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Abstract

In our earlier paper [A square root map on Sturmian words, Electron. J. Combin. 24.1 (2017)],
we introduced a symbolic square root map. Every optimal squareful infinite word s contains
exactly six minimal squares and can be written as a product of these squares: s = X2

1 X2
2 · · · .

The square root
√

s of s is the infinite word X1X2 · · · obtained by deleting half of each square.
We proved that the square root map preserves the languages of Sturmian words (which are
optimal squareful words). The dynamics of the square root map on a Sturmian subshift are well
understood. In our earlier work, we introduced another type of subshift of optimal squareful
words which together with the square root map form a dynamical system. In this paper, we
study these dynamical systems in more detail and compare their properties to the Sturmian
case. The main results are characterizations of periodic points and the limit set. The results
show that while there is some similarity it is possible for the square root map to exhibit quite
different behavior compared to the Sturmian case.

Keywords: sturmian word, optimal squareful word, symbolic square root map

1 Introduction

Kalle Saari showed in [8, 9] that every Sturmian word contains exactly six minimal squares (that
is, squares having no proper square prefixes) and that each position of a Sturmian word be-
gins with a minimal square. Thus a Sturmian word s can be expressed as a product of minimal
squares: s = X2

1 X2
2 · · · . In our earlier work [5], see also [4], we defined the square root

√
s of the

word s to be the infinite word X1X2 · · · obtained by deleting half of each square X2
i . We proved

that the words s and
√

s have the same language, that is, the square root map preserves the lan-
guages of Sturmian words. More precisely, we showed that if s has slope α and intercept ρ, then√

s has intercept ψ(ρ), where ψ(ρ) = 1
2 (ρ + 1 − α). The simple form of the function ψ imme-

diately describes the dynamics of the square root map in the subshift Ωα of Sturmian words of
slope α: all words in Ωα are attracted to the set {01cα, 10cα} of words of intercept 1 − α; here cα is
the standard Sturmian word of slope α.

The square root map makes sense for any word expressible as a product of squares. Saari
defines in [9] an intriguing class of such infinite words which he calls optimal squareful words.
Optimal squareful words are aperiodic infinite words containing the least number of minimal
squares such that every position begins with a square. It turns out that such a word must be
binary, and it must contain exactly six minimal squares; less than six minimal squares forces the
word to be ultimately periodic. Moreover, the six minimal squares must be the minimal squares
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of some Sturmian language; the set of optimal squareful words is however larger than the set of
Sturmian words. The six minimal squares of an optimal squareful word take the following form
for some integers a and b such that a ≥ 1 and b ≥ 0:

02, (10a)2,

(010a−1)2, (10a+1(10a)b)2,

(010a)2, (10a+1(10a)b+1)2.

It is natural to ask if there are non-Sturmian optimal squareful words whose languages the square
root map preserves. In [5], we proved by an explicit construction that such words indeed exist.
The construction is as follows. The substitution

τ :
S 7→ LSS

L 7→ SSS

produces two infinite words Γ
∗
1 = SSSLSSLSS · · · and Γ

∗
2 = LSSLSSLSS · · · having the same

language L. Let s̃ be a (long enough) reversed standard word in some Sturmian language and
L(s̃ ) be the word obtained from s̃ by exchanging its first two letters. By substituting the language
L by the substitution σ mapping the letters S and L respectively to s̃ and L(s̃ ), we obtain a
subshift Ω consisting of optimal squareful words. We proved that the words Γ1 and Γ2, the σ-
images of Γ

∗
1 and Γ

∗
2 , are fixed by the square root map and, more generally, either

√
w ∈ Ω or

√
w

is periodic for all w ∈ Ω.
The aim of this paper is to study the dynamics of the square root map in the subshift Ω in

the slightly generalized case where τ(S) = LS2c and τ(L) = S2c+1 for some positive integer c

and to see in which ways the dynamics differ from the Sturmian case. Our main results are the
characterization of periodic and asymptotically periodic points and the limit set. We show that
asymptotically periodic points must be ultimately periodic points and that periodic points must
be fixed points; there are only two fixed points: Γ1 and Γ2. We prove that any word in Ω that
is not an infinite product of the words σ(S) and σ(L) must eventually be mapped to a periodic
word, thus having a finite orbit, while products of σ(S) and σ(L) are always mapped to aperiodic
words. It follows that the limit set contains exactly the words that are products of σ(S) and σ(L).
Additionally, we show that the limit set can be expressed as a disjoint union of infinitely many
invariant subsets. Moreover, we study the injectivity of the square root map on Ω: only certain
left extensions of the words Γ1 and Γ2 may have more than one preimage.

Let us make a brief comparison with the Sturmian case to see that the obtained results indicate
that the square root map behaves somewhat differently on Ω. The mapping ψ, defined above, is
injective, so in the Sturmian case all words have at most one preimage. As ψ maps points strictly
towards the point 1− α on the circle, all points are asymptotically periodic (see Definition 4.2) and
all periodic points are fixed points. The fixed points are the two words 01cα and 10cα mentioned
above, and the limit set consists only of these two fixed points.

This paper is an extended version of the conference paper [6] presented at the conference
WORDS 2017 in Montréal, September 2017. The conference paper omitted proofs, which are
now given in this full paper. Further analysis on limit sets, namely the study of invariant sets, is
presented in Section 3. Section 5 contains completely new material. Additionally Sections 6 and
7 contain novel discussion on the topic.

The paper is organized as follows. The following section gives needed preliminary results on
Sturmian words and standard words, and it describes the construction of the subshift Ω in full
detail. In Section 3, we proceed to characterize the limit set and to study injectivity. Section 4
contains results on periodic points. Next, in Section 5, we take a closer look at solutions to a spe-
cific word equation that are important in our constructions. We conclude the paper by additional
remarks in Section 6 and open problems in Section 7.
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2 Notation and Preliminary Results

For basic word-combinatorial concepts, we refer the reader to the book [2] or to the corresponding
section of our previous paper [5]. In this paper, we consider finite or infinite binary words, which
we take to be over the alphabets {0, 1} or {S, L}. We denote the length of the word w by |w|. The
empty word has length 0 and is denoted by ε. We refer to the kth letter of w by w[k], and we index
letters from 0. If w = u2, then we call w a square with square root u. A square is minimal if it does
not have a square as a proper prefix. By L(w) we mean the word obtained from w by exchanging
its first two letters (we will not apply L to too short words). Let C be the cyclic shift operator
defined by the formula C(a0a1 · · · an−1) = a1 · · · an−1a0 for letters ai. The words w, C(w), C2(w),
. . ., C|w|−1(w) are the conjugates of w. If u is a conjugate of w, then we say that u is conjugate to w.
We write u⊳ v if the word u is lexicographically less than v. For binary words over {0, 1}, we set
0 ⊳ 1. If w = uv, then by w · v−1 we mean the word u.

An infinite word is ultimately periodic if it is of the form uvvv · · · ; otherwise it is aperiodic. We
distinguish finite words from infinite words by writing the symbols referring to infinite words in
boldface. A subshift Ω is a set of infinite words whose language is included in some extendable
and factor-closed language L(Ω), which is called the language of the subshift. If L(Ω) is the
language of some infinite word w, then we say that the corresponding subshift is generated by
w. Subshifts are clearly shift-invariant; the shift operator on infinite words is denoted by T. If
every word in a subshift is aperiodic, then we call the subshift aperiodic. A subshift is minimal if it
does not contain nonempty subshifts as proper subsets.

2.1 Sturmian Words and Standard Words

Several proofs in [5] regarding Sturmian words and the square root map require knowledge on
continued fractions. In this paper, only some familiarity with continued fractions is required. We
only recall that every irrational real number α has a unique infinite continued fraction expansion:

α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(1)

with a0 ∈ Z and ak ∈ Z+ for k ≥ 1. The numbers ai are called the partial quotients of α. The
rational numbers [a0; a1, a2, a3, . . . , ak], denoted by pk/qk, are called convergents of α. The semicon-

vergents (or intermediate fractions) pk,ℓ/qk,ℓ of α are defined as the fractions

ℓpk−1 + pk−2
ℓqk−1 + qk−2

for 1 ≤ ℓ < ak and k ≥ 2 (if they exist). An introduction to continued fractions in relation to
Sturmian words can be found in [4, Chapter 4].

We view here Sturmian words as the infinite words obtained as codings of orbits of points
in an irrational circle rotation with two intervals. For alternative definitions and further details,
see [7, 2]. We identify the unit interval [0, 1) with the unit circle T. Let α in (0, 1) be irrational.
The map R : T → T, ρ 7→ {ρ + α}, where {ρ} stands for the fractional part of the number ρ,
defines a rotation on T. Divide the circle T into two intervals I0 and I1 defined by the points
0 and 1 − α. Then define the coding function ν by setting ν(ρ) = 0 if ρ ∈ I0 and ν(ρ) = 1
if ρ ∈ I1. The coding of the orbit of a point ρ is the infinite word sρ,α obtained by setting its
nth, n ≥ 0, letter to equal ν(Rn(ρ)). This word sρ,α is defined to be the Sturmian word of slope α

and intercept ρ. To make the definition proper, we need to define how ν behaves in the endpoints
0 and 1 − α. We have two options: either take I0 = [0, 1 − α) and I1 = [1 − α, 1) or I0 = (0, 1− α]
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and I1 = (1 − α, 1]. The difference is seen in the codings of the orbits of the points {−nα}. This
choice is largely irrelevant in this paper with the exception of the definition of the mapping ψ

in the next subsection. The only difference between Sturmian words of slope [0; 1, a2, a3, . . .] and
Sturmian words of slope [0; a2 + 1, a3, . . .] is that the roles of the letters 0 and 1 are reversed. We
make the typical assumption that a1 ≥ 2 in (1).

Since the sequence ({nα})n≥0 is dense in [0, 1)—as is well-known—Sturmian words of slope
α have a common language denoted by L(α). The Sturmian words of slope α form the Sturmian
subshift Ωα, which is minimal and aperiodic. Let w denote a word a0a1 · · · an−1 of length n in
L(α). Then there exists a unique subinterval [w] of T such that sρ,α begins with w if and only if ρ ∈
[w]. Clearly [w] = Ia0 ∩ R−1(Ia1) ∩ . . . ∩ R−(n−1)(Ian−1). The points 0, {−α}, {−2α}, . . ., {−nα}
partition the circle into n+ 1 subintervals which are in one-to-one correspondence with the words
of L(α) of length n. Arranging these n + 1 points into increasing order gives an ordering of
the level n intervals: I0(n), I1(n), . . ., In(n). According to the following proposition, see [1,
Proposition 3.2], this ordering of the intervals arranges the associated factors into lexicographic
order.

Proposition 2.1. Let n, i, and j be integers such that 0 ≤ i, j ≤ n. Let u, v ∈ L(α) be the factors of

length n such that [u] = Ii(n) and [v] = Ij(n). Then u ⊳ v if and only if i < j.

Let (dk) be a sequence of positive integers. Corresponding to (dk), we define a sequence (sk)
of standard words by the recurrence

sk = s
dk
k−1sk−2

with initial values s−1 = 1, s0 = 0. The sequence (sk) converges to an infinite word cα, which is a
Sturmian word of intercept α and slope α, where α is an irrational with continued fraction expan-
sion [0; d1 + 1, d2, d3, . . .]. Thus standard words related to the sequence (dk) are called standard
words of slope α. If dk = 1 for all k ≥ 1, then the associated standard words are called Fibonacci

words. The standard words are the basic building blocks of Sturmian words, and they have rich
and surprising properties. For this paper, we only need to know that standard words are prim-
itive and that the final two letters of a (long enough) standard word are different. Actually, in
connection to the square root map, it is more natural to consider reversed standard words ob-
tained by writing standard words from right to left. If s is a standard word in L(α), then also the
reversed standard word s̃ is in L(α) because L(α) is closed under reversal. For more on standard
words, see [2, Chapter 2.2].

2.2 Optimal Squareful Words and the Square Root Map

An infinite word is squareful if its every position begins with a square. An infinite word is optimal

squareful if it is aperiodic and squareful and it contains the least possible number of distinct min-
imal squares. In [9], Kalle Saari proves that optimal squareful words contain six distinct minimal
squares; a squareful word containing at most five minimal squares is necessarily ultimately pe-
riodic. Moreover, Saari shows that optimal squareful words are binary and that the six minimal
squares are of very restricted form. The square roots of the six minimal squares of an optimal
squareful word are

S1 = 0, S4 = 10a,

S2 = 010a−1, S5 = 10a+1(10a)b, (2)

S3 = 010a, S6 = 10a+1(10a)b+1.

for some integers a and b such that a ≥ 1 and b ≥ 0. We call an optimal squareful word containing
the minimal square roots of (2) an optimal squareful word with parameters a and b. Throughout this
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paper, we reserve this meaning for the fraktur letters a and b. Furthermore, we agree that the
symbols Si always refer to the minimal square roots of (2).

Let s be an optimal squareful word and write it as a product of minimal squares: s = X2
1 X2

2 · · ·
(such a product is unique). The square root

√
s of s is the word X1X2 · · · obtained by deleting half

of each minimal square X2
i . We reserve the notation n

√
s for the nth square root of s. We chose

this notation for its simplicity; the nth square root of a number x would typically be denoted
by 2n√

x. We often consider square roots of finite words. We let Π(a, b) to be the language of
all nonempty words w such that w is a factor of some optimal squareful word with parameters
a and b and w is factorizable as a product of minimal squares (2). Let w ∈ Π(a, b), that is,
w = X2

1 · · · X2
n for minimal square roots Xi. Then we can define the square root

√
w of w by

setting
√

w = X1 · · · Xn. The square root map (on infinite words) is continuous with respect to
the usual topology on infinite words (see [2, Section 1.2.2.]). The following lemma, used later,
sharpens this observation.

Lemma 2.2. Let u and v be two optimal squareful words with the same parameters a and b. If u and v

have a common prefix of length ℓ, then
√

u and
√

v have a common prefix of length ⌈ℓ/2⌉.

Proof. Say u and v have a nonempty common prefix w. We may suppose that w /∈ Π(a, b) as
otherwise the claim is clear. Let z be the longest prefix of w that is in Π(a, b) ∪ {ε}, and let X2

and Y2 respectively be the minimal square prefixes of the words T|z|(u) and T|z|(v). Hence
√

u

begins with
√

zX and
√

v begins with
√

zY. Since X and Y begin with the same letter, it is easy to
see that either X is a prefix of Y or Y is a prefix of X. By symmetry, we suppose that X is a prefix
of Y. It follows that

√
u and

√
v have a common prefix of length |zX2|/2. By the maximality of z,

we have |zX2| > |w| proving that
√

u and
√

v have a common prefix of length ⌈|w|/2⌉.

Sturmian words form a proper subset of optimal squareful words. If s is a Sturmian word
of slope α having continued fraction expansion as in (1), then it is an optimal squareful word
with parameters a = a1 − 1 and b = a2 − 1. The square root map is especially interesting for
Sturmian words because it preserves their languages. Define a function ψ : T → T as follows.
For ρ ∈ (0, 1), we set

ψ(ρ) =
1
2
(ρ + 1 − α),

and we set

ψ(0) =

{
1
2 (1 − α), if 0 ∈ I0,

1 − α
2 , if 0 /∈ I0.

The mapping ψ moves a point ρ on T towards the point 1 − α by halving the distance between
the points ρ and 1 − α. The distance to 1 − α is measured in the interval I0 or I1 depending on
which of these intervals the point ρ belongs to. In [5], we proved the following result relating the
intercepts of a Sturmian word and its square root.

Theorem 2.3. Let sρ,α be a Sturmian word of slope α. Then
√

sρ,α = sψ(ρ),α.

Remark 2.4. Later in the proof of Theorem 3.2, we need a version of Theorem 2.3 for rational
slopes. Indeed, Theorem 2.3 is true also if α is rational provided that the continued fraction
expansion of α has enough partial quotients. More precisely, the proof of Theorem 2.3 in [5]
considers only certain properties of the denominators of the (semi)convergents q2,1 and q3,1 of α.
Thus if the continued fraction expansion of α has at least three partial quotients, then Theorem 2.3
holds. Moreover, this condition on the continued fraction expansion guarantees that the codings
of rational rotations of slope α contain the six minimal squares of (2).
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Specific solutions to the word equation

X2
1X2

2 · · · X2
n = (X1X2 · · · Xn)

2 (3)

in the Sturmian language L(α) play an important role. We are interested only in the solutions of
(3) where all words Xi are minimal square roots (2). Thus we give the following definition.

Definition 2.5. A nonempty word w is a solution to (3) if w can be written as a product of minimal
square roots w = X1X2 · · · Xn which satisfy the word equation (3). The solution is primitive if w

is primitive. The word w is a solution to (3) in a language L if w is a solution to (3) and w2 ∈ L.

Consider for example the word S2S1S4 for a = 1 and b = 0. We have

(S2S1S4)
2 = (01 · 0 · 10)2 = 01010 · 01010 = (01)2 · 02 · (10)2 = S2

2S2
1S2

4,

so the word S2S1S4 is a solution to (3).
In [5, Theorem 18], the following result was proved.

Theorem 2.6. If s̃ is a reversed standard word, then the words s̃ and L(s̃ ) are primitive solutions to (3).

Solutions to (3) are important as they can be used to build fixed points of the square root map.
If (uk) is a sequence of solutions to (3) with the property that u2

k is a proper prefix of uk+1 for k ≥ 1,
then the infinite word w obtained as the limit limk→∞ uk has arbitrarily long prefixes X2

1 · · · X2
n

with the property that X1 · · · Xn is a prefix of w. In other words, the word w is a fixed point of
the square root map. All known constructions of fixed points rely on this method. For example,
the two Sturmian words 01cα and 10cα of slope α and intercept 1 − α both have arbitrarily long
squares u2 as prefixes, where u = L(s̃ ) for a reversed standard word s̃ [5, Proposition 27]. In the
next subsection, we see that the dynamical system studied in this paper is also fundamentally
linked to fixed points obtained from solutions of (3).

The following lemma [5, Lemma 21] is of technical nature, but it conveys an important mes-
sage: under the assumptions of the lemma, swapping two adjacent and distinct letters that do not
occur as a prefix of a minimal square affects a product of minimal squares only locally and does
not change its square root. This establishes the often-used fact that s̃s̃ and s̃L(s̃ ) are both in Π(a, b)
and have the same square root for a reversed standard word s̃. For example, if s̃ = 1001001010010,
then

s̃s̃ = 1001001010 · 0101 · 00 · 1001010010 and

s̃L(s̃ ) = 1001001010 · 010010 · 1001010010,

so the change is indeed local and does not affect the square root. Notice that every long enough
standard word has S6 as a proper suffix.

Lemma 2.7. Let u and v be words such that

• u is a nonempty suffix of S6,

• |v| ≥ |S5S6|,

• v begins with xy for distinct letters x and y,

• uv and L(v) are factors of some optimal squareful words with the same parameters.

Suppose there exists a minimal square X2 such that |X2| > |u| and X2 is a prefix of uv or uL(v). Then

there exist minimal squares Y2
1 , . . ., Y2

n such that X2 and Y2
1 · · ·Y2

n are prefixes of uv and uL(v) of the

same length and X = Y1 · · ·Yn.
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2.3 The Subshift Ω

In this subsection, we define the main object of study of this paper. The results presented were
obtained in [5] in the case c = 1, the generalization being straightforward.

Let c be a fixed positive integer. Repeated application of the substitution

τ :
S 7→ LS2c

L 7→ S2c+1

to the letter S produces two infinite words

Γ
∗
1 = SS2c(LS2c)2c(S2c+1(LS2c)2c)2c · · · and

Γ
∗
2 = LS2c(LS2c)2c(S2c+1(LS2c)2c)2c · · ·

with the same language L. We set Ω∗ to be the minimal and aperiodic subshift with language L.
Fix integers a and b such that a ≥ 1 and b ≥ 0, and let α be an irrational with continued

fraction expansion [0; a+ 1, b+ 1, . . .]. Let w to be a word such that w ∈ {s̃k, L(s̃k)} where s̃k is a
reversed standard word of slope α such that |s̃k| > |S6|.1 Let then σ be the substitution mapping
S to w and L to L(w). By substituting the letters S and L in words of Ω∗, we obtain a new minimal
and aperiodic subshift σ(Ω∗), which we denote by ΩA. We also set Γ1 = σ(Γ∗

1) and Γ2 = σ(Γ∗
2).

The subshift ΩA is generated by both of the words Γ1 and Γ2. The words Γ1 and Γ2 differ only
by their first two letters. This difference is often irrelevant to us, so we let Γ to stand for either
of these words. Further, we let the symbol γk to stand for the word σ(τk(S)) and γk to stand for
σ(τk(L)).

It is easy to see that Γ1 = limk→∞ γ2k and Γ2 = limk→∞ γ2k. In what follows, we often consider
infinite products of γk and γk, and we wish to argue independently of the index k. Hence we
make a convention that γ and γ respectively stand for γk and γk for some k ≥ 0. The words γ

and γ are primitive; see [5, Lemma 39]. For simplification, we abuse notation and write S for γ0
and L for γ0. It will always be clear from context if letters S and L or words S and L are meant.

It can be shown that the words of ΩA are optimal squareful words with parameters a and b;
see [5, Lemma 40]. Therefore the square root map is defined for words in ΩA. Let us prove the
following crucial properties of the square root map on ΩA.

Lemma 2.8. The following properties hold:

• √
γγ = γ,

•
√

γγ = γ,

• √
γγ = γ, and

•
√

γγ = γ.

Proof. This proof is essentially the proof of [5, Proposition 38]. Say γ = γk. Suppose first that
k = 0. Since S was chosen to be in {s̃, L(s̃ )} for a reversed standard word s̃, both of the words S

and L are primitive solutions to (3) by Theorem 2.6. Therefore S2, L2 ∈ Π(a, b) and
√

SS = S and√
LL = L. An application of Lemma 2.7 shows that also SL, LS ∈ Π(a, b) and that

√
SL = S and√

LS = L.2 Thus the claim holds for k = 0. Suppose that the claim holds for some k ≥ 0. Now

γ2
k+1 = γγ · (γ2)c−1 · γγ · (γ2)c

1Without this condition the subshift Ω, defined below, does not consist of optimal squareful words; see the remark
after [5, Lemma 40].

2Lemma 2.7 is indeed applicable: if S (or L) was in Π(a, b), then it would not be primitive due to the fact that it is a
solution to (3).
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so, by the induction hypothesis, we obtain
√

γ2
k+1 = γ · γc−1 · γ · γc = γk+1.

The other cases are verified similarly by grouping the words into suitable pairs.

Lemma 2.8 shows that the words Γ1 and Γ2 are fixed points of the square root map. Namely,
the word γk+2 has γ2

k as a prefix and γk+2 has γ2
k as a prefix. Thus by Lemma 2.8, we have, e.g.,

√
Γ1 =

√
lim
k→∞

γ2
2k = lim

k→∞
γ2k = Γ1.

The words in ΩA can be (uniquely) written as a product of the words S and L up to a shift.
We often consider infinite words that are arbitrary products of the words S and L (elements
of {S, L}ω) and their shifts (elements of the shift orbit closure {S, L}ω). Consider a word w in
{S, L}ω and write w = Tℓ(w′) for some w′ ∈ {S, L}ω and ℓ such that 0 ≤ ℓ < |S|. There are four
distinct possibilities (types):

(A) ℓ = 0,

(B) ℓ > 0 and the prefix of w of length |S| − ℓ is in Π(a, b),

(C) ℓ > 0 and the prefix of w of length 2|S| − ℓ is in Π(a, b), or

(D) none of the above apply.

These possibilities are mutually exclusive: cases (B) and (C) cannot simultaneously apply because
S, L /∈ Π(a, b). In our earlier paper, we proved the following theorem, see [5, Theorem 44].3

Theorem 2.9. Let w ∈ ΩA. If w is of type (A), (B), or (C), then
√

w ∈ ΩA. If w is of type (D), then√
w is periodic with minimal period conjugate to S.

The next result is a direct consequence of the proof of [5, Theorem 44].

Theorem 2.10. Let w ∈ {S, L}ω . If w is of type (D), then
√

w is periodic with minimal period conjugate

to S.

Thus to make ΩA a proper dynamical system, we need to adjoin a periodic part to it. To this
end, we let

ΩP = {Tℓ(Sω) : 0 ≤ ℓ < |S|},

and define Ω = ΩA ∪ΩP. Related to ΩP, we observe the following. Suppose that S or L equals s̃k,
the kth reversed standard word of slope α, where α = [0; a1, a2, . . .]. Let us truncate the continued
fraction expansion of α and set α = [0; a1, a2, . . . , ak], so that α = pk/qk with |S| = qk. Since
{−qkα} = 0, we have that ΩP equals the codings of rational rotations of slope α. (See the proof
of Theorem 4.3 and Example 4.4 in [3] for the exact details.)

Clearly Ω is compact and
√

ΩA ⊆ Ω by Theorem 2.9. On the other hand, for any w ∈ ΩP,
we have

√
w ∈ ΩP as noted in Remark 2.4 (recall that S was chosen so that it satisfies |S| > |S6|).

Thus
√

ΩP ⊆ ΩP, and the pair (Ω,
√·) is a valid dynamical system. Notice further that Lω ∈ ΩP;

it is a special property of a reversed standard word s̃ that s̃ and L(s̃ ) are conjugates, see [5,
Proposition 6].

3In the proof of [5, Theorem 44] only the case c = 1 was considered, but the proof generalizes to the case c > 1 in a
straightforward manner.
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Let us recall next what is known about the structure of the words in Ω. The word Γ is by
definition an infinite product of the words γk and γk for all k ≥ 0. Thus all words in ΩA are
(uniquely) factorizable as products of γk and γk up to a shift. Let us for convenience denote by
Ωγ the set Ω ∩ {γ, γ}ω consisting of words of Ω that are infinite products of γ and γ. Notice
that ΩS = Ωγ0 by our convention. The following lemma describes two important properties of
factorizations of words of ΩA as products of γ and γ. This result is an immediate property of the
substitution τ that generates Ω∗.

Lemma 2.11. Consider a factorization of a word in ΩA ∩ Ωγ as a product of γ and γ. Such factorization

has the following properties:

• Between two occurrences of γ there is always γ2c or γ4c+1.

• Between two occurrences of γγ4c+1γ there is always γ2c or (γ2cγ)4 · γ−1.

We also need to know how certain factors synchronize or align in a product of γ and γ. The
proof is a straightforward application of the elementary fact that a primitive word cannot occur
nontrivially in its square.

Lemma 2.12 (Synchronizability Properties). Let w ∈ Ωγ. If z is a word in {γγ, γγ, γγ} occurring

at position ℓ of w, then the prefix of w of length ℓ is a product of γ and γ.4

The preceding lemma shows that if w is a word in ΩA, then for each k there exists a unique ℓ

such that 0 ≤ ℓ < |γk| and Tℓ(w) ∈ Ωγk
. We then say that the γk-factorization of w starts at the

position ℓ of w.
Let us conclude this subsection by making a remark regarding the subshift Ω∗. It is possible

to define a counterpart for the square root map of Ω. Write a word w of Ω∗ as a product of
pairs of the letters S and L: w = X1X′

1 · X2X′
2 · · · , where XiX

′
i ∈ {SS, SL, LS, LL}. We define the

square root
√

w of w to be the word X1X2 · · · . Based on the above, it is not difficult to see that
σ(
√

w) =
√

σ(w) for w ∈ Ω∗. In other words, the square root map for words in ΩS ∩ ΩA has
the same dynamics as the square root map in Ω∗.

3 The Limit Set, Invariant Subsets, and Injectivity

In this section, we consider what happens for words of Ω when the square root map is iterated.
We extend Theorem 2.10 and show that also the words of type (B) and type (C) are eventually
mapped to a periodic word. In fact, we prove a stronger result: the number of steps required is
bounded by a constant depending only on the word S. These results enable us to characterize the
limit set of (Ω,

√·) as the set ΩS. In other words, asymptotically the square root map on Ω has
the same dynamics as the counterpart mapping on Ω∗ ∪ {Sω, Lω}. We further study invariant
subsets and show that there are infinitely many of them. We also show that the square root map
is mostly injective on ΩA, only certain left extensions of Γ may have two preimages.

Let us first look at an example.

Example 3.1. Let a = 1, b = 0, and S = 01010010. Set w = T4(S2u) for some S2u ∈ ΩS ∩ ΩA.
The word w is of type (C) as the word T4(S2), which equals 00 · 1001010010, is in Π(a, b). Now√

w = 010010 · √u and
√

w ∈ ΩA by Theorem 2.9. So
√

w is of type (B), and 2
√

w = 010 · 2
√

u.
Still we have 2

√
w ∈ ΩA. It is clear now that 2

√
w is not of type (A) or (B). The word 2

√
u begins

with S or L, and neither 010 · S nor 010 · L is in Π(a, b), so 2
√

w is not of type (C) either. Thus it is
of type (D), so 3

√
w is periodic. The minimal period of 3

√
w is readily checked to be 01010010, that

is, 3
√

w = Sω. With some effort it can be verified that in this particular case 3
√

v is periodic for all
v ∈ Ω \ ΩS.

4In general, e.g, the word γ2 can be a factor of γ3.
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|S| 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

n 3 4 4 5 6 6 7 8 8 9 10 10 11 12 13

Table 1: How |S| and n of Theorem 3.2 relate when S is a reversed Fibonacci word.

Notice that the parameter c is irrelevant to all of the arguments in the above example. Notice
also that the word u did not play any special role here, and it could have been any product of the
words S and L. Indeed, we formulate the next result for arbitrary products of the words S and L.

Theorem 3.2. There exists an integer n, depending only on the word S, such that n
√

w ∈ {Sω , Lω} for

all w ∈ {S, L}ω \ {S, L}ω .

Before proceeding to prove the theorem, let us remark that the number n in the statement
indeed varies when S varies. Let S be a reversed Fibonacci word. Table 1 shows how |S| relates
to n. It seems that here n → ∞ as |S| → ∞ even though the growth is slow. We have not
attempted seriously to relate a, b, S, and n, but we conjecture that n is close to the bound obtained
in Remark 3.6; see the final section on open problems.

For the proof, we need three lemmas. The first lemma is the important Embedding Lemma.

Lemma 3.3 (Embedding Lemma). Let w ∈ {S, L}ω and u1 and u2 to respectively be the prefixes of w

and
√

w of length |S|.

(i) If w begins with 0 and u1 6= u2, then u1 ⊳ u2.

(ii) If w begins with 1 and u1 6= u2, then u1 ⊲ u2.

Proof. Suppose that u1 6= u2, and let v be the prefix of w of length 2|S|. The main idea of this
proof is the following idea of embedding: we slightly modify the prefix v so that it belongs to a
Sturmian language and the square root of a Sturmian word beginning with this modified prefix
has u2 as a prefix. Then known properties of the lexicographic ordering of factors of Sturmian
words together with the dynamics of the function ψ prove the claim. More precisely, we want
to find a word v′ with the following properties: v′ belongs to a Sturmian language L(α), v′ has
u1 as a prefix, |v| = |v′|, and the square root of any Sturmian word of slope α beginning with v′

has u2 as a prefix. Once we establish the existence of a word v′ with such properties, the claim
is then proved as follows. Let ρ ∈ [v′], and consider the word sρ,α of intercept ρ and slope α.
By Theorem 2.3, the intercept of the word

√
s is ψ(ρ). Since

√
s has u2 as a prefix, we see that

ψ(ρ) ∈ [u2]. Because ψ moves points towards the point 1 − α and u1 6= u2, we see that the
interval [u2] is strictly closer to 1 − α than the interval [u1] is. It thus follows from Proposition 2.1
that u1 ⊳ u2 if w begins with 0 and u1 ⊲ u2 if w begins with 1.

We shall fix v′ later on; for now, we construct two Sturmian languages in at least one of which
the word v′ occurs. Suppose that S or L equals s̃k, the kth reversed standard word of slope α,
where α = [0; a1, a2, . . .]. Without loss of generality we may assume ak+1 > 1. Recall that the
assumption |S| > |S6| implies that k ≥ 3. We modify α to obtain two distinct slopes [0; b1, b2, . . .]
and [0; c1, c2, . . .], respectively denoted by α1 and α2. We set bi = ai and ci = ai for 1 ≤ i < k − 1.
Further we set bk−1 = ak−1, bk = ak, and bk+1 ≥ 3; the remaining partial quotients may be chosen
arbitrarily. For α2, we set ck−1 = ak−1 + 1 if ak = 1; otherwise we let ck−1 = ak−1, ck = ak − 1,
ck+1 = 2, and ck+2 = 2. Again, the remaining partial quotients are irrelevant. In the case of slope
α1, by recalling that s̃i s̃i+1 = L(s̃i+1s̃i) for all i ≥ 0, we see that

s̃k+1 = s̃k−1s̃
bk+1
k = L(s̃k)

bk+1 s̃k−1,
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so S3, L3 ∈ L(α1). It is straightforward to show that s̃ 2
k+1 ∈ L(α1). Now

s̃ 2
k+1 = (s̃k−1s̃

bk+1
k )2 = s̃k−1 · s̃

bk+1
k L(s̃k) · s̃k−1s̃

bk+1−1
k ,

so also SSL ∈ L(α1). Next we want to show that LLS ∈ L(α2). Suppose first that ak = 1. Then
S = s̃k−2s̃k−1. The (k − 1)th standard word of slope α2 now equals L:

s̃k−3s̃
ck−1
k−2 = L(s̃k−2)s̃k−3 s̃

ak−1
k−2 = L(s̃k−2)s̃k−1 = L(S).

Thus the above argument showing that SSL ∈ L(α1) now shows that LLS ∈ L(α2). Consider
then the case ak > 1. Let e be the (k + 2)th standard word of slope α2. By expanding it as a
product of the (k − 1)th and (k − 2)th standard words, we see that

e = s̃k−2 s̃
ck
k−1(s̃k−1(s̃k−2s̃

ck
k−1)

2)2.

As e2 ∈ L(α2), it follows that s̃k−1e ∈ L(α2). Now

s̃k−1e = s̃k−1 s̃k−2s̃
ck
k−1 · s̃k−1(s̃k−2s̃

ck
k−1)

2 · s̃k−1(s̃k−2 s̃
ck
k−1)

2

= s̃k−1 s̃k−2s̃
ck+1
k−1 s̃k−2s̃

ck
k−1 s̃k−2 s̃

ck+1
k−1 · (s̃k−2 s̃

ck
k−1)

2

= L(s̃k−2)s̃
ck+1
k−1 · L(s̃k−2)s̃

ck+1
k−1 · s̃k−2s̃

ck+1
k−1 · (s̃k−2s̃

ck
k−1)

2

= L(S)L(S)S · (s̃k−2s̃
ck
k−1)

2,

so LLS ∈ L(α2).
We now define v′ needed for the conclusion of the proof. Observe that the assumption u1 6= u2

implies that w is not in {S, L}ω . Write w = Tℓ(w′) for some w′ ∈ {S, L}ω and integer ℓ such
that 0 < ℓ < |S|. Moreover, for t ≥ 1, we set ⋄t to be the prefix of T(t−1)|S|(w′) of length |S|;
notice that ⋄t ∈ {S, L} for all t ≥ 1. For now we make the assumption that ℓ > 1; the case
ℓ = 1 is handled at the end of the proof. This additional assumption gives us the freedom to
substitute ⋄1 by either of the words S and L without affecting u1 or the prefix of

√
w of length |S|.

So we substitute ⋄1 by ⋄2, and select v′ to be the prefix of Tℓ(⋄2⋄2⋄3) of length 2|S|. Observe that
⋄2⋄2⋄3 ∈ {SSS, SSL, LLS, LLL}, so either v′ ∈ L(α1) or v′ ∈ L(α2). Clearly v′ has u1 as a prefix
and |v′| = |v|. Lemma 2.2 implies that the square root of a Sturmian word having v′ as a prefix
has u2 as a prefix. Thus the word v′ has the desired properties.

Consider finally the case ℓ = 1. From the definition of standard words, it is straightforward
to show that the only possible minimal square prefixes of S and L are S2

2 and S2
5. Consequently,

the word u1 has 10a10a−1 or 0a+1(10a)b10a+1(10a)b as a prefix. In the latter case, the word u2
clearly has 0⌈(a+1)/2⌉1 as a prefix, so u1 ⊳ u2. Consider then the former case, and let t be the
largest integer such that (10a)t is a prefix of u1. With some effort, it can be shown that u2 then
has (10a)⌈t/2⌉10a+1 as a prefix, that is, u1 ⊲ u2.

Lemma 3.4. Let w be any of the words SS, SL, LS, or LL. If ℓ is an odd integer such that 0 < ℓ < |S|,
then Tℓ(w) /∈ Π(a, b).

Proof. Let ℓ be an odd integer such that 0 < ℓ < |S|. Since |Tℓ(w)| = |S2| − ℓ, we see that |Tℓ(w)|
is odd. Thus it is impossible that Tℓ(w) ∈ Π(a, b).

Using the two preceding lemmas, we can prove the next crucial result.

Lemma 3.5. Let w ∈ {S, L}ω \ {S, L}ω and u1, u2, and u3 to respectively be the prefixes of w,
√

w, and
2
√

w of length |S|.

(i) If w begins with 0, then one of the following holds: u2 ⊲ u1, u3 ⊲ u1, or 2
√

w is periodic.
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(ii) If w begins with 1, then one of the following holds: u2 ⊳ u1, u3 ⊳ u1, or 2
√

w is periodic.

Proof. Let w ∈ {S, L}ω \ {S, L}ω , and write w = Tℓ(w′) for some w′ ∈ {S, L}ω and integer ℓ such
that 0 < ℓ < |S|. Let u1, u2, and u3 respectively be the prefixes of w,

√
w, and 2

√
w of length |S|.

Moreover, for t ≥ 1, we set ⋄t to be the prefix of T(t−1)|S|(w′) of length |S|; notice that ⋄t ∈ {S, L}
for all t ≥ 1. We suppose for simplicity that w begins with the letter 0. The proof in the case that
the first letter of w is 1 is the same proof with the lexicographic orderings reversed. Since words
of type (D) map to periodic words by Theorem 2.10, we only need to consider words of type (B)
and (C).

Suppose first that w is of type (B). Our aim is to show that u2 ⊲ u1. By definition, we have
w = X2

1 · · · X2
n · T|S|(w′) for some minimal squares X2

1 , . . ., X2
n. Observe that

√
w has the word

X1 · · · Xn⋄2 as a prefix. If ℓ = 1, then the argument in the last paragraph of the proof of the
Embedding Lemma implies that u2 ⊲ u1. Say ℓ > 1. Now u1 is a conjugate of ⋄2 occurring at
position ℓ of ⋄2⋄2. If u1 = u2, then u1 also occurs at the position ℓ+ |X1 · · · Xn| of ⋄2⋄2. This is
not possible as ⋄2 is primitive. Thus we conclude that u1 6= u2. By the Embedding Lemma, we
see that u2 ⊲ u1.

Suppose then that w is of type (C). If
√

w is of type (B) then, by applying the arguments of the
preceding paragraph to

√
w, we see that either u2 ⊲ u1 or u3 ⊲ u1. If

√
w is of type (D), then 2

√
w

is periodic. Thus we may focus on the case that
√

w is also of type (C). We suppose that u1 = u2;
otherwise u2 ⊲ u1 by the Embedding Lemma. Because

√
w is of type (C), Lemma 3.4 implies that

ℓ > 2. Since u1 = u2, the word u1 occurs at position ℓ of ⋄2⋄2 and at position ℓ/2 of ⋄3⋄3. Since
⋄2 is primitive, we see that necessarily ⋄2 6= ⋄3. For now, we make the additional assumption
that ℓ 6= 4. Suppose next on the contrary that u3 = u2 = u1. Since w and

√
w are of type (C)

and ℓ 6= 4, it follows that u1 occurs at position ℓ/4 of ⋄5⋄5. Now either ⋄5 = ⋄2 or ⋄5 = ⋄3, so
either u1 respectively occurs at positions ℓ and ℓ/4 of ⋄2⋄2 or u1 respectively occurs at positions
ℓ/2 and ℓ/4 of ⋄3⋄3. This contradicts the primitivity of ⋄2 and ⋄3. We conclude that u3 6= u2, so
u3 ⊲ u1 by the Embedding Lemma. What is left is to consider the case ℓ = 4. Write ⋄2 = abcdv

and ⋄3 = bacdv for a word v and letters a, b, c, and d such that a 6= b. Since u1 occurs at position
4 of ⋄2⋄2, we see that u1 has abcd as a suffix. Further, we see that u1 has cd as a prefix and ba as a
suffix because it occurs at position 2 of ⋄3⋄3. Therefore cd = ba. Assume now for a contradiction
that u3 = u2 = u1. It follows that the prefix b of u1 must be followed by cd. However, this is a
contradiction as cd is a prefix of u1 and c 6= d. Once again, we conclude that u3 6= u2, that is,
u3 ⊲ u2.

Proof of Theorem 3.2. Let w ∈ {S, L}ω \ {S, L}ω and u1, u2, and u3 to respectively be the prefixes
of w,

√
w, and 2

√
w of length |S|. Suppose w begins with the letter 0. By Lemma 3.5, one of the

following holds: u2 ⊲ u1, u3 ⊲ u1, or 2
√

w periodic. Since the prefixes of length |S| of the words in
the orbit of w can increase lexicographically only finitely many times, it follows that w eventually
gets mapped to a periodic word. The same conclusion holds if w begins with the letter 1. We have
proved that there exists an integer n, depending only on |S|, such that n

√
w is periodic.

Since n
√

w is periodic, it is a rotation word of rational slope α by Theorem 2.10. By Remark 2.4,
the function ψ : ρ 7→ 1

2 (ρ + 1 − α) relates the intercepts of n
√

w and n+1
√

w (recall that |S| > |S6|).
As ψi(ρ) tends to 1 − α as i → ∞, the word n

√
w eventually gets mapped to Sω or Lω as [S] and

[L] are the two intervals with endpoint 1 − α; for in-depth details see [5, Section 4]. As it clearly
takes a bounded number of steps, depending only on S, for a point to map to [S] or to [L], the
proof is complete.

Remark 3.6. Observe that in the above system of rotation words of rational slope α, ψ maps any
point to [S] in at most

⌈
log2

(
1 − α

min{|[S]|, |[L]|}

)⌉
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many steps. Here |[S]| and |[L]| are respectively the geometric lengths of the intervals [S] and [L]

(of slope α).

Next we turn our attention to injectivity. The results provided next give sufficient information
to characterize the limit set. There is a slight imperfection in the following results. Namely, we
are unable to characterize the preimage of the periodic part ΩP, and we believe no nice charac-
terization exists. First of all, the words Sω and Lω must have several preimages, periodic and
aperiodic, by Theorem 3.2. Secondly, if w in ΩA is of type (D), then not only is

√
w periodic

with minimal period conjugate to S but the square root of any word in ΩA that shares a prefix of
length 3|S| with w is periodic with the same minimal period.5 Therefore here we only focus on
characterizing preimages of words in the aperiodic part ΩA.

We begin with a lemma.

Lemma 3.7. Suppose that u and v are words in Ωγ such that
√

u =
√

v. If u = γγ · · · and v = γγ · · · ,

then u = γγγ2cγ · · · and v = γγγ2cγ · · · and both u and v must be preceded by γγ2c−1 in Ω.

Proof. By Lemma 2.11, the word v begins with γγγ2c. Suppose that u begins with γtγ for t ≥
2. Assume for a contradiction that t is odd. Since the prefix γtγ of u is followed by γ2c by
Lemma 2.11, we see that

√
u = γ(t−1)/2γγc · · · so, as

√
u =

√
v, we conclude that v begins with

γγγ2c+1. Hence Lemma 2.11 implies that v has the word γγγ4c+1γγ2cγγ2c as a prefix. Therefore√
v = γ3c+2γ · · · . Since

√
u =

√
v, we see that the prefix of u of length 2(3c+ 2)|γ| must be

followed by γ. Now by Lemma 2.11, the distance between two occurrences of γ in u is always a
multiple of (2c+ 1)|γ|. Hence t + r(2c+ 1) = 2(3c+ 2) for some positive integer r. Since t ≥ 2,
we see that r ≤ 2. If r = 2, then t = 2c+ 2, which is impossible as t is odd. Thus the only option
is that r = 1, that is, t = 4c− 3. We have thus concluded that u = γ4c−3γγ2cγγ2c. It follows that√

u = γ3c−1γ · · · , which contradicts the assumption
√

u =
√

v. We have thus proved that t must
be even.

Now
√

u = γt/2γγ2c · · · and
√

v = γγc · · · . Since
√

u =
√

v, it must be that the prefix
of v of length t|γ| must be followed by γ. Like previously, we see that t = 1 + r(2c+ 1) for
some positive integer r. Since t ≤ 4c + 1, we see that the only option is that r = 1, that is,
u = γγγ2cγ · · · . Suppose next for a contradiction that v begins with γγγ2cγ. This means that√

v = γc+1γ · · · . Now u = γ2c+2γ · · · , so
√

u = γc+1γ · · · . Thus
√

u 6= √
v; a contradiction.

Thus we have shown that u = γγγ2cγ · · · and v = γγγ2cγ · · · . What is left is to show that both
u and v must be preceded by γγ2c−1.

Since u begins with γ2c+2, it is clear by Lemma 2.11 that it must be preceded by γγ2c−1. As-
sume for a contradiction that v is preceded by γ2c. By Lemma 2.11, either v has γγ(γ2cγ)4γ4c+1

as a prefix or it has γγγ2cγγ4c+1 as a prefix. Consider the former case, where
√

v begins with
γc+1(γγ2c)2γ2c+1. Clearly the prefix γ2c+2γ of u must be followed by γ2cγγ2c. The square root
of this prefix equals γc+1γγ2c, so as

√
u =

√
v, we conclude by Lemma 2.11 that u has the word

γ2c+2(γγ2c)4γγ as a prefix. However, now
√

u = γc+1(γγ2c)2γ · · · 6= √
v, which is impossible.

Therefore we are left with the case where v begins with γγγ2cγγ4c+1. Set x = γ2c+2(γγ2c)2,
y = γγγ2cγγ4c+1, z = (γγ2c)2, and z = γγ4c+1. Observe that the prefixes x and y of u

and v have the same length and that this length divided by |γ| is even. Further, notice that√
x =

√
y = γc+1γγ2c and

√
z =

√
z = γγ2c. Once again by applying Lemma 2.11, we see that

v must have yz as a prefix. Since
√

u =
√

v, it follows that xz is a prefix of u. Now the prefix xz

of u must be followed by z implying that yz2 is a prefix of v. Thus the known prefixes of u and v

(of the same length) end with zz and z2. These suffixes must respectively be followed by z and z

yielding known suffixes zz and zz. Now zz must be followed by z, and as
√

u =
√

v, the known
suffix zz must be followed by z. One more similar argument shows that the pattern repeats: the

5See the proof of [5, Theorem 44] for precise details.
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next known suffixes must be zz and z2. This shows that u = x(zzzz)ω and v = y(zzzz)ω. Since
u and v are ultimately periodic and in Ωγ, it must be that {u, v} = {Sω, Lω}. This is clearly
impossible.

The next theorem says that the square root map is not injective on ΩA but that it is almost
injective: only words of restricted form may have more than one preimage and even then there
are at most two preimages. In the Sturmian case, all words have at most one preimage.

Theorem 3.8. If w is a word in ΩA having two preimages u and v in Ω under the square root map, then

u = zSΓ1 and v = zSΓ2 where zS is a suffix of some γk such that z ∈ Π(a, b).

Proof. First of all, notice that
√

SΓ1 =
√

SΓ2 because
√

SL =
√

SS. Thus we only need to show
that words having two preimages must be of the claimed form. Assume that u and v are distinct
words in Ω having the same square root in ΩA. Suppose first that u and v are products of
the words S and L. Let next γ = γk for some k ≥ 0, and assume that the words u and v are
products of γ and γ and that they have a minimal common prefix. In other words, we have
u = γγ · · · and v = γγ · · · . Lemma 3.7 implies that u = γγγ2cγ · · · and v = γγγ2cγ · · · .
In other words, u = γγk+1 · · · and v = γγk+1 · · · . Moreover, both u and v must be preceded
by γk+1γ−1. Thus the words γk+1γ−1u and γk+1γ−1v have prefixes γk+1γk+1 and γk+1γk+1
respectively. Since |γk+1|/|γ| is odd, we see that

√
γk+1γ−1u =

√
γk+1γ−1v. Therefore we can

repeat our argument so far with γk+1 in place of γ. The conclusion is that u = γΓ1 and v = γΓ2
(or u = γΓ2 and v = γΓ1). Moreover, we have shown that Γ1 and Γ2 uniquely extend to the left
by γi for all i ≥ 1. Therefore if we allow u and v to have arbitrarily long common prefix, it must
be that u = zSΓ1 and v = zSΓ2, where zS is a suffix of some γk such that z ∈ Π(a, b).

Suppose then that one of the words u and v is not in ΩS. If u is not a product of S and L,
then neither can its square root be, so actually neither u nor v is in ΩS. Because words of type
(D) map to periodic words by Theorem 2.9, it must be that u and v are of type (B) or (C). Thus
u = xw′ and v = yw′′ for words w′ and w′′ in ΩS and words x and y such that x, y ∈ Π(a, b)
and |x|, |y| < 2|S|. Now

√
u =

√
v so, since |√x|, |√y| < |S| and infinite products of S and

L synchronize, we conclude that
√

x =
√

y and
√

w′ =
√

w′′. Thus by the arguments of the
preceding paragraph, we have, say, u = xzSΓ1 and v = yzSΓ2 for some z ∈ {SS, SL, LS}∗. Since
Γ uniquely extends to the left by γi for all i ≥ 1, we see that u and v are of the claimed form.

Let us state separately an observation made in the proof of Theorem 3.8 that is helpful when
we next characterize the points that are in the limit set.

Corollary 3.9. In Ω, the word Γ is uniquely extended to the left by γk for all k ≥ 0.

The limit set Λ is the set of words that have arbitrarily long chains of preimages, that is,

Λ =
∞⋂

n=0

n
√

Ω.

In the Sturmian case, the limit set contains only the two fixed points of the square root map.
For the subshift Ω, the limit set is much larger. In fact, the limit set contains all words that are
products of the words S and L. Proving this result is our next aim.

Theorem 3.10. We have Λ = ΩS.

We begin with a lemma after which we proceed to prove Theorem 3.10.

Lemma 3.11. If w ∈ ΩS and w has Γ as a suffix, then w ∈ Λ.
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Proof. Since both w and Γ are in ΩS and the factorization of a word as a product of the words S

and L is unique, we see that w = zΓ for some z ∈ {S, L}∗. Let z′ be a suffix of some γk of length
2|z|. By Corollary 3.9, we have z′Γ ∈ Ω. Now

√
z′Γ =

√
z′Γ and |

√
z′| = |z|, so

√
z′ = z by

Corollary 3.9. Thus w has a preimage of the same form.

Proof of Theorem 3.10. Suppose first that w ∈ Ω \ ΩS. Since the square root of a word in ΩS is
also in ΩS, we see that all preimages of w are in Ω \ ΩS. It is thus an immediate consequence of
Theorem 3.2 that every backward orbit of w is finite, that is, w /∈ Λ.

Suppose then that w ∈ ΩS. The only periodic words in ΩS are the fixed points Sω and Lω

which clearly have a preimage. It is thus enough to assume that w is aperiodic and to find two
sequences (un) and (vn) with the following properties:

• un is a prefix of w for all n ≥ 1 and the sequence (|un|) is strictly increasing,

• vn ∈ L(Ω) and
√

vn = un for all n ≥ 1.

By compactness, a subsequence of (vn) converges to an infinite word v in Ω with the property
that

√
v = w. Therefore w has a preimage in Ω so, as w was arbitrary, we conclude that w ∈ Λ.

We may assume that w does not have Γ as a suffix by Lemma 3.11. Since w 6= Γ, there exists
maximal k1 such that the γk1-factorization of w starts at the beginning of w. Let j1 be the starting
position of the γk1+1-factorization of w. By the maximality of k1, we have j1 ∈ {1, 2, . . . , 2c}|γk1

|.
Let u1 be the prefix of w of length j1 and v1 be the suffix of γ2

k1+1 of length 2|u1|. We have
v1 ∈ Π(a, b) by Lemma 2.8, so

√
v1 = u1 as u1 is a suffix of γk1+1. Again since Γ is not a suffix

of w, we see that there exists maximal k2 such that the γk2-factorization of w starts at position
j1. The γk2+1-factorization of w begins at position j2 where j2 = j1 + t|γk2 | with 1 ≤ t ≤ 2c. Set
again u2 to be the prefix of w of length j2 and v2 to be the suffix of γ2

k2+1 of length 2|u2|. By the
definition of j2, the word u2 is a suffix of γk2+1. Observe that |u2| is a multiple of |γk1 |, so |v2|
is an even multiple of |γk1

|. Since γ2
k2+1 is a product of the words γk1

and γk1
, it follows that√

v2 = u2. Repeating these arguments, we obtain the desired sequences (un) and (vn).

Finally, we consider invariant subsets and show that the limit set Λ is not simple in the sense
that it contains infinitely many invariant subsets. We first show how to decompose Ωγ into two
invariant sets.

Let Ak be the set of words in Ωγk
that have one of the following words as a prefix: γkγ2c

k γk,
γkγ2c

k γk, or γkγ2c
k γk. Let us find the prefixes of length (2c+ 2)|γk| of the preimages of the words

in Ak. Let w be a word in Ωγ (now γ = γk) such that
√

w ∈ Ak. Say
√

w has γγ2cγ as a prefix so
that the prefix of w of length 2(2c+ 2)|γ| is of the form γ⋄(γ⋄)2cγ⋄. By Lemma 2.11, this prefix
must equal γγ2c⋄γ2cγγ with ⋄ ∈ {γ, γ}, and it follows that w ∈ Ak. Suppose next that w has
a prefix of the form γ⋄(γ⋄)2cγ⋄. Like previously, this prefix must take the form γγ2c(⋄γ)c+1⋄.
If w has γγ2cγ as a prefix, then it has γγ4c+1γ as a prefix by Lemma 2.11. This is clearly a
contradiction, so γγ2cγ is a prefix of w, which in turn implies that w ∈ Ak. Consider the last case
where w has a prefix of the form γ⋄(γ⋄)2cγ⋄. Again, it must be that the prefix takes the form
(γ⋄)c+1γ2cγγ. If the prefix of length (2c+ 1)|γ| is followed by γ, then w must begin with γ by
Lemma 2.11. As this is impossible, we see that again w ∈ Ak. We have thus proved that Ωγ \ Ak

is invariant under the square root map. It is straightforward to see that also Ak is invariant.
Let us show next that Ak = Ωγk+1 for all k ≥ 0. It is clear that Ak ⊆ Ωγk+1. Let w ∈ Ωγk+1,

and consider its prefix of length (2c+ 2)|γk|. If γk begins at position t|γk| of w with 0 < t ≤ 2c,
then clearly w /∈ Ωγk+1. If γk is a prefix of w, then obviously w ∈ Ak. If γk occurs at position
(2c+ 1)|γk| of w, then w has either γkγ2c

k γk or γkγ2c
k γk as a prefix, and w ∈ Ak. Thus we are

left with the case that γ2c+2
k is a prefix of w. Now w has prefix γ2c+2+r

k γk for some r ≥ 0. As
w ∈ Ωγk+1, we see that 2c+ 2 + r is a multiple of 2c+ 1. Further by Lemma 2.11, it must be that
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2c+ 2 + r = 2(2c+ 1), which implies that r = 2c. Thus w has γ4c+2 as a prefix, which contradicts
Lemma 2.11.

Putting together the results of the preceding two paragraphs yields the following result.

Proposition 3.12. We have the disjoint union

Λ = {Γ1, Γ2} ∪
∞⋃

k=0

Ωγk
\ Ωγk+1

of subsets invariant under the square root map.

Proof. Notice that Λ = Ωγ0 by Theorem 3.10. Using the above arguments, we can write Ωγk
=

Ak ∪ (Ωγk
\ Ak) = Ωγk+1 ∪ (Ωγk

\ Ωγk+1) for all k ≥ 0. The sets in the union are disjoint and
invariant. Clearly the words in Λ \⋃∞

k=0 Ωγk
\Ωγk+1 are exactly the words whose γk-factorization

begins at the beginning for all k ≥ 0. These words are by construction the two fixed points Γ1
and Γ2. They clearly form an invariant subset.

4 Periodic Points

In this section, we characterize the periodic points of the square root map in Ω. The result is that
the only periodic points are fixed points. We further characterize asymptotically periodic points
and show that all asymptotically periodic points are ultimately periodic points.

Recall that a word w is a periodic point of the square root map with period n if n
√

w = w.

Theorem 4.1. If w is a periodic point in Ω, then w ∈ {Γ1, Γ2, Sω, Lω}.

Proof. By Theorem 3.2, no word in Ω \ ΩS can be a periodic point. Thus we assume that w is
a word in ΩS such that n

√
w = w for some integer n ≥ 1. Suppose for a contradiction that

w /∈ {Γ1, Γ2, Sω, Lω}. It follows that there exists maximal k such that the γk-factorization of w

starts at the beginning of w. Since the square root map acts essentially the same way on products
of γ and γ and on products of S and L due to Lemma 2.8, we may assume that k = 0. For i ≥ 1,
let ki be such that the starting position of the γi-factorization of w equals ki|S|. In particular, we
have ki 6= 0 for all i ≥ 1.

Write w = a0a1 . . . for at ∈ {S, L}, and let i ≥ 1. Define the infinite word ui as the subword
aki

a2ki
a4ki

· · · a2tki
· · · . Since n

√
w = w, we see that the relation at = a2nt holds for all t ≥ 0. Hence

the word ui has the property that ui = Tn|S|(ui) for all i ≥ 1, i.e., it is purely periodic. We shall
show that this is impossible, and thus that w does not exist.

Because the γi-factorization of w begins at position ki|S|, we actually know most of the con-
tents of the word ui without knowing anything particular about the γi-factorization of w. The
word ui is obtained by concatenating the factors of length |S| of γi or γi occurring at positions
given by the sequence (dt|S|) where dt is given by the sequence ((2t − 1)ki)t≥0 modulo (2c+ 1)i.
Thus there is ambiguity only when (2t − 1)ki ≡ 0 (mod (2c+ 1)i). Let pi be the minimal period
of the sequence (dt). We have

ui =
∞

∏
t=1

⋄tvi (4)

where ⋄t ∈ {S, L} and vi is a word of length pi − 1 over {S, L}. Notice that pi > 1 because ki 6= 0.
Let us next see what the word vi is like.

Suppose first that i = 1. Since γ1 = LS2c, we see that vi = Sp1−1. Let then i > 1, so we have
γi = γi−1γ2c

i−1. Observe that ki ∈ ki−1 + {0, . . . , 2c}(2c+ 1)i−1 so, by basic modular arithmetic,
it is straightforward to see that pi−1 divides pi. We see that the word vi has the word vi−1 as
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a prefix since the prefix of vi of length (pi − 1)|S| is determined by the positions (2 − 1)ki|S|,
(4 − 1)ki|S|, . . ., (2pi−1 − 1)ki|S| of γi, with the coefficients of |S| taken modulo (2c+ 1)i, that is,
by the same positions of γi−1. Suppose then that pi > pi−1. By the form of γi, the next factor of vi

of length (pi/pi−1)|S| is determined by the positions (1− 1)ki|S|, (2− 1)ki|S|, . . ., (2pi−1 − 1)ki|S|
of γi−1. Repeating this reasoning, it follows that vi = vi−1(bvi−1)

pi/pi−1−1 where b = S if γi−1
begins with S and L otherwise. The words vi can be generated as follows. Let v′0 = S. If v′i is
defined, then v′i+1 = L(v′i)v

′
i
pi/pi−1−1. Now vi is obtained from v′i by deleting its first |S| letters. It

is straightforward to show that the words v′i are primitive.
Let us show next that the words ⋄t of (4) take both values S and L infinitely often. For this,

we need to prove the following claim.

Claim. The sequence (pi) is increasing.

Proof. By the Chinese Remainder Theorem, it is sufficient to show that the sequence (pi) is in-
creasing in the case that 2c+ 1 = pℓ for a prime p. Suppose that gcd(k1, 2c+ 1) = pa. Since
k1 < 2c+ 1, we have a < ℓ. Suppose for a contradiction that gcd(ki, (2c+ 1)i) > pa for some
i > 1. Then pa+1 divides ki. Since ki = ki−1 + rpℓ(i−1) for some r ∈ {0, . . . , 2c}, it follows
that pa+1 divides ki−1. Consequently, we see that pa+1 divides k1; a contradiction. Therefore
gcd(ki, (2c+ 1)i) = pa for all i ≥ 1. Pick j so large that (2c+ 1)j/pa > 2pi − 1. Then it must be
that (2pi − 1)kj 6≡ 0 (mod (2c+ 1)j), so pj > pi.

The claim implies that there exists j such that pj+1 > pj > pi. Since pj > pi, there exists
infinitely many t such that (2tpi − 1)ki ≡ 0 (mod (2c+ 1)i) and (2tpi − 1)ki 6≡ 0 (mod (2c+ 1)j).
Thus for these t, the word ⋄t equals the first |S| letters of the word γj−1. Similarly there exists
infinitely many t such that (2tpi − 1)ki ≡ 0 (mod (2c+ 1)i) and (2tpi − 1)ki 6≡ 0 (mod (2c+
1)j+1). For these numbers t, the word ⋄t equals the first |S| letters of the word γj. Since γj−1
begins with S and γj begins with L or vice versa, the words ⋄t indeed take both values S and L

infinitely often.
Let us show next that if ui is purely periodic with period m, then pi|S| divides m. Assume

on the contrary that pi|S| does not divide m. This means by (4) that for all large enough r the
word ⋄rvi is an interior factor of ⋄svi ⋄s+1 vi for some s. Let j be the largest integer such that
|v′j| < |v′i|. Due to the primitivity of the word v′j, we see that the position where ⋄rvi occurs at is
a multiple of |v′j|. We conclude that ⋄r is uniquely determined by the first |S| letters of v′j. This is
a contradiction because ⋄t takes both values S and L infinitely often. Therefore pi|S| divides m.

Recall that, for all i ≥ 1, ui is purely periodic with period n. By the arguments of the previous
paragraph, the number pi divides n for all i ≥ 1. This is absurd as the sequence (pi) is increasing.
This contradiction concludes the proof.

The case with the Sturmian periodic points is similar: periodic points are fixed points and the
fixed points are obtained as limits from solutions of (3).

Next we consider the dynamical notion of an asymptotically periodic point and characterize
asymptotically periodic points in Ω.

Definition 4.2. Let (X, f ) be a dynamical system. A point x in X is asymptotically periodic if there
exists a periodic point y in X such that

lim
n→∞

d( f n(x), f n(y)) = 0.

If this is the case, then we say that the point x is asymptotically periodic to y.

The following proposition essentially says that if a word in Ω is asymptotically periodic, then
it is an ultimately periodic point. The situation is opposite to the Sturmian case where all words
are asymptotically periodic and only periodic points are ultimately periodic points.
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Proposition 4.3. If w ∈ ΩS, then w is asymptotically periodic if and only if w ∈ {Γ1, Γ2, Sω, Lω}, that

is, if and only if w is a periodic point. If w ∈ Ω \ ΩS, then w is asymptotically periodic to Sω or Lω .

Proof. Let w ∈ Ω \ ΩS. By Theorem 3.2, there exists an integer n such that n
√

w ∈ {Sω , Lω}, so w

is asymptotically periodic to Sω or Lω . Suppose then that w in ΩS is aperiodic and asymptotically
periodic. By Theorem 4.1, this means that the sequence ( n

√
w)n converges to Γ. Observe that if

w /∈ Ωγ, then also
√

w /∈ Ωγ. From the fact that Γ ∈ Ωγk
for all k ≥ 0 we thus conclude that

w ∈ Ωγk
for all k ≥ 0 which means that w = Γ.

5 Solutions to the Word Equation in L(Ω)

This section contains a characterization of long enough solutions to the word equation (3) in
L(Ω). The construction of the fixed points Γ1 and Γ2 introduces the solutions S, L, γ1, γ2, . . . into
L(Ω). The main result of this section, Theorem 5.4, tells that these are essentially all solutions to
(3) in L(Ω), the construction does not introduce any additional, or accidental, solutions.

Let us first characterize squares in Ω∗.

Lemma 5.1. Let u be primitive. Then u2 ∈ L(Ω∗) if and only if u is conjugate to τk(S) for some k ≥ 0.

Proof. Observe that (τk(S))3 ∈ L(Ω∗) for all k ≥ 0 because (τk(S))4c+1 occurs between two
occurrences of τk(L); see Lemma 2.11. Therefore if u is conjugate to τk(S), then u2 ∈ L(Ω∗).

Suppose that u2 ∈ L(Ω∗) with u primitive. If u = τ(v) for some word v, then v2 ∈ L(Ω∗)
and, by induction, v is conjugate to τk(S) for some k ≥ 0. This means that u must be conjugate
to τk+1(S). Assume that u is not of the form τ(v). If u = S, then the claim holds. Otherwise u

must contain at least one occurrence of the letter L, and it is possible to factorize u = xτ(u′)ay for
some words u′, x, and y and letter a such that ayx equals τ(S) or τ(L). Let b be a letter such that
b 6= a. By the simple form of the substitution τ, we see that (u′b)2 ∈ L(Ω∗). By induction, u′b is
conjugate to τk(S) for some k ≥ 0. Consequently, bu′ is conjugate to τk(S), which in turn implies
that τ(bu′), which equals ayxτ(u′), is conjugate to τk+1(S). Now u and ayxτ(u′) are conjugate,
proving the claim.

The next theorem, which is quite general, could be of independent interest in characterizing
solutions to (3) more generally.

Theorem 5.2. If u is a word that is a product of the words S and L and a primitive solution to (3), then

none of its proper conjugates are solutions to (3), except in the case that u ∈ {S, L} when S and L are the

only conjugates of u that are solutions to (3).

Proof. Suppose that u is a word that is a product of the words S and L and a primitive solution
to (3). If u ∈ {S, L}, then the only conjugates of u that are solutions to (3) are S and L by [5,
Theorem 18]. We may thus suppose that u /∈ {S, L}. Let v be a proper conjugate of u, and assume
for a contradiction that v is a solution to (3).

Suppose first that v is a product of the words S and L. Consider u and v as words over the
alphabet {S, L}. The length of u (as a word over {S, L}) must be odd, as otherwise we would have
u = (

√
u)2 contradicting the primitivity of u. Since both u and v are solutions to (3), we have

u[i] = u[2i] and v[i] = v[2i] for i ∈ {0, 1, . . . , |u| − 1} (here the indices are naturally interpreted
modulo |u|). Since v is a proper conjugate of u, we have v[i] = u[i+ ℓ] for some ℓ ∈ {1, 2, . . . , |u| −
1}. Therefore u[2i] = u[i] = v[i − ℓ] = v[2i − 2ℓ] = u[2i − ℓ] so, as the length of u is odd, we
conclude that u[j] = u[j − ℓ] for all j ∈ {0, 1, . . . , |u| − 1}. This implies that u is a power of a word
of length gcd(ℓ, |u|), which contradicts the primitivity of u.

Assume then that v is not a product of the words S and L. Consider an arbitrary infinite word
w that is a product of the words S and L and has u5 as a prefix. Suppose that v occurs at position
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ℓ of u2, so that the word Tℓ(w) has v4 as a prefix. Since v is not a product of the words S and
L, the word Tℓ(w) is not in {S, L}ω . Moreover, as v is a solution to (3), the words

√
Tℓ(w) and

2
√

Tℓ(w) have v as a prefix. Now Lemma 3.5 implies that 2
√

Tℓ(w) is periodic. By Theorem 2.10,
the minimal period of 2

√
Tℓ(w) is conjugate to S. As |S| divides |v| and v is primitive, we conclude

that |v| = |S|. This contradicts the assumption that u /∈ {S, L}.

Notice that the final paragraph of the proof of Theorem 5.2 does not use the fact that u is a
solution to (3). Thus we obtain the following corollary.

Corollary 5.3. If u is not a product of the words S and L but is conjugate to such a product, then u is not

a solution to (3).

Theorem 5.4. If u is a primitive solution to (3) in L(Ω) such that |u| ≥ 2|S|, then u = γk for some

k ≥ 1.

Proof. Suppose that u is a primitive solution to (3) in L(Ω) such that |u| ≥ 2|S|. In particular,
u2 ∈ L(Ω). First we aim to show that |u| is a multiple of |S|. The word u2 is a factor of a product
of the words S and L. If two consecutive words S or L from the product are completely contained
in u, then |u| is a multiple of |S| by Lemma 2.12. Suppose this is not the case. Since |u| ≥ 2|S|, the
word u2 is a factor of a word ⋄1⋄2⋄3⋄4⋄5, ⋄i ∈ {S, L}, such that ⋄2 and ⋄4 are completely contained
in u. It follows that ⋄4 is an interior factor of ⋄1⋄2 or ⋄2⋄3. Consider the former case. Now also ⋄2
is an interior factor of ⋄4⋄5. Observe that ⋄4 cannot occur at position 1 of ⋄1⋄2 because ⋄1 and ⋄4
may differ only by their first two letters; their common suffix of length |S| − 2 would otherwise
be unary. Thus ⋄2 6= ⋄4 as otherwise ⋄2 would be an interior factor of its square contradicting
the primitivity of ⋄2. Exactly symmetric argument shows that ⋄2 6= ⋄5. By Lemma 2.11, we see
that ⋄4 = ⋄5 = S and ⋄2 = L. Further, we have ⋄1 = ⋄3 = S. The occurrence of ⋄2 as an interior
factor of ⋄4⋄5 must be followed by the first letter of ⋄2. Hence the letter following the prefix ⋄1⋄2
of ⋄1⋄2⋄3⋄4⋄5 must be the first letter of ⋄2. This is a contradiction as ⋄2 6= ⋄3. In the latter case,
we analogously conclude that ⋄3 6= ⋄4 and ⋄2 6= ⋄4. This implies that ⋄2 = ⋄3 = ⋄5 = S and
⋄4 = L. Again the occurrence of ⋄4 as an interior factor of ⋄2⋄3 must be followed by the first letter
of ⋄4, but this is impossible as the prefix ⋄1⋄2⋄3⋄4 of ⋄1⋄2⋄3⋄4⋄5 is followed by the first letter of
⋄5. Thus we have shown that |u| is a multiple of |S|.

Now u is conjugate to a product of the words S and L. If u is not itself a product of the words
S and L, then it is not a solution to (3) by Corollary 5.3. Therefore u is a product of the words
S and L, and there exists a word v in L(Ω∗) such that σ(v) = u and v2 ∈ L(Ω∗). Lemma 5.1
implies that u is conjugate to γk for some k ≥ 1, and Theorem 5.2 shows that u = γk.

It is certainly possible that L(Ω) contains short solutions to (3) that are not conjugates of S or
L. First of all, the solution S, as a reversed standard word, can have squares of shorter reversed
standard words as factors; these are also solutions to (3) in L(Ω). Secondly, it is possible that
there is a solution u such that |S| < |u| < 2|S|. For instance, if S = 01010010, then L(Ω) contains
the solution 01010010010 of length 11 as a factor of SLSS.

6 Further Remarks

In this paper, we constructed the fixed points Γ1 and Γ2 using the simple substitution S 7→ LS2c,
L 7→ S2c+1. We observe that any word w = a0a1a2 · · · over {S, L} satisfying ai = a2i for all i has
the property

√
w = w (see the remark of the final paragraph of Subsection 2.3). There are many

other substitutions with suitable properties. Indeed, let n be an odd positive integer, and consider
a word u of length n over {S, L} having the property that

√
u2 = u. For each multiplicative set of

Zn given by the element 2, we can make an independent choice of a letter in {S, L}. For instance,
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if n = 7, then we have sets {0}, {1, 2, 4}, and {3, 5, 6} meaning that the word ⋄0⋄1⋄1⋄2⋄1⋄2⋄2
is suitable for any choice of ⋄0, ⋄1, and ⋄2 in {S, L}. Letting ⋄1 = S and ⋄2 = L thus gives the
substitution

S 7→ LSSLSLL, L 7→ SSSLSLL,

which again generates two fixed points of the square root map (after S and L are substituted by
suitable solutions to (3)). Mixing the applications of substitutions generated like this gives rise to
even larger class of fixed points.

It is quite unclear which of the results given generalize to this larger class of fixed points and
the associated subshifts. Theorem 3.2 still applies, but it is unknown if variants of Theorems 3.8
and 4.1 hold in general. It seems that a proof analogous to that of Theorem 4.1 works in the case
of a single generating substitution, but it is unclear if it works with two substitutions.

Unlike in Theorem 5.4, there can in general be other solutions to (3) than those given directly
by the generating substitution. This is because the substitution might itself have other solution
generating patterns embedded. Consider for instance the substitution

τ :
S 7→ LSSLSSLSS

L 7→ SSSLSSLSS

and the associated subshift Ω with the periodic part adjoined. The images of the letters have the
word (LSS)2 as a suffix. Now LSS is a solution to (3), so τk(LSS) is a solution to (3) for all k ≥ 0.
Since (τk(LSS))2 ∈ L(Ω) for all k ≥ 0, we see that L(Ω) contains arbitrarily long solutions to
(3) that are not equal to τk(S) or τk(L). Notice that these additional solutions cannot be used to
produce additional fixed points as limits.

There are many additional dynamical systems concepts that could be studied in our symbolic
square root map setting. This time we finish our inquiry by making a remark on topological tran-
sitivity and topological mixing. A dynamical system (X, f ) is topologically transitive if for every
nonempty open sets A and B there exists an integer n such that f n(A) ∩ B 6= ∅. The dynamical
system (Ω,

√·) is not topologically transitive because the words beginning with 0 never map to
words beginning with 1 (the cylinder sets [0] and [1] are open sets); Proposition 3.12 provides
additional open sets with the same property. The same examples show that (Ω,

√·) is not topo-
logically mixing. A dynamical system (X, f ) is topologically mixing if for any two nonempty open
sets A and B there exists an integer n such that f N(A) ∩ B 6= ∅ for all N ≥ n.

7 Open Problems

In Section 3, we gave some example values for the time n it takes any word in {S, L}ω \ {S, L}ω to
map to Sω or Lω in the case that S is a reversed Fibonacci word. We conjecture that the quantity

log2

(
1 − α

min{|[S]|, |[L]|}

)

given in Remark 3.6 is close to the real value in general. Let us compute this quantity for the
reversed Fibonacci words for comparison. In the case of the Fibonacci words, the slope α has
continued fraction expansion [0; 2, 1, 1, 1, . . .], that is, α = 2 − ϕ where ϕ is the golden ratio (1 +√

5)/2. We replace the truncation α by α. It is not difficult to see that min{|[S]|, |[L]|} = ‖Fkα‖
for a Fibonacci number Fk; here the norm ‖ · ‖ measures the distance to closest integer. From
elementary properties of continued fractions, it is straigthforward to derive that ‖Fkα‖−1 = ϕFk +

Fk−1 (save for some small values of k). Thus the above quantity now (approximately) equals

log2((ϕ − 1)(ϕFk + Fk−1))
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|S| 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

n 3.47 4.16 4.85 5.55 6.24 6.94 7.63 8.33 9.02 9.71 10.41 11.11 11.80 12.50 13.19

Table 2: Estimation of the relation of |S| and n of Theorem 3.2 when S is a reversed Fibonacci
word. The first two digits are correct.

for k such that |S| = Fk. Table 2 contains the values of this quantity for several Fk. Comparing
these to the real values in Table 1, we see that at least in this special case our conjecture seems
valid. The values of Table 1 seem to match the sequence A020909 in Sloane’s On-Line Encyclopedia

of Integer Sequences [10]. This sequence gives the number of bits in the base 2 representations of
the Fibonacci numbers suggesting that the real value is 1 + log2 Fk−1. The difficulty here lies in
the first part of the proof of Theorem 3.2 where we showed that eventually n

√
w must be periodic.

Unless we know that n
√

w is periodic, we cannot transfer the situation to the system of rational
rotations where it is easy to estimate how long it takes for a word to map to Sω or Lω. Based on
our computer experiments, it seems that typically w maps to a periodic quite early suggesting
that the above quantity should be close to the truth. We have observed examples where it takes a
longer time for w to become periodic, but in these cases the interval corresponding to the minimal
period is already quite close to [S] or [L] on the circle balancing the situation. Overall, we do not
have a clear picture of the situation. We propose the following open problem.

Open Problem. Prove a good estimate on the number of steps required for any word in {S, L}ω \ {S, L}ω

to map to Sω or Lω .

Regarding the preimages of the word in the periodic part ΩP we left uncharacterized, it would
be interesting to know which words of ΩP are images of words in ΩA. Thus we propose the
following open problem.

Open Problem. Characterize the set
√

Ω \ ΩA. How large is this set?

In the case that S is a reversed Fibonacci word, it seems that

|
√

Ω \ ΩA| ∈ {|S|/2, (|S|+ 1)/2, (|S| − 1)/2},

so the size of
√

Ω \ ΩA seems to be approximately half of the size of ΩP.

Acknowledgments

The work of the first author was supported by the Finnish Cultural Foundation by a personal
grant. He also thanks the Department of Computer Science at Åbo Akademi for its hospitality.
The second author was partially supported by the Vilho, Yrjö and Kalle Väisälä Foundation. Jyrki
Lahtonen deserves our thanks for fruitful discussions.

References

[1] G. Fici et al. Abelian powers and repetitions in Sturmian words. Theoretical Computer Science 635 (2016),
16–34.
DOI: 10.1016/j.tcs.2016.04.039.

[2] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications 90.
Cambridge University Press, 2002.

[3] J. Peltomäki. Characterization of repetitions in Sturmian words: A new proof. Information Processing

Letters 115.11 (2015), 886–891.
DOI: 10.1016/j.ipl.2015.05.011.

21

https://oeis.org/A020909
http://dx.doi.org/10.1016/j.tcs.2016.04.039
http://dx.doi.org/10.1016/j.ipl.2015.05.011


[4] J. Peltomäki. Privileged Words and Sturmian Words. Ph.D. dissertation. Turku, Finland: Turku Centre
for Computer Science, University of Turku, 2016.
URL: http://urn.fi/URN:ISBN:978-952-12-3422-4.

[5] J. Peltomäki and M. Whiteland. A square root map on Sturmian words. The Electronic Journal of Com-

binatorics 24.1 (2017).
URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p54 .

[6] J. Peltomäki and M. Whiteland. More on the dynamics of the symbolic square root map. (Extended
abstract). Combinatorics on Words. Proceedings of the 11th International Conference, WORDS 2017. Lecture
Notes in Computer Science 10432. Springer, 2017, pp. 97–108.
DOI: 10.1007/978-3-319-66396-8.

[7] N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathemat-
ics 1794. Springer, 2002.
DOI: 10.1007/b13861.

[8] K. Saari. On the Frequency and Periodicity of Infinite Words. Ph.D. dissertation. Turku, Finland: Turku
Centre for Computer Science, University of Turku, 2008.
URL: http://users.utu.fi/kasaar/pubs/phdth.pdf.

[9] K. Saari. Everywhere α-repetitive sequences and Sturmian words. European Journal of Combinatorics 31
(2010), 177–192.
DOI: 10.1016/j.ejc.2009.01.004.

[10] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.
URL: http://oeis.org.

22

http://urn.fi/URN:ISBN:978-952-12-3422-4
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p54
http://dx.doi.org/10.1007/978-3-319-66396-8
http://dx.doi.org/10.1007/b13861
http://users.utu.fi/kasaar/pubs/phdth.pdf
http://dx.doi.org/10.1016/j.ejc.2009.01.004
http://oeis.org

	1 Introduction
	2 Notation and Preliminary Results
	2.1 Sturmian Words and Standard Words
	2.2 Optimal Squareful Words and the Square Root Map
	2.3 The Subshift Omega

	3 The Limit Set, Invariant Subsets, and Injectivity
	4 Periodic Points
	5 Solutions to the Word Equation in Lang(Omega)
	6 Further Remarks
	7 Open Problems

