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Abstract. Parameters of LDPC codes, such as minimum distance, stop-
ping distance, stopping redundancy, girth of the Tanner graph, and their
influence on the frame error rate performance of the BP, ML and near-ML
decoding over a BEC and an AWGN channel are studied. Both random
and structured LDPC codes are considered. In particular, the BP de-
coding is applied to the code parity-check matrices with an increasing
number of redundant rows, and the convergence of the performance to
that of the ML decoding is analyzed. A comparison of the simulated BP,
ML, and near-ML performance with the improved theoretical bounds on
the error probability based on the exact weight spectrum coefficients and
the exact stopping size spectrum coefficients is presented. It is observed
that decoding performance very close to the ML decoding performance
can be achieved with a relatively small number of redundant rows for
some codes, for both the BEC and the AWGN channels.

Keywords: LDPC code, minimum distance, stopping distance, stop-
ping redundancy, BP decoding, ML decoding

1 Introduction

It is well-known that typically binary LDPC codes have minimum distances
which are smaller than those of the best known linear codes of the same rate
and length. It is not surprising, since minimum distance does not play an impor-
tant role in iterative (belief propagation (BP)) decoding. On the other hand, a

This work is supported in part by the Norwegian-Estonian Research Cooperation
Programme under the grant EMP133 and by the Estonian Research Council under
the grant PUT405.

ar
X

iv
:1

70
7.

01
02

5v
1 

 [
cs

.I
T

] 
 4

 J
ul

 2
01

7



significant gap in the frame error rate (FER) performance of BP and maximum-
likelihood (ML) decoding motivates developing near-ML decoding algorithms for
LDPC codes.

There are two main approaches to improving the BP decoding performance.
First one is based on post-processing in case of BP decoder failure. Different
post-processing techniques for decoding of binary LDPC codes over additive
white Gaussian noise (AWGN) channels are studied in [7, 11, 24, 31]. A similar
approach to decoding of nonbinary LDPC codes over extensions of the binary
Galois field is considered in [2]. Near-ML decoding algorithms for LDPC codes
over binary erasure channel (BEC) can be found in [16,21,23].

The second approach is based on identifying and destroying specific structural
configurations such as trapping and stopping sets of the Tanner graph of the
code. In particular, this can be done by adding redundant rows to the code
parity-check matrix (see, for example, [14, 17,19]).

Suboptimality of the above modifications of BP decoding rises the following
question: which properties of LDPC codes and to what extent influence their
decoding FER performance? In this paper, we are trying to partially answer
this question by studying short LDPC codes. We consider both binary LDPC
codes and binary images of nonbinary random LDPC codes over extensions
of the binary field, as well as quasi-cyclic (QC) LDPC codes constructed by
using an optimization technique in [4]. Parameters such as minimum distance,
stopping distance, girth of the Tanner graph and estimates on the stopping
redundancy are tabulated. Near-ML decoding based on adding redundant rows
to the code parity-check matrix is analyzed. Simulated over the BEC and the
AWGN channel, the FER performance of the BP, ML and near-ML decoding of
these classes of LDPC codes is presented and compared to the improved upper
bounds on the performance of ML decoding of regular LDPC codes [5] over the
corresponding channels. The presented error probability bounds rely on precise
average enumerators for given ensembles which makes these bounds tighter than
known bounds (see e.g. [28]). By using an approach similar to that in [5], an
improved upper bound on the performance of the BP decoding of binary images
of nonbinary regular LDPC codes over BEC is presented.

The paper is organized as follows. In Section 2, all necessary notations and
definitions are given. In Section 3, a near-ML decoding method, which is based
on adding redundant rows to the code parity-check matrix, is revisited. In Sec-
tion 4, a recurrent procedure for computing the exact coefficients of the weight
and stopping set size spectra is described. The improved upper bound on the
ensemble average performance of the BP decoding over BEC is derived. Tables
of the computed code parameters along with the simulation results for the BP,
ML and near-ML decoding are presented in Section 5. A comparison with the
theoretical bounds is done and conclusions are drawn in Section 6.



2 Preliminaries

2.1 Ensembles of binary and binary images of nonbinary regular
LDPC codes

For a binary linear [n, k] code C of rate R = k/n denote by r = n− k its redun-
dancy. We use a notation {An,w}0≤w≤n for a set of code weight enumerators,
where An,w is a number of codewords of weight w. LetH be an r×n parity-check
matrix which defines C.

By viewing H as a biadjacency matrix [1], we obtain a corresponding bipar-
tite Tanner graph. The girth g is the length of the shortest cycle in the Tanner
graph.

When decoded over a BEC, the FER performance of the BP decoding is
determined by the size of the smallest stopping set called stopping distance
dstop (see, for example, [9]). In turn, a stopping set is defined as a subset of
indices of columns in a parity-check matrix, such that a matrix constructed
from these columns does not have a row of weight one. The asymptotic behavior
of a stopping set distribution for ensembles of binary LDPC codes is studied
in [22]. In this paper, we study both the average performance of the ensembles
of random LDPC codes and of QC LDPC codes widely used in practical schemes.

Two ensembles of random regular LDPC codes are studied below. First we
study the Gallager ensemble [13] of (J,K)-regular LDPC codes, where J and K
denote the number of ones in each column and in each row of the code parity-
check matrix, respectively. Codes of this ensemble are determined by random
parity-check matrices H, which consist of the strips Hi of width M = r/J rows
each, i = 1, 2, . . . , J . All strips are random column permutations of the strip
where the jth row contains K ones in positions (j−1)K+1, (j−1)K+2, . . . , jK,
for j = 1, 2, . . . , n/K.

Next, we study the ensemble of binary (J,K)-regular LDPC codes, which is
a special case of the ensemble described in [26, Definition 3.15]. We refer to this
ensemble as the Richardson-Urbanke (RU) ensemble of (J,K)-regular LDPC
codes.

For a ∈ {1, 2, ...} denote by am a sequence (a, a, ..., a) of m identical symbols
a. In order to construct an r× n parity-check matrix H of an LDPC code from
the RU ensemble, one does the following:

– construct the sequence a = (1J , 2J , ..., nJ);
– apply a random permutation b = π(a) to obtain a sequence b = (b1, ..., bN ),

where N = Kr = Jn;
– set to one the entries in the first row of H in columns b1, ..., bK , the entries

in the second row of H in columns bK+1, ..., b2K , etc. The remaining entries
of H are zeros.

In fact, an LDPC code from the RU ensemble is (J,K)-regular if for a given
permutation π all elements of subsequences (biK−K+1, ..., biK) are different for
all i = 1, ..., r. It is shown in [20] that the fraction of regular codes among the



RU LDPC codes is roughly

exp

{
−1

2
(K − 1)(J − 1)

}

which means that most of the RU codes are irregular. In what follows, we ignore
this fact and interpret the RU LDPC codes as the (J,K)-regular codes, and call
them “almost regular”.

Generally, the design rate R = 1− J/K is a lower bound on the actual code
rate since the rank of randomly constructed parity-check matrix can be smaller
than the number of its rows. However, in our study the best generated almost
regular RU codes always have the rate equal to the design rate. For this reason,
we do not distinguish between the design rate and the actual rate.

In order to construct random binary images of nonbinary (J,K)-regular
LDPC codes, we use the standard two-stage procedure. It consists of labeling a
proper binary base parity-check matrix by random nonzero elements of the ex-
tension of the binary Galois field. In our work, we select a parity-check matrix of
a binary LDPC code from the Gallager or the RU ensembles as the base matrix.

In what follows, the Gallager ensembles of binary regular LDPC codes and
binary images of nonbinary regular LDPC codes are used only for the theoretical
analysis, while for the simulations we use almost regular LDPC codes from the
RU ensemble. The reason for this choice is that in the simulations, the RU LDPC
ensembles outperform the Gallager LDPC codes with the same parameters.

2.2 QC LDPC codes

The QC LDPC codes represent a class of LDPC codes which is very intensively
used in communication standards. Rate R = b/c QC LDPC codes are determined
by a (c − b) × c polynomial parity-check matrix of their parent convolutional
code [18]

H(D) =


h11(D) h12(D) . . . h1c(D)
h21(D) h22(D) . . . h2c(D)

...
...

. . .
...

h(c−b)1(D) h(c−b)2(D) . . . h(c−b)c(D)

 (1)

where hij(D) is either zero or a monomial entry, that is, hij(D) ∈ {0, Dwij} with
wij being a nonnegative integer, wij ≤ µ, and µ = maxi,j{wij} is the syndrome
memory.

The polynomial matrix (1) determines an [Mc,Mb] QC LDPC block code
using a set of polynomials modulo DM−1. By tailbiting the parent convolutional



code to length M > µ, we obtain the binary parity-check matrix

HTB =



H0 H1 . . . Hµ−1 Hµ 0 . . . 0

0 H0 H1 . . . Hµ−1 Hµ . . . 0
...

. . .
...

...
...

. . .

Hµ 0 . . . 0 H0 H1 . . . Hµ−1

...
. . .

...
...

...
...

...
...

H1 . . . Hµ 0 . . . 0 . . . H0


, (2)

of an equivalent (in the sense of column permutation) TB code (see [18, Chapter
2]), where Hi, i = 0, 1, . . . , µ, are binary (c − b) × c matrices in the series
expansion

H(D) = H0 +H1D + · · ·+HµD
µ,

and 0 is the all-zero matrix of size (c− b)× c. If each column of H(D) contains
J nonzero elements, and each row contains K nonzero elements, the QC LDPC
block code is (J,K)-regular. It is irregular otherwise.

Another form of the equivalent [Mc,Mb] binary QC LDPC block code can
be obtained by replacing the nonzero monomial elements of H(D) in (1) by the
powers of the circulant M ×M permutation matrix P , whose rows are cyclic
shifts by one position to the right of the rows of the identity matrix.

The polynomial parity-check matrix H(D) (1) can be interpreted as a (c −
b)× c binary base matrix B labeled by monomials, where the entry in B is one
if and only if the corresponding entry of H(D) is nonzero, i.e.

B = H(D)|D=1

All three matrices B, H(D), and H can be interpreted as bi-adjacency matrices
of the corresponding Tanner graphs.

3 Stopping redundancy and convergence to the ML
decoding performance

The idea to improve the performance of iterative decoding of linear codes over
a BEC by using redundant parity checks was studied, for example, in [27, 34].
This approach was further explored in [29] (for BEC) and in [35] (for BSC and
AWGN). The idea of using redundant parity checks was also studied in the
context of linear-programming decoding [12], the reader can refer, for example,
to [32].

A straightforward method to extend a parity-check matrix of an LDPC code
is based on appending a predetermined number of dual codewords to the parity-
check matrix. In this approach, the BP decoder uses the redundant matrix in-
stead of the original parity-check matrix. One of the strategies used to extend
the parity-check matrix consists of appending dual codewords in the order of
their increasing weights starting with the minimum weight ddual. A problem



of searching for low-weight dual codewords has high computational complexity
in general, yet for short LDPC codes it is feasible. We apply this approach in
the sequel, and study the convergence of the FER of BP decoding of LDPC
codes determined by their extended parity-check matrices to the FER of the ML
decoding (for both BEC and AWGN channels).

The stopping redundancy is defined as the minimum number of rows in a
parity-check matrix required to ensure that the stopping distance of the code
dstop is equal to the code minimum distance dmin. For a set of the selected LDPC
codes, we compute estimates on the minimum number of the rows required in
order to ensure removal of stopping sets of a certain size. Next, we describe
this approach in more detail. By `-th stopping redundancy, ρ`, we denote the
minimum number of rows in any parity-check matrix of the code, such that
all ML-decodable stopping sets of size less than or equal to ` are removed. In
particular, ρr is the minimum number of rows in any parity-check matrix of the
code, such that there are no ML-decodable stopping sets of size up to r (incl.),
i.e. no stopping sets which, if erased, still can be decoded by the ML decoder.
Our definition of `-th stopping redundancy is analogous to its counterpart in [15].

However, we stress the difference between the updated definition of the `-th
stopping redundancy for ` ≥ d and its counterpart in [15]. In fact, the stopping
sets of size ` ≥ d that are not ML-decodable, are exactly the supports of the
codewords.

In order to calculate the upper bounds on the `-th stopping redundancy with
a method based on [33], we first estimate by sampling ui, the number of ML-
decodable stopping sets of size i in a particular parity-check matrix. Then, we
use the estimates on ui (i = 1, 2, . . . , r) with the method similar to [33, Thm. 1,2]
in order to obtain the approximate upper bounds on the stopping redundancy
hierarchy, i.e. the stopping redundancies ρ1, ρ2, . . . , ρr.

In Table 1, we present estimates on ρ`, ` = dmin, dmin + 1, dmin + 2, and
` = r, along with dmin, dstop, ddual and g, for a set of selected LDPC codes. In
Section 5, we also present the simulated FER performance of the BP and ML
decoding over the BEC for this set of codes with varying number of redundant
rows. The same set of LDPC codes with varying number of redundant rows in
their parity-check matrices is also simulated over the AWGN channel.

The LDPC codes from the following four families were selected:

– Random regular LDPC codes from the RU ensemble (rows 2 and 3 in Table 1)
– QC LDPC codes (row 4)
– Binary images of nonbinary regular LDPC codes (row 5)
– Linear codes represented in a “sparse form” (row 1)

Two random RU codes were selected by an exhaustive search among 100000 code
candidates. As a search criteria, we used the minimum distance and the first
spectrum coefficient Admin,n. The QC LDPC code was obtained by optimization
of lifting degrees for a constructed base matrix in order to guarantee the best
possible minimum distance under a given restriction on the girth value of the

We recall that a support of a codeword is a stopping set.



code Tanner graph. For comparison, we simulated the best linear code with
the same length and dimension determined by a parity-check matrix with the
lowest possible correlation between its rows. Next, we refer to this form of the
parity-check matrix as a “sparse form”. Parameters of the selected codes are
presented in Table 1. Here we use the notations ‘RU’ for random LDPC codes,
‘L’ for the best linear code with parity-check matrix in ‘sparse form’, ‘NB’ for
the binary image of nonbinary regular LDPC code and ‘QC’ for QC LDPC code,
respectively.

Table 1. Parameters of studied [48.24] codes

Code dmin Admin,n dstop ddual g J ,K ρdmin , ρdmin+1, ρdmin+2 ρr Type

1 12 17296 4 12 4 6,12 6240,12151,23468 13 761 585 ’L’

2 8 13 4 6 4 6,12 261,581,1254 13 683 513 ’RU’

3 7 1 5 5 4 4,8 83,175,380 12 549 204 ’RU’

4 7 8 7 5 6 3,6 58,130,274 9 876 964 ’QC’

5 8 7 4 7 4 3,6 355,751,1551 13 819 276 ’NB’

4 Upper bounds on ML and BP decoding error
probability for ensembles of LDPC codes

In this section, we analyze the Gallager ensembles of binary and binary images
of nonbinary (J,K)-regular LDPC codes. By following the approach in [5] we
derive estimates on the decoding error probability of the ML and BP decoding
by using precise coefficients of the average weight spectrum and average stopping
set size spectrum, respectively. Additionally to the bounds on the performance
of the ML decoding obtained in [5], in this paper we derive the improved bounds
on the performance of BP decoding for both binary LDPC codes and binary
images of nonbinary regular LDPC codes.

The main idea behind the approach in [5] is computing the average spectra
coefficients recurrently with complexity linear in n. The resulting coefficients are
substituted into the union-type upper bound on the error probability of the ML
decoding over a BEC [3]

Pe ≤
n∑
i=d

min

{(
n

i

)
,

i∑
w=d

Sw

(
n− w
i− w

)}
εi(1− ε)n−i (3)

where Sw is the w-th weight (stopping set size) spectrum coefficient, ε is the
erasure probability and d denotes the minimum distance (stopping distance).
In order to upper-bound the error probability of the ML decoding over an
AWGN channel, the average weight spectrum coefficients are substituted into
the tangential-sphere bound [25].



Consider the Gallager ensemble of q-ary LDPC codes, where q = 2m, m ≥ 1
is an integer. The weight generating function of q-ary sequences of length n
satisfying the nonzero part of one q-ary parity-check equation is given in [13] as

g(s) =
(1 + (q − 1)s)K + (q − 1)(1− s)K

q
. (4)

It is easy to derive the weight generating function of q-ary sequences of length
K and q-ary weight not equal to 1:

gstop(s) =
∑

w=0,2,3,...,K

(
K

w

)
(q − 1)wsw = (1 + (q − 1)s)K −K(q − 1)s. (5)

Each q-ary symbol can be represented as a binary sequence (image) of length
m. It is easy to see that different representations of a finite field of characteristic
two will lead to different generating functions of binary images for the same
ensemble of nonbinary LDPC codes. Following the techniques in [10], we study
an average binary weight spectrum for the ensemble of m-dimensional binary
images. By assuming uniform distribution on the m-dimensional binary images
of the non-zero q-ary symbols, we obtain the generating function of the average
binary weights of a q-ary symbol in the form

φ(s) =
1

q − 1

m∑
w=1

(
m

w

)
sw =

(1 + s)m − 1

q − 1
. (6)

The average binary weight generating function for one strip is given by

G(s) =
(
g(φ(s))

)M
=

nm∑
w=0

Nnm,ws
w ,

where Nnm,w denotes the average number of binary sequences β of weight w and
of length nm satisfying βBTi = 0. Here, Bi denotes the average binary image
of Hi. We obtain the average binary weight enumerator of nonbinary regular
LDPC code as

E{Anm,w} =

(
nm

w

)(
p(w)

)J
=

(
nm

w

)1−J

NJ
nm,w, (7)

where p(w) =
(
nm
w

)−1
Nnm,w. By substituting (6) into (5), similarly to (7), we

obtain the average binary stopping set size spectrum coefficient.

It is known that if the generating function is represented as a degree of
another generating function it can be easily computed by applying a recurrent
procedure. Details of the recurrent procedure for computing coefficients of the
average weight spectra can be found in [5]. We proceed by computing Nnm,w
recursively.



5 Simulation results

We simulate the BP and ML decoding over the BEC and AWGN channel for the
five LDPC codes whose parameters are presented in Table 1. In Fig. 1, the FER
performance of the BP and ML decoding over the BEC and the AWGN channel
is compared. It is easy to see that the best BP decoding performance both over
the BEC and over the AWGN channel (and at the same time the worse ML
decoding performance) is shown by the QC LDPC code with the most sparse
parity-check matrix and the largest girth value of its Tanner graph. We remark
that the best linear [48,24,12] code determined by a parity-check matrix in a
“sparse form”, as expected, has the best ML decoding performance over the
both channels. Its BP decoding performance is worse than that of the selected
LDPC codes except for the binary image of nonbinary LDPC code.

Fig. 2 shows the BP decoding performance over the BEC and AWGN channel
of the codes ‘QC’ and ‘L’ from Table 1, when their parity-check matrices are ex-
tended. We call the corresponding decoding technique “redundant parity check”
(RPC) decoding. The number next to “RPC” in Fig. 2 indicates the number of
redundant rows that was added. The best convergence of the FER performance
of the BP decoding over the BEC to that of the ML decoding is demonstrated by
the QC LDPC code, while the best linear code has the slowest convergence of its
BP performance to the ML decoding performance. We observe that the obtained
simulation results are consistent with the estimates on the stopping redundancy
hierarchy given in Table 1. Surprisingly, similar behavior can also be observed
for the FER performance of RPC decoding over the AWGN channel.

1 2 3 4 5

SNR, dB

10-6

10-4

10-2

100

F
E

R BP:(3,6)-NB
BP:(3,6)-QC
BP:(4,8)-RU
BP:(48,24)-code
ML:(3,6)-NB
ML:(3,6)-QC
ML:(4,8)-RU
ML:(48,24)-code

0.2 0.3 0.4 0.5

erasure probability

10-5

10-4

10-3

10-2

10-1

100

F
E

R BP:(3,6)-NB
BP:(3,6)-QC
BP:(4,8)-RU
BP:(48,24)-code
ML:(3,6)-NB
ML:(3,6)-QC
ML:(4,8)-RU
ML:(48,24)-code

Fig. 1. Comparison of the FER performance of BP and ML decoding over the BEC
and the AWGN channel for LDPC codes of length n = 48 and rate R = 1/2
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Fig. 2. FER performance of RPC decoding over the BEC and the AWGN channel for
‘L’ and ‘QC’ codes.

6 Discussion

In this section, we compare the simulated FER performance of the BP, ML and
near-ML (RPC) decoding over the BEC and the AWGN channel with improved
bounds on the ML and BP decoding performance. In Fig. 3, the FER perfor-
mance over the BEC for the binary image of nonbinary (3, 6)-regular LDPC code
over GF (24) (‘NB’ code in Table 1) and the corresponding bounds are shown.

As it is shown in the presented plots, the ML performance of the ‘NB’ code
is rather close to the ML performance of the ‘L’ code, but the convergence of the
FER performance of the RPC decoding to the performance of the ML decoding
for the ‘NB’ code is much faster than for the ‘L’ code.

In Fig. 4, the FER performance of the BP, ML and RPC decoding over the
BEC and the AWGN channel is compared to the corresponding upper and lower
bounds on the performance of the ML decoding. In particular, for comparison
of the performance over the BEC, we use the improved upper bound (3) com-
puted for the precise ensemble average spectrum coefficients for both random
linear code and (3, 6)-regular random binary LDPC code. As a lower bound, we
consider the tighten sphere-packing bound in [6]. For comparison of the perfor-
mance over the AWGN channel, we show the tangential-sphere upper bound [25]
computed with the precise ensemble average spectrum coefficients for the same
two ensembles and the Shannon lower bound [30].
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Fig. 3. Comparison of the FER performance of BP and RPC decoding over the BEC
with improved union-type bounds (3) on the ML and BP decoding performance.
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Fig. 4. Comparison of the FER performance of BP, ML and RPC decoding with upper
and lower bounds on the ML decoding performance.



Based on the presented results, we conclude the following:

– Although it is commonly believed that the stopping sets influence the BP
decoding performance over the BEC only, the behavior of the analyzed codes
over the BEC and the AWGN channel is very similar. In particular, for short
codes, the FER performance of the BP decoding over the AWGN channel
can be significantly improved by adding redundant rows to the parity-check
matrix.

– Convergence of the RPC decoding performance to the ML decoding perfor-
mance is faster for those codes which are most suitable for iterative decoding,
that is, codes with large girth of the Tanner graph.

– RPC decoding has a decoding threshold. When a small number of redundant
rows is added, the FER performance rapidly improves, but after adding a
certain number of redundant rows, the performance improvement becomes
practically unjustified due to growing complexity.

– The FER performance of the RPC decoding achieves the FER performance
of the ML decoding over the BEC with exponential (in length) complexity.
However, a significant reduction in the FER compared to the FER of BP
decoding can be achieved with a significantly lower complexity than that of
the ML decoding.

– Binary images of nonbinary LDPC codes with RPC decoding demonstrate
good FER performance over the BEC. In order to apply RPC decoding to
these codes over the AWGN channel it is required to add q-ary parity-checks
to their parity-check matrices. This method looks promising and is subject
of our future research.
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