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Abstract. In this paper, we deal with the so-called multi-shot network
coding, meaning that the network is used several times (shots) to propa-
gate the information. The framework we present is slightly more general
than the one which can be found in the literature. We study and intro-
duce the notion of column rank distance of rank metric convolutional
codes for any given rate and finite field. Within this new framework we
generalize previous results on column distances of Hamming and rank
metric convolutional codes [3, 8]. This contribution can be considered as
a continuation follow-up of the work presented in [11].

1 Introduction

The theory of Random Linear Network Coding has been mainly devoted to non-
coherent one-shot network coding, meaning that the random structure of the
network is used just once to propagate information. One of the problems in this
situation is that in order to increase the error-correcting capabilities of a code,
one necessarily needs to increase the field size or the packet size and this might
not be optimal or impossible in many applications.

Hence, in these situations one of the solutions proposed is to create dependen-
cies across multiple shots aiming to approach the channel capacity. In fact, it was
been recently shown that spreading redundancy among the transmitted code-
words (row spaces) at different instances (shots) can improve the error-correction
capabilities of the code. These ideas gave rise to the area of multi-shot network
coding. Although the potential of using multi-shot network coding was already
observed in the seminal paper [5], only recently this interesting approach has
been investigated [1, 7, 15, 17].

There are basically two ways for constructing multi-shot codes: one using
concatenation of codes and other using rank metric convolutional codes. In [15],
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a concatenated code was introduced based on a multilevel code construction. In
[13], a concatenation scheme was presented using a Hamming metric convolu-
tional code as an outer code and a rank metric code as an inner code. A different
type of concatenation was introduced in [7] where the authors use codes that
layer both Maximum Sum Rank (MSR) codes and Gabidulin in order to achieve
the streaming capacity for the Burst Erasure Channel.

Apart from concatenated codes, another very natural way to spread redun-
dancy across codewords is by means of convolutional codes [2–4, 9, 14]. Adapting
this class of codes to the context of networks brought about the notion of rank
metric convolutional codes and interestingly there has been little research on
these codes, see [1, 6–8, 17]. The work in [17] was pioneer in this direction by
presenting the first class of rank metric convolutional codes together with a de-
coding algorithm able to deal with errors, erasures and deviations. However, the
results were only valid for unit memory convolutional codes and in [1, 6–8] (see
also the references therein) an interesting and more general class of rank metric
convolutional codes was introduced to cope with network streaming applications.

In this paper we continue our work in [11] and propose a framework slightly
more general than the existing ones in the literature on rank metric convolutional
codes. In the proposed framework, rank metric codes can be defined for all rates
and fields. In this setting, an extension of the standard rank metric has been
considered to provide the proper measure for the number of rank erasures that
a multi-shot network code can tolerate. Here we continue this line of work and
investigate the notion of column rank distance of rank metric convolutional codes
in this more general setting. We show that the existing results on column distance
in both contexts of Hamming [3] and rank metric [8] can be generalized to this
more general point of view.

2 Convolutional Codes

Let F be a finite field and F[D] be the ring of polynomials with coefficients in F.
A convolutional code C of rate k/n is an F[D]-submodule of F[D]n, with rank
k. If G(D) ∈ F[D]k×n is a full row rank matrix such that

C = imFq [D]G(D) =
{
u(D)G(D) : u(D) ∈ F[D]k

}
,

then G(D) is called an encoder of C.
Any other encoder G̃(D) of C differ from G(D) by left multiplication by a

unimodular matrix U(D) ∈ F[D]k×k, i.e., G̃(D) = U(D)G(D). Therefore, if C
admits a left prime convolutional encoder then all its encoders are left prime.
Such a code is called observable.

A convolutional code always admits a minimal encoder, i.e., in row reduced
form 1. The sum of the row degrees of a minimal encoder attains its minimum

1 A polynomial matrix G(D) ∈ F[D]k×n is in row reduced form if the constant matrix
Glrc, called leading row coefficient matrix, constituted by the coefficients of the term
of degree equal to the row degree, is full row rank.
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among all the encoders of C. Such sum is usually denoted by δ and called the
degree of C. A rate k/n convolutional code C of degree δ is called an (n, k, δ)
convolutional code [10].

The free distance and the column distances of a convolutional code are im-
portant measures of the capability of error detection and error correction of the
code. The free distance of a convolutional code C is given by

dfree(C) = min
v(D)∈C,v(D)6=0

wt
(
v(D)

)
,

where wt
(
v(D)

)
is the Hamming weight of a polynomial vector

v(D) =
∑
i∈N0

viD
i ∈ F[D]n,

defined as
wt
(
v(D)

)
=
∑
i∈N0

wt(vi),

being wt(vi) the number of the nonzero components of vi.
Rosenthal and Smarandache[16] showed that the free distance of an (n, k, δ)

convolutional code is upper bounded by

dfree(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

This bound was called the generalized Singleton bound. An (n, k, δ) convolutional
code whose free distance is equal to the generalized Singleton bound is called
maximum distance separable (MDS) code [16].

Let us now consider the column distances of an (n, k, δ) convolutional code
C. For that we will consider that C is observable. Observable convolutional codes
admit a kernel representation H(D) ∈ F[D](n−k)×n, i.e. such that C = kerH(D).
Let

G(D) =

ν∑
j=0

GjD
j ∈ F[D]k×n, Gi ∈ Fk×n, Gν 6= 0

be an encoder of C and

H(D) =

µ∑
j=0

HjD
j ∈ F[D](n−k)×n, Hi ∈ F(n−k)×n, Hµ 6= 0

be a parity-check matrix of C. For every j ∈ N0, the truncated sliding generator
matrices Gcj ∈ F(j+1)k×(j+1)n and the truncated sliding parity-check matrices

Hc
j ∈ F(j+1)(n−k)×(j+1)n are given by

Gcj =


G0 G1 · · · Gj

G0 · · · Gj−1
. . .

...
G0


3
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Hc
j =


H0

H1 H0

...
...

. . .

Hj Hj−1 . . . H0

 ,
respectively, and when j > ν, we let Gj = 0 and when j > µ,Hj = 0.
Using the above assumptions the j-th column distance of C is given by

dcj = min{wt((v(D))|[0,j]) : v0 6= 0}
= min{wt([v0v1 · · · vj ]) : [v0v1 · · · vj ] = [u0u1 · · ·uj ]Gcj , ui ∈ Fk, u0 6= 0}

= min{wt(v), v = (v0, . . . , vj) ∈ F(j+1)n, v(Hc
j )T = 0, v0 6= 0},

where v(D) =
∑
i∈N0

viD
i and (v(D))|[0,j] =

j∑
i=0

viD
i.

The following results give a bound on the column distances of an (n, k, δ)
convolutional code and some properties of these distances.

Proposition 1 [3, Proposition 2.2]
Let C be an (n, k, δ) convolutional code. For every j ∈ N0 we have

dcj ≤ (n− k)(j + 1) + 1.

Corollary 2 [3, Corollary 2.3]
Let C be an (n, k, δ) convolutional code. If dcj = (n − k)(j + 1) + 1 then dci =
(n− k)(i+ 1) + 1, for every i ≤ j.

Proposition 3 [3, Proposition 2.7]
Let C be an MDS (n, k, δ) convolutional code with column distances dcj , j ∈ N0

and free distance dfree. Let M = min{j ∈ N0, d
c
j = dfree}. Then,

M ≥
⌊
δ

k

⌋
+

⌈
δ

n− k

⌉
.

3 Rank metric convolutional Codes

In this section we will define rank metric convolutional codes whose codewords
are polynomials matrices in F[D]n×m and we aim to further explore this more
general approach in order to introduce the definition of column rank distances
of a rank metric convolutional code and to propose a bound on this important
measure.

A rank metric convolutional code C ⊂ Fn×m is the image of an homomor-
phism ϕ : F[D]k → F[D]n×m. We write ϕ = ψ◦γ as a composition of a monomor-
phism γ and an isomorphism ψ:

ϕ :F[D]k
γ−→ F[D]nm

ψ−→ F[D]n×m

u(D) 7→v(D)=u(D)G(D) 7→ V (D)
(1)

4
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where G(D) ∈ Fk×nm is a full row rank polynomial matrix, called encoder of C,
and let V (D) = rmatn×m

(
v(D)

)
, such that Vi,j(D) = vmi+j(D), i.e., the rows

of V (D) are n consecutive blocks with m elements of v(D).
As for convolutional codes, two encoders of C differ by left multiplication

by a unimodular matrix and therefore C always admits minimal encoders. The
degree δ of a rank metric convolutional code C is the sum of the row degrees of
a minimal encoder of C , i.e. the minimum value of the sum of the row degrees
of its encoders. Rank metric convolutional codes with left prime encoders will
also be called observable.

A rank metric convolutional code C of degree δ, defined as in (1), is called
an (n×m, k, δ)-rank metric convolutional code.

When dealing with rank metric codes a different measure of distance must
be considered. The rank weight of a polynomial matrix A(D) =

∑
i∈N0

AiD
i ∈

F[D]n×m, is given by

rwt
(
A(D)

)
=
∑
i∈N0

rankAi. (2)

If B(D) =
∑
i∈N0

Bi ∈ F[D]n×m, we define the sum rank distance between
A(D) and B(D) as

dSR
(
A(D), B(D)

)
= rwt

(
A(D)−B(D)

)
(3)

=
∑
i∈N0

rank(Ai −Bi).

Lemma 4 The sum rank distance dSR is a distance in F[D]n×m.

Next we will focus on two sum rank distances definitions of a rank metric
convolutional code. The sum rank distance defined in [12, 11] and the novel
notion of column rank distance.

The sum rank distance of a rank metric convolutional code C is defined as

dSR(C) = min
V (D),U(D)∈C,V (D)6=U(D)

dSR(V (D), U(D))

= min
06=V (D)∈C

rwt
(
V (D)

)
.

Next theorem establishes a bound on the sum rank distance of a rank metric
convolutional code. Analogously as for the free distance of a convolutional code,
this bound is referred as the Singleton bound for rank metric convolutional codes.

Theorem 5. [11, Theorem 3][12, Theorem 3] Let C be an (n × m, k, δ) rank
metric convolutional code. Then the sum rank distance of C is upper bounded by

dSR(C) ≤ n
(⌊

δ

k

⌋
+ 1

)
−

⌈
k(
⌊
δ
k

⌋
+ 1)− δ
m

⌉
+ 1. (4)

An (n × m, k, δ) rank metric convolutional code whose sum rank distance
attains the Singleton bound is called Maximum Rank Distance (MRD).

Let us now restrict to (n×m, k, δ) observable codes.
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Definition 6 Let C be an (n × m, k, δ) observable rank metric convolutional
code. For j ∈ N0 we define the j-th column rank distance of C as

dcrj = min{rwt(V (D)|[0,j]) : V (D) ∈ C and V0 6= 0},

where for V (D) =
∑
i∈N0

ViD
i we define V (D)|[0,j] =

j∑
i=0

ViD
i.

Theorem 7. Let C be an (n×m, k, δ) observable rank metric convolutional code.
Then the j-th column rank distance of C is upper bounded by

dcrj ≤ j
(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
Proof. Let G(D) =

∑
i∈N0

GiD
i be an encoder of C. Since G0 is full row rank it

admits an invertible k × k submatrix. We can assume without loss of generality
that the k × k submatrix of G0 constituted by the first k columns is invertible.

We will prove the theorem by induction on j. For j = 0 let u0 ∈ Fk be such
that v0 = u0G0 has the first k−1 entries equal to zero, i.e., wt(v0) ≤ nm−k+1,
and let V0 = rmatn×m(v0). Then the first

⌊
k−1
m

⌋
rows of V0 are equal to zero

and therefore rwt(V0) ≤ n−
⌊
k−1
m

⌋
and therefore dcr0 ≤ n−

⌊
k−1
m

⌋
.

Let us suppose now that dcrj ≤ j
(
n−

⌊
k
m

⌋)
+n−

⌊
k−1
m

⌋
and let us prove that

dcrj+1 ≤ (j+1)
(
n−

⌊
k
m

⌋)
+n−

⌊
k−1
m

⌋
. Let u(D) ∈ F[D]k, v(D) = u(D)G(D) and

V (D) = rmatn×m(v(D)) =
∑
i∈N0

ViD
i ∈ C be such that rwt(V (D)|[0,j]) = dcrj .

Moreover, since the k × k submatrix of G0 constituted by the first k columns is
invertible, we can consider uj+1 such that vj+1 = uj+1G0+uj−1G1+· · ·+u0Gj+1

has the first k entries equal to zero. Then

dcrj+1 ≤ rwt((V (D))|[0,j+1])

= dcrj + rwt(Vj+1)

≤ j
(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
+ n−

⌊
k

m

⌋
= (j + 1)

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
.

With a similar reasoning as in the proof of the above theorem we can prove
that if the j-th column distance of a rank metric convolutional code achieves the
corresponding bound then the same happens for all the i-th column distances
for i < j.

Theorem 8. Let C be an (n×m, k, δ) observable rank metric convolutional code.
If dcrj = j

(
n−

⌊
k
m

⌋)
+ n −

⌊
k−1
m

⌋
for some j ∈ N0, then dcri = i

(
n−

⌊
k
m

⌋)
+

n−
⌊
k−1
m

⌋
for all i ≤ j.

6
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Proof. It is enough to prove that dcrj = j
(
n−

⌊
k
m

⌋)
+ n −

⌊
k−1
m

⌋
implies that

dcrj−1 = (j−1)
(
n−

⌊
k
m

⌋)
+n−

⌊
k−1
m

⌋
. Let us assume that dcrj−1 < (j−1)

(
n− k

m

)
+

n−
⌊
k−1
m

⌋
and let u(D) ∈ F[D]k, v(D) = u(D)G(D) and V (D) = rmatn×m(v(D)) =∑

i∈N0

ViD
i ∈ C be such rwt(V (D))|[0,j−1] = dcrj−1. Let uj be such that vj =

u0Gj + u1Gj−1 + · · · + uj−1G1 + ujG0 has weight nm − k. Then rank(Vj) ≤
n −

⌊
k
m

⌋
and, therefore,wrank(V (D)[0,j]) < j

(
n−

⌊
k
m

⌋)
+ n −

⌊
k−1
m

⌋
. Conse-

quently, dcrj < j
(
n−

⌊
k
m

⌋)
+ n−

⌊
k−1
m

⌋
It is obvious that the sequence of column rank distances of the code is non-

decreasing. However, there exists an M ∈ N0 such that dcrM = dcrj for j > M
since the column rank distances of a rank convolutional code can not be greater
than the sum rank distance of the code. If the code is MRD then M is precisely
determined as stated in the next result.

Proposition 9 Let C be an MRD (n×m, k, δ) observable rank metric convolu-
tional code with column rank distances dcrj , j ∈ N0, and sum rank distance dSR.
Let M = min{j ∈ N0, d

cr
j = dSR}. Then,

M =


n
⌊
δ
k

⌋
+

⌊
δ−kb δkc

m

⌋
n−

⌊
k
m

⌋


Proof. Let M̃ =
nb δkc+

⌊
δ−kb δkc

m

⌋
n−b kmc

. We will consider two cases, when m | k and

when m - k.

Case 1: m | k. Then

M̃

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
= n

⌊
δ

k

⌋
+

⌊
δ − k

⌊
δ
k

⌋
m

⌋
+ n−

⌊
k − 1

m

⌋
= n

(⌊
δ

k

⌋
+ 1

)
− k

m

⌊
δ

k

⌋
+

⌊
δ

m

⌋
−
⌊
k − 1

m

⌋
.

Then, since
⌊
k−1
m

⌋
= k

m − 1, we have that

M̃

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
= n

(⌊
δ

k

⌋
+ 1

)
− k

m

(⌊
δ

k

⌋
+ 1

)
+

⌊
δ

m

⌋
+ 1

= n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k(
⌊
δ
k

⌋
+ 1)− δ
m

⌉
+ 1

= dSR.
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Case 2: m - k. In this case

M̃

(
n− k

m

)
+ n−

⌊
k − 1

m

⌋
= n

(⌊
δ

k

⌋
+ 1

)
+

⌊
δ − k

⌊
δ
k

⌋
m

⌋
−
⌊
k − 1

m

⌋

= n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k
(⌊

δ
k

⌋
+ 1
)
− δ − k

m

⌉
−
⌊
k − 1

m

⌋

= n

(⌊
δ

k

⌋
+ 1

)
−

(⌈
k
(⌊

δ
k

⌋
+ 1
)
− δ

m

⌉
−
⌊
k

m

⌋)
−
⌊
k − 1

m

⌋

= n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k
(⌊

δ
k

⌋
+ 1
)
− δ

m

⌉
+ 1

= dSR,

because
⌊
k
m

⌋
−
⌊
k−1
m

⌋
= 1.

In both cases M = dM̃e.
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