (i-e., an (k X v2, 1, 00), rank metric code)
e CFan (kx (v +v2,d)); MRD code
yields an (v; + vy +k, Ny + N3+ g(vrtv2)(k=d+1) 9 min{d, k}; k), constant dimension code:
{77 Tixk | M3) : M3 € C§}
U{T (0pxr | 7(U2) | Opxa,) : Uz € C3}
U{T ™ Opx (oy k) | 7(U1)) : Ur € Cu}
O

We remark that {(A | B): A€ CE,B € C£} is a (k x (v1 + v2),d), linear MRD code,
since each codeword has rk(A | B) > rk(A) > d. The other direction is not necessarily
true, e.g., (I’“()—l |0]...]0|w), where w is a non-zero column, cannot be split in two
matrices (I’c()*l |0]...]0)and (0]...|0|w) both having rank distance at least d for
d > 2. Hence, this corollary constructs codes of the same size as Theorem 4.6 in [22] but
these codes are not necessarily equal.

5 Asymptotic bounds

Kotter and Kschischang have stated the bounds
—k(v—Fk)
L<qg ™[], <4

for 0 < k < v in [32, Lemma 4] for the ¢-binomial coefficients. They used this result in
order to prove that the lifted MRD codes, they spoke about linearized polynomials, have
at least a size of a quarter of the Singleton bound if v tends to infinity. Actually, they have
derived a more refined bound, which can best expressed using the so called ¢g-Pochhammer

symbol (a;q), := H?:_DI (1 — aq") specializing to (1/¢;1/q)n =17, (1 —1/4¢"):
[1]q 1 1 1

< < <
T Mal/ak T (Va1/@ee — (1/2:1/2)s
where (1/¢;1/q)co denotes lim;,,_,o0(1/¢;1/q)n, cf. the estimation for the Anticode bound

in the proof of Proposition 3} The sequence (1/¢;1/q)oo is monotonically increasing with
g and approaches (¢ — 1)/q for large g, see e.g. [32] and [29] for some numerical values.

1 <
qk(v—k)

~ 3.4627, (8)
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a+b}

. b q _ 1
Lemma 5. For each b € N> we have ahﬁn;() = s

Proof. Plugging in the definition of the g-binomial coefficient, we obtain

b ati_q .
. [atb]q i qqi_l q b 1 1
lim — = lim A = . = H - .
a—oo @ a—00 q® e qt — 1 1 1-— 1/q’ (1/q; 1/(])1,

d

Using this asymptotic result we can compare the size of the lifted MRD codes to the
Singleton and the Anticode bound.

Proposition 7. For k < v—k the ratio of the size of an LMRD code divided by the size of
the Singleton bound converges for v — oo monotonically decreasing to (1/g; 1/q)k,d/2+1 >
(1/2;1/2)0 > 0.288788.

Proof. Setting z =k —d/2+ 1 and s = v — k the ratio is given by g(s) := %, so that
z
Lemma [5| gives the proposed limit. The sequence is monotonically decreasing,q since we
have 0 < z—-1<z<s+zand
I e o P P 1 PO 15279
g(s—i— 1) [s—;—z]qq(s+l)z [s—;z]qqz [s—;z]qqz

d

Proposition 8. For k < v — k the ratio of the size of an LMRD code divided by the size
of the Anticode bound converges for v — oo monotonically decreasing to % >

- (Yag;1/k > 2-(1/2;1/2)o0 > 0.577576.

Proof. The LMRD code has cardinality ¢(*=%)(#=4/2+1) and the Anticode bound is

[U]q/ [u—kz+d/2—1

k d/2-1 L. From Lemma [5| we conclude

{(v—k)-ﬁ-k} [(v—k)+(d/2—1)]
li P de 1 nd lim 2 - :
v Rk (g 1/q) T ihee e P@2 D (1/gi1/q)qe

so that the limit follows. The subsequent inequalities follow from d > 4, the monotonicity
of (1/¢;1/q)n, and g > 2.
It remains to show the monotonicity of the sequence
(k) (E=d/2+1) [v—k+d/2—1}
q

d/2—1
9lv) = 7,
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Using the abbreviation s = v — k we define

[s—i—x]q Hs+1 ¢c i1 q*—1

s+1 i=1  gi=1 -1 1—q"
fla) = S Wi g
R | L

and observe that f is strictly monotonically increasing in z, so that f(k) > f(d/2 —1).
Using routine manipulations of ¢g-binomial coefficients we compute

9(v)

_ . _ -1
m—(l‘f'f(k)) 1+ f(d/2-1))"" > 1.

O

In other words the ratio between the best known lower bound and the best known upper
bound for constant dimension codes is strictly greater than 0.577576 for all parameters
and the most challenging parameters are given by ¢ =2, d =4, and k = |v/2].

Replacing the Anticode bound by the Johnson bound of Theorem [2]does not change the
limit behavior of Proposition [8] when v tends to infinity. As stated above, we obtain the
Anticode bound if we remove the floors in Corollary 2| and replace A,(v —k +d/2,d;d/2)

by %. First we consider the latter weakening. Applying the lower bound of

Theorem (12| for A, (v', 2K; k"), where v/ = tk' +r with 1 <r <k’ — 1, we consider
¢ —1 ¢ - (¢" = 1)

=1—
/q’“'—l q" —1

/

g’ — qk’+r + qk’ 1
" =1

If o' > 3K, then the subtrahend on the right hand side is at most qv/g'(?iv_/j_l)

we have 2k’ < v/ < 3k', so that v/ = 2k’ + 7. Since ¢ - (¢" —1) - (¢" +1) = ¢®'*+" — ?' +
¢"' T — ¢F < ¢®'*+" — 1 the subtrahend on the right hand side is at most 1/ (q“l/3 + 1).

Thus, the ratio between the lower and the upper bound for partial spreads tends to 1 if
v/ =v —k + d/2 tends to infinity. Since

¢’ —1 qv—l_l qv—k+d/2+1 -1 qv—k+d/2 1
qk—l qkfl_l qd/2+171 qd/271

. Otherwise

v

v_ v—1_ v—k+d/2 _
SO iy (A ) (it D I BEET R
gt =1\ ¢"1-1 q?? -1
[k, [Z:Hq
= |:vfk+d/271} —(k—d/2+1)- [U—Hd/%l}
-1 |, -1 |,
[k], Sy _Ak—d/2+1)
v—k+d/2—1 B qvFk
d/2-1 |,

the ratio between Corollary [2] and the Anticode bound tends to 1 as v tends to infinity.
Next, we consider the ratio between the lower bound from the first construction of
Proposition [ and the Anticode bound when [ tends to infinity.
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Proposition 9. For integers satisfying the conditions of Proposition[6, k < s and d < 2k,

we have
(o]
llirg <b(s)la(v0) + a(s N d/2 + k) H]b(s)> / U0+l5—k‘+d/§—1
[ d/2—1 L
alw) + A ()1
q(vo—k)(k—d/2+1) ' H - q
i=d/2

Proof. For k < s and k —d/2+ 1 > 1 we have b(s) # 1, so that

sk’
k' q -1
b(s)'a(vo) + a(s’) H]b(s) = ¢"*"a(vo) + G(S/)qskzi_l
sk a(s’) . a(s’)
p (awo) + o 1) s
where we abbreviate s’ = s —d/2+ k and k' = k — d/2 + 1. Thus,
lim (b(s)!a(vo) + a(s') [{],,)) /4 = a(vo) + _als)
l—o0 11b(s) q5k/ —1

Plugging in the definition of the g-binomial coefficients gives

q110+l9 k+i__ 1
[UOZlS]q H q'—1 qvo-‘rls—k—i-i -1
votls—k+d/2—1] d/2 1 S 1 ’
[ d/2-1 } gottition it 4
! i=1 ¢l
so that
vo+ls k vo—k—+i k
lim [, I = q° — g ] 1
I—oo | vo+ls—k+d/2—1 qi — 1-—1
d/2—1 " i=d/2 i=d/2 q

Dividing both derived limits gives the proposed result.

For Example [1| with d = 4 and k = 3, we obtain a ratio of

A2 (77 4a 3)

159724
( 597245 + 1095

> -21/225 € [0.99963386, 0.99963388]

for v = 13 4 61 with | — oo using 333 < A3(7,4;3) < 381, i.e., the Anticode bound is
almost met by the underlying improved linkage construction.
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6 Codes better than the MRD bound

For constant dimension codes that contain a lifted MRD code, Theorem gives an
upper bound which is tighter than the Johnson bound of Theorem |7l In [5] two infinite
series of constructions have been given where the code sizes exceed the MRD bound of
Theorem [10| for ¢ = 2, d = 4, and k = 3. Given the data available from [23] we mention
that, besides d = 4, k = 3, the only other case where the MRD bound was superseded is
Ay (8,4;4) > 4801 > 4797, see [10]. Next, we show that for d = 4 and k = 3 the MRD
bound can be superseded for all field sizes ¢ if v is large enough. For the limit of the
achievable ratio we obtain:

Proposition 10. For ¢ > 3 we have lim L’A‘@g
v—00 q2v*6+[v2 ]
q

> 1+ 5.
Proof. For q > 2, |25 Theorem 4] gives
A1, 43) >+ +d' + @ —q¢> " +¢" +¢".
With this, we conclude
Ag(vo,4;3) > Ay(7,4;3) - 2ot 4 Ag(vg —6,4;3) > g?vo—10. (q4 +q+ 1)

from Corollary [4] choosing m = 7. Applying Proposition [6] with s = 3 gives

61

Aq(vo +31,4;3) > ¢% Ay (vo, 4;3) + 2

61 .
q6 . 1 Z q Aq('U074a 3)

for vg € {12,13,14}, so that Ag(v,4;3) > ¢* 10 (¢* + ¢+ 1) for all v > 12.
From Lemma [B] we conclude

2v—6 -3
0+ 5% St - - +q+1)

lim —————4 = ¢+ (1/¢;1 =
vooe 210 ¢+ 151/ (¢—1)%(g+1)
Since
3¢ 4 _ 3 2
¢~ +q+1 1 +1
(q4+Q+1)/q W 2q : ):1+ 37 2(gh 3q 2 ’
(¢—1)*(g+1) ¢? - - +q+1)

the statement follows for ¢ > 3.
O

For ¢ = 2 the estimations of the proof of Proposition are too crude in order
to obtain a factor larger than one. However, for the binary case better codes with
moderate dimensions of the ambient space have been found by computer searches —
with the prescription of automorphisms as the main ingredient in order to reduce the
computational complexity, see e.g. [31].

As(vd3) 5 1 3056.

P iti 11. Fi >1 h —T
roposition or v > 19 we have 221}76_’_[053]2 =
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Proof. Applying Proposition[6|with s = 3 and using A2(4, 4; 3) > 0 gives As(vo+31,4;3) >
As(vo,4;3) - 25 for all vy > 6 and [ > 0, so that

As(vo + 31,4:3)
U — Vi 3l -3
92(v0+30)—6 1 [( o+3D) }

AQ(U074; 3)
% . 221}0—7 : (9)

2

Using A2(7,4;3) > 333 [23], A2(8,4;3) > 1326 [10], A5(9,4;3) > 5986 [I0], and
Ay (13,4;3) = 1597245 [9] we apply Corollary 4| with m = 13 to obtain lower bounds for
Az (vg,4;3) with 19 < vy < 21. For these values of vy the minimum of the right hand side
of Inequality @ is attained at vg = 20 with value 1.3056442377.

O

Note that the application of Proposition [6] was used in a rather crude estimation in
the proof of Proposition Actually, we do not use the codewords generated by the
codewords of cdc Cy in Theorem so that we might have applied [38, Theorem 37]
directly for this part of the proof — similarly for Proposition which then allows to
consider just one instead of s = 3 starters. In the latter part of the proof of Proposition
the use of Corollary [4] is essential in order to obtain large codes for medium sized
dimensions of the ambient space from As(13,4;3) = 1597245 and relatively good lower
bounds for small dimensions. This is a relative typical behavior of Corollary [ and
Proposition [0] i.e., the first few applications yield a significant improvement which quickly
bottoms out — in a certain sense. As column bklb of Table [3| suggests, we may slightly
improve upon the value stated in Proposition [11| by some fine-tuning effecting the omitted

less significant digits.

v bklb mrdb bkub lold lnew ea

6 |77 71 77 65 65

7 333 291 381 257 265 301

8 1326 1179 1493 1033 1101 1117

9 5986 4747 6205 4929 4929 4852

10 | 23870 19051 24698 21313 21313 18924

11 | 97526 76331 99718 85249 85257 79306

12 | 385515 305579 398385 383105 383105 309667
13 | 1597245 1222827 1597245 1532417 1532425 1287958
14 | 6241665 4892331 6387029 6241665 6241665 4970117
15 | 24966665 19571371 25562941 24966657 24966665 20560924
16 | 102223681 78289579 102243962 102223681 102223681 79608330
17 | 408894729 313166507 409035142 | 408894721 408894729

18 | 1635578957 1252682411 1636109361 | 1635578889 1635578957

19 | 6542315853 5010762411 6544674621 | 6542315597 6542315853 | 5200895489

Table 1: Lower and upper bounds for As(v,4;3).
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In Tables and [3] we compare the sizes of different constructions with the LMRD
and the best known upper bound. Here bklb and bkub stand for best known lower and
upper bound respectively. The values of Theorem [L0] are given in column mrdb. Applying
Theorem [I7] and Theorem [18] to the best known codes give the columns lold and lnew,
respectively. The results obtained in [5] are stated in column ea. The achieved ratio
between the mentioned constructions and the MRD bound can be found in Table[3Bl Since
differences partially are beyond the given accuracy, we give absolute numbers in Table
Note that the values in column bklb of Table |3| show that Proposition [11]is also valid
for v > 16, while we have a smaller ratio for v < 16. The relative advantage over lifted
MRD codes is displayed in Table

v bklb mrdb bkub lold lnew ea
6 1.203125 1.109375 1.203125 | 1.015625 1.015625

7 1.300781 1.136719 1.488281 | 1.003906 1.035156 | 1.175781
8

9

1.294922  1.151367 1.458008 | 1.008789 1.075195 | 1.090820
1.461426 1.158936 1.514893 | 1.203369 1.203369 | 1.184570
10 | 1.456909 1.162781 1.507446 | 1.300842 1.300842 | 1.155029
11 | 1.488129 1.164719 1.521576 | 1.300797 1.300919 | 1.210114
12 | 1.470623 1.165691 1.519718 | 1.461430 1.461430 | 1.181286
13 | 1.523252 1.166179 1.523252 | 1.461427 1.461434 | 1.228292
14 | 1.488129 1.166423 1.522786 | 1.488129 1.488129 | 1.184968
15| 1.488129 1.1665645 1.52367 | 1.488129 1.488129 | 1.225527
16 | 1.523252 1.166606 1.523554 | 1.523252 1.523252 | 1.186257
17| 1.523252 1.166636 1.523775 | 1.523252 1.523252
18 | 1.523252 1.166651 1.523746 | 1.523252 1.523252
19 | 1.523252 1.166659 1.523801 | 1.523252 1.523252 | 1.210928

Table 2: Lower and upper bounds for As(v,4;3) divided by the size of a corresponding
lifted MRD code.

To conclude this section, we remark that an application of Corollary [4 with 2k < m <
v — k using a lifted MRD in the cdc C] cannot generate a code that exceeds the MRD
bound of Theorem 10

Lemma 6. Using the notation of Theorem[18, let k < min{vy — k,vs — k +d/2}, C; a
linear MRD code, d, = dy/2, and Cy contains a lifted MRD code (in [FIZ; }) Then, the

codes constructed in Theorem contain a lifted MRD code (in [Fzﬁwkf“d/ﬂ).

Proof. Let {7~ (Ijxx | M) : M € R} C C be the lifted MRD code in Cj. Since R is a
(k x (v1 — k),d1/2); MRD code, we have #R = q1=R)(k=d1/2+1) " The first set of the
construction contains

{7 Ty | M| A) : M € R/ A€ C,)
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in which {(M | A) : M € R, A € C,} forms a (k x (v1 + v2 — 2k + d/2), N, d,), rank
metric code of size N = ¢(v1tv2—2k+d/2)(k—dr+1) hence it is a maximum rank metric code.

O]

v bklb mrdb bkub lold Inew ea

6 1.084507 1.0 1.084507 | 0.915493 0.915493

7 | 1.144330 1.0 1.309278 | 0.883162 0.910653 | 1.034364
8

9

1.124682 1.0 1.266327 | 0.876166 0.933842 | 0.947413
1.261007 1.0 1.307141 | 1.038340 1.038340 | 1.022119
10 | 1.252953 1.0 1.296415 | 1.118734 1.118734 | 0.993334
11 | 1.277672 1.0 1.306389 | 1.116833 1.116938 | 1.038975
12 |1 1.261589 1.0 1.303705 | 1.253702 1.253702 | 1.013378
13 | 1.306190 1.0 1.306190 | 1.253176 1.253182 | 1.053263
14 | 1.275806 1.0 1.305519 | 1.275806 1.275806 | 1.015900
15| 1.275673 1.0 1.306140 | 1.275672 1.275673 | 1.050561
16 | 1.305712 1.0 1.305972 | 1.305712 1.305712 | 1.016845
17 | 1.305678 1.0 1.306127 | 1.305678 1.305678
18 | 1.305661 1.0 1.306085 | 1.305661 1.305661
19 | 1.305653 1.0 1.306124 | 1.305653 1.305653 | 1.037945

Table 3: Lower and upper bounds for As(v,4;3) divided by the corresponding MRD
bound.

7 Conclusion

In this paper we have considered the maximal sizes of constant dimension codes. With
respect to constructive lower bounds we have improved the so-called linkage construction,
which then yields the best known codes for many parameters, see Footnote With
respect to upper bounds there is a rather clear picture. The explicit Corollary |2 which
refers back to bounds for partial spreads, is the best known parametric bound in the case
of d # 2min{k, v — k}, while Theorem [8 or the linear programming method may possibly
yield improvements. Since Theorem |8 implies the Johnson bound and so Corollary
it would be worthwhile to study whether it can be strictly sharper than Theorem [7] for
d # 2min{k,v — k} at all. Compared to Corollary [2 the only two known improvements
are given for the specific parameters from Theorem [9) and Proposition [5] In the case
of partial spreads we have reported the current state-of-the-art mentioning that further
improvements are far from being unlikely.

In general we have shown that the ratio between the best-known lower and upper
bound is strictly larger than 0.577576 for all parameters. The bottleneck is formed by the
parameters ¢ = 2, d = 4, and k = [v/2], where no known method can properly improve
that factor, see Footnote [2| for the linkage construction. For d = 4, k = 3 and general
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field sizes ¢ we have applied the improved linkage construction in order to show that
Ay(v,d; k) is by a factor, depending on ¢, larger than the MRD bound for sufficiently
large dimensions v.
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