
Minimal Forbidden Factors of Circular WordsI

Gabriele Ficia,∗, Antonio Restivoa, Laura Rizzoa

aDipartimento di Matematica e Informatica, Università di Palermo
Via Archirafi 34, 90123 Palermo, Italy

Abstract

Minimal forbidden factors are a useful tool for investigating properties of words and languages. Two facto-
rial languages are distinct if and only if they have different (antifactorial) sets of minimal forbidden factors.
There exist algorithms for computing the minimal forbidden factors of a word, as well as of a regular facto-
rial language. Conversely, Crochemore et al. [IPL, 1998] gave an algorithm that, given the trie recognizing a
finite antifactorial language M , computes a DFA recognizing the language whose set of minimal forbidden
factors is M . In the same paper, they showed that the obtained DFA is minimal if the input trie recognizes
the minimal forbidden factors of a single word. We generalize this result to the case of a circular word. We
discuss several combinatorial properties of the minimal forbidden factors of a circular word. As a byprod-
uct, we obtain a formal definition of the factor automaton of a circular word. Finally, we investigate the
case of minimal forbidden factors of the circular Fibonacci words.

Keywords: Minimal forbidden factor; finite automaton; factor automaton; circular word; Fibonacci words.

1. Introduction

Minimal forbidden factors are a useful combinatorial tool in several areas, ranging from symbolic dy-
namics to string processing. They have many applications, e.g. in text compression (where they are also
known as antidictionaries) [13], in bioinformatics (where they are also known under the name minimal
absent words) [7, 1], etc. Given a word w, a word v is called a minimal forbidden factor of w if v does not
appear as a factor in w but all the proper factors of v do. For example, over the alphabet A = {a, b}, the
word w = aabbabb has the following minimal forbidden factors: aaa, aba, baa, babba, bbb.

The theory of minimal forbidden factors is well developed, both from the combinatorial and the al-
gorithmic point of view (see, for instance, [4, 3, 12, 13, 22, 17]). In particular, there exist algorithms for
computing the minimal forbidden factors of a single word [25, 19, 1, 2], as well as of a regular factorial
language [3]. Conversely, Crochemore et al. [12], gave an algorithm, called L-AUTOMATON that, given a
trie (tree-like automaton) recognizing a finite antifactorial set M , builds a deterministic automaton recog-
nizing the language L whose set of minimal forbidden factors is M . The automaton built by the algorithm
is not, in general, minimal. However, if M is the set of minimal forbidden factors of a single word w, then
the algorithm builds the factor automaton of w, i.e., the minimal deterministic automaton recognizing the
language of factors of w (see [12]).

IA preliminary version of this paper was presented at the 11th International Conference on Words, WORDS 2017 [18].
∗Corresponding author.
Email addresses: gabriele.fici@unipa.it (Gabriele Fici), antonio.restivo@unipa.it (Antonio Restivo),

rizzolaura88@gmail.com (Laura Rizzo)

Preprint submitted to Theoretical Computer Science May 28, 2018

ar
X

iv
:1

70
7.

04
45

0v
3

 [
cs

.F
L

]
 2

5
M

ay
 2

01
8

The notion of a minimal forbidden factor has been recently extended to the case of circular words
(a.k.a. necklaces) [10, 23, 24]. A circular word can be seen as a sequence of symbols drawn on a circle,
where there is no beginning and no end. Although a circular word can be formally defined as an equivalence
class of the free monoid under the relation of conjugacy, the fact that in a circular word there is no beginning
and no end leads to a less clear definition of the notions like prefix, suffix and factor. For this reason, we
consider the set of factors of a circular word w as the (infinite) set of words that appear as a factor in some
power of w. Although this set is infinite, we show that its set of minimal forbidden factors is always finite,
as it coincides with the set of minimal forbidden factors of the word ww that have length bounded by the
length of w.

As a main result, we prove that if M is the set of minimal forbidden factors of a circular word, then
algorithm L-AUTOMATON with input a trie recognizing M builds the minimal automaton accepting the
set of factors of the circular word. To this end, we use combinatorial properties of the minimal forbidden
factors of a circular word. This also allows us to show that it is possible to retrieve a circular word from its
set of minimal forbidden factors in linear time with respect to the length of (any linearization of) the word.

Finally, we explore the case of circular Fibonacci words, and give a combinatorial characterization of
their minimal forbidden factors.

2. Preliminaires

Let A be a finite alphabet, and let A∗ be the free monoid generated by A under the operation of con-
catenation. The elements of A∗ are called words over A. The length of a word w is denoted by |w|. The
empty word, denoted by ε, is the unique word of length zero and is the neutral element of A∗. If x ∈ A and
w ∈ A∗, we let |w|x denote the number of occurrences of x in w.

A prefix (resp. a suffix) of a word w is any word u such that w = uz (resp. w = zu) for some word z.
A factor of w is a prefix of a suffix (or, equivalently, a suffix of a prefix) of w. From the definitions, we
have that ε is a prefix, a suffix and a factor of any word. A prefix/suffix/factor of a word is proper if it is
nonempty and does not coincide with the word itself. An occurrence of a factor u in w is a factorization
w = vuz. An occurrence of u is internal if both v and z are nonempty. The set of factors of a word w is
denoted by Fw.

The word w̃ obtained by reading w from right to left is called the reversal (or mirror image) of w. A
palindrome is a word w such that w̃ = w. In particular, the empty word is a palindrome.

The conjugacy is the equivalence relation over A∗ defined by

w ∼ w′ if and only if ∃ u, v | w = uv,w′ = vu.

When the word w is conjugate to the word w′, we say that w is a rotation of w′. An equivalence class [w]
of the conjugacy relation is called a circular word (or necklace). A representative of a conjugacy class [w]
is called a linearization of the circular word [w]. Therefore, a circular word [w] can be viewed as the set of
all the rotations of a word w.

A word w is a power of a word v if there exists a positive integer k > 1 such that w = vk. Conversely,
w is primitive if w = vk implies k = 1. Notice that a word is primitive if and only if any of its rotations
also is. We can therefore extend the definition of primitivity to circular words straightforwardly. Notice that
a word w (resp. a circular word [w]) is primitive if and only if there are precisely |w| distinct rotations in
the conjugacy class of w.

Remark 1. A circular word can be seen as a word drawn on a circle, where there is no beginning and no
end. Therefore, the classical definitions of prefix/suffix/factor of a word lose their meaning for a circular

2

word. In the literature, a factor of a circular word [w] is often defined as a factor of any linearization w
of [w]. Nevertheless, since there is no beginning and no end, one can define a factor of w as a word that
appears as a factor in wk for some k. We will adopt this point of view in this paper.

2.1. Minimal Forbidden Factors
We now recall some basic facts about minimal forbidden factors. For further details and references, the

reader may see [22, 10].
A language over the alphabet A is a set of finite words over A, that is, a subset of A∗. A language is

factorial if it contains all the factors of its words. The factorial closure of a language L is the language
consisting of all factors of the words in L, that is, the language FL = ∪w∈LFw.

The counterparts of factorial languages are antifactorial languages. A language is called antifactorial if
no word in the language is a proper factor of another word in the language. Dual to the notion of factorial
closure, there also exists the notion of antifactorial part of a language, obtained by removing the words that
are factors of another word in the language.

Definition 1. Given a factorial language L over the alphabet A, the (antifactorial) language of minimal
forbidden factors of L is defined as

ML = {a ∈ A | a /∈ L} ∪ {aub ∈ A∗ | a, b ∈ A, aub /∈ L, au, ub ∈ L}.

A minimal forbidden factor of the language L is therefore a word inML.
Every factorial language L is uniquely determined by its (antifactorial) language of minimal forbidden

factorsML, through the equation
L = A∗ \A∗MLA

∗. (1)

The converse is also true, since by the definition of a minimal forbidden factor we have

ML = AL ∩ LA ∩ (A∗ \ L). (2)

The previous equations define a bijection between factorial and antifactorial languages.
In the case of a single word w over an alphabet A, the set of minimal forbidden factors of w, that we

denote byMw, is defined as the antifactorial languageMFw . Indeed, a word v ∈ A∗ is a minimal forbidden
factor of the word w if v is a letter of A not appearing in w or v = aub, with a, b ∈ A, aub /∈ Fw and
au, ub ∈ Fw.

For example, consider the word w = aabbabb over the alphabet A = {a, b}. The set of minimal
forbidden factors of w isMw = {aaa, aba, bbb, baa, babba}.

Remark 2. Applying (1) and (2) to the language of factors of a single word, we have that, given two words
u and v, one has u = v if and only ifMu =Mv, i.e., every word can be uniquely represented by its set of
minimal forbidden factors.

An important property of the minimal forbidden factors of a word w, which plays a crucial role in
algorithmic applications, is that their number is linear in the size of w. Let w be a word of length n over
an alphabet A of cardinality σ. In [22] it is shown that the total number of minimal forbidden factors of
w is smaller than or equal to σn. Actually, O(σn) is a tight asymptotic bound for the number of minimal
forbidden factors of w whenever 2 ≤ σ ≤ n [10]. They can therefore be stored on a trie, whose number
of nodes is linear in the size of the word. Recall that a trie representing a finite language L is a tree-like
deterministic automaton recognizing L, where the set of states is the set of prefixes of words in L, the
initial state is the empty word ε, the set of final states is a set of sink states, and the set of transitions is
{(u, a, ua) | a ∈ A}.

3

0 1 2 3 4 5 6 7

8

a a b b a b b

b

b

b
a

Figure 1: The factor automaton of the word w = aabbabb. It is the minimal DFA recognizing the language Fw of factors of w.
Dashed edges correspond to the failure function links.

2.2. Automata for Minimal Forbidden Factors

Recall that a deterministic finite automaton (DFA) is a 5-tuple A = (Q,A, i, T, δ), where Q is the
finite set of states, A is the current alphabet, i is the initial state, T the set of terminal (or final) states, and
δ : (Q×A) 7→ Q is the transition function. A word is recognized (or accepted) byA if reading w character
by character from the initial state leads to a final state. The language recognized (or accepted) by A is the
set of all words recognized by A. A language is regular if it is recognized by some DFA. A DFA A is
minimal if it has the least number of states among all the DFA’s recognizing the same language as A. The
minimal DFA is unique.

It follows from basic closure properties of regular languages that the bijection between factorial and
antifactorial languages expressed by (1) and (2) preserves regularity, i.e., a factorial language is regular if
and only if its language of minimal forbidden factors also is.

The factor automaton of a word w is the minimal DFA recognizing the (finite) language Fw. The factor
automaton of a word of length n > 3 has at least1 n+ 1 and at most 2n− 2 states [9, 6]. It can be built in
O(n) time and space by an algorithm that also constructs the failure function of the automaton [11]. The
failure function of a state p (different from the initial state) is a link to another state q defined as follows:
Let u be a nonempty word and p = δ(i, u). Then q = δ(i, u′), where u′ is the longest suffix of u for which
δ(i, u) 6= δ(i, u′). It can be shown that this definition does not depend on the particular choice of u [12].
An example of a factor automaton of a word is displayed in Figure 1.

In [3], the authors gave a quadratic-time algorithm to compute the set of minimal forbidden factors of a
regular factorial language L.

However, computing the minimal forbidden factors of a single word can be done in linear time in the
length of the word. Algorithm MF-TRIE, presented in [12], builds the trie of the setMw having as input the
factor automaton of w, together with its failure function. Moreover, the states of the output trie recognizing
the setMw are the same as those of the factor automaton of w, plus some sink states, which are the terminal
states with no outgoing edges, corresponding to the minimal forbidden factors. This in particular proves
that the size of the trie recognizing the setMw is linear in the length of w, since, as already mentioned, the
size of the factor automaton ofw is linear in the length ofw. This property is not an immediate consequence
of the fact that the number of minimal forbidden factors of w is linear in the length of w, since in fact the
sum of the lengths of the minimal forbidden factors of w can be quadratic in the length of w (for example,
if w is of the form abna, then abia is a minimal forbidden factor of w for every i = 0, 1, . . . , n− 1).

1We do not require here and in the remainder of this paper that an automaton be complete. However, to make an automaton
complete it is sufficient to add one sink state towards which all missing transitions go.

4

L-AUTOMATON (trie T = (Q,A, i, T, δ′))
1. for each a ∈ A
2. if δ′(i, a) is defined
3. δ(i, a)← δ′(i, a)
4. f(δ(i, a))← i
5. else
6. δ(i, a)← i
7. for each state p ∈ Q \ {i} in breadth-first search and each a ∈ A
8. if δ′(p, a) is defined
9. δ(p, a)← δ′(p, a)

10. f(δ(p, a))← δ(f(p), a)
11. else if p /∈ T
12. δ(p, a)← δ(f(p), a)
13. else
14. δ(p, a)← p
15. return (Q,A, i,Q \ T, δ)

Figure 2: Algorithm L-AUTOMATON. It builds an automaton recognizing the language L(M) of words avoiding an antifactorial
language M on the input trie T accepting M .

Despite these theoretical advantages, algorithm MF-TRIE may not be the best algorithm to be used in
applications. In recent years, other algorithms have been introduced to compute the minimal forbidden
factors of a word. The computation of minimal forbidden factors based on the construction of suffix arrays
was considered in [25]; although this algorithm has a linear-time performance in practice, the worst-case
time complexity is O(n2). New O(n)-time and O(n)-space suffix-array-based algorithms were presented
in [19, 1, 2]. A more space-efficient solution to compute all minimal forbidden factors in time O(n) was
also presented in [5].

We have discussed algorithms for computing the set of minimal forbidden factors of a given factorial
language. We are now describing an algorithm performing the reverse operation. Let M be an antifactorial
language. We let L(M) denote the (factorial) language avoiding M , that is, the language of all the words
that do not contain any word of M as a factor. Clearly, from equations (1) and (2), we have that L(M)
is the unique language whose set of minimal forbidden factors is M , i.e., the unique language L such that
ML = M .

For a finite antifactorial language M , algorithm L-AUTOMATON [12] builds a DFA recognizing L(M).
It is presented in Figure 2. The algorithm runs in linear time in the size of the trie storing the words of M .
It uses a failure function f defined in a way analogous to the one used for building the factor automaton.

The algorithm can be applied for retrieving a word from its set of minimal forbidden factors, and this
can be done in linear time in the length of the word, since, as already mentioned, the size of the trie of
minimal forbidden factors of a word is linear in the length of the word. Notice that, even if M is finite, the
language L(M) can be finite or infinite. Moreover, even in the case that L(M) is also finite, it can be the
language of factors of a single word or of a finite set of words.

Algorithm L-AUTOMATON builds an automaton recognizing the language L(M) of words avoiding a
given antifactorial language M , but this automaton is not, in general, minimal. However, the following
result holds [12]:

Theorem 1. If M is the set of the minimal forbidden factors of a finite word w, then the automaton output
from algorithm L-AUTOMATON on the input trie recognizing M , after removing sink states, is the factor

5

0

1

2

a

b

a

a

0

1

2

a

b b

b

0 1
a, b

b

Figure 3: The trie T recognizing M = {aa, ba} (left), the automaton output from algorithm L-AUTOMATON on input T after
removing sink states (center) and the minimal automaton recognizing the language L(M) = {bn | n ≥ 0} ∪ {abn | n ≥ 0}
(right).

automaton of w, i.e., it is minimal.

To see that the minimality described in the previous theorem does not hold in general, consider for
instance the antifactorial language M = {aa, ba}. It can be easily checked that, taking as input a trie
recognizing M , algorithm L-AUTOMATON outputs an automaton which, after removing sink states, has 3
states, while the minimal automaton of the language L(M) = {bn | n ≥ 0} ∪ {abn | n ≥ 0} has 2 states
(see Figure 3).

We will prove in the next section that this minimality property still holds true in the case of minimal
forbidden factors of a circular word.

From the setMw of the minimal forbidden factors of a finite word w, one can reconstruct the word w
in linear time. To this end, one can apply algorithm L-AUTOMATON on the trie recognizing Mw. After
deleting the sink states of the obtained automaton, one can retrieve the longest path starting from the initial
state by using a classical topological sort procedure. This path corresponds to the word w.

3. Minimal Forbidden Factors of a Circular Word

Given a word w, the language generated by w is the language w∗ = {wk | k ≥ 0} =
{ε, w,ww,www, . . .}. Analogously, the language L∗ generated by L ⊂ A∗ is the set of all possible con-
catenations of words in L, i.e., L∗ = {ε} ∪ {w1w2 · · ·wn | wi ∈ L for i = 1, 2, . . . , n}.

Let w be a word of length at least 2. The language w∗ generated by w is not a factorial language, nor
is the language generated by all the rotations of w. Nevertheless, if we take the factorial closure of the
language generated by w, then of course we get a factorial language Fw∗ . Now, if z is conjugate to w,
then although w and z generate different languages, the factorial closures of the languages they generate
coincide, i.e., Fw∗ = Fz∗ . Moreover, for any power wk of w, k > 0, one clearly has Fw∗ = F(wk)∗ .

Based on the previous discussion, and on Remark 1, we give the following definition: We let the set of
factors of a circular word [w] be the (factorial) language Fw∗ , where w is any linearization of [w]. By the
previous observation, this definition is independent of the particular choice of the linearization. Moreover,
we can suppose that [w] is a primitive circular word.

The set of minimal forbidden factors of the circular word [w] is defined as the setMFw∗ of minimal
forbidden factors of the language Fw∗ , where w is any linearization of [w]. To simplify the notation, in the

6

remainder of this paper we will letM[w] denote the set of minimal forbidden factors of the circular word
[w].

For instance, if [w] = [aabbabb], then we have

M[w] = {aaa, aba, bbb, aabbaa, babbab}.

Notice thatM[w] does not coincide with the set of minimal forbidden factors of the factorial closure of
the language of all the rotations of w.

Although Fw∗ is an infinite language, the set M[w] = MFw∗ of minimal forbidden factors of [w] is
always finite. More precisely, we have the following structural lemma.

Lemma 2. Let [w] be a circular word and w any linearization of [w]. Then

M[w] =Mww ∩A≤|w|. (3)

Proof. If v is an element ofMww ∩A≤|w|, then clearly v ∈MFw∗ =M[w].
Conversely, let aub, with a, b ∈ A and u ∈ A∗, be an element inM[w] =MFw∗ (the case of minimal

forbidden factors of length 1 is straightforward). Then aub /∈ Fw∗ , while au, ub ∈ Fw∗ . So, there exists
some letter b̄ different from b such that aub̄ ∈ Fw∗ and a letter ā different from a such that āub ∈ Fw∗ .
Therefore, au, āu, ub, ub̄ ∈ Fw∗ . It is readily verified that any word of length at least |w| − 1 cannot be
extended to the right nor to the left by different letters in Fw∗ . Hence |aub| ≤ |w|. Since au and ub are
factors of some rotation of w, we have au, ub ∈ Fww, whence aub ∈Mww.

The equality (3) was first introduced as a definition for the set of minimal forbidden factors of a circular
word in [24]. In fact, it can be efficiently exploited in applications of minimal forbidden factors of circular
words [24, 8].

It should be noticed here that the fact that the setM[w] = MFw∗ is finite although the set Fw∗ is not,
is a property that cannot be extended to sets of words of cardinality greater than 1. As an example, let
L = {b, aa}; then the setMFL∗ is infinite, as it contains the words ba2n+1b for all n ≥ 1.

About the number of minimal forbidden factors of a circular word, we have the following bounds.

Lemma 3. Let [w] be a circular word of length n over the alphabet A and let A(w) be the set of letters of
A that occur in w. Then

|A| − 1 ≤ |M[w]| ≤ |A|+ (n− 1)|A(w)| − n. (4)

In particular, if |A(w)| = |A|, then |M[w]| ≤ n(|A| − 1).

Proof. The inequality |A| − 1 ≤ |M[w]| follows from the fact that for each letter a ∈ A, except at most
one, there exists an integer na > 0 such that ana ∈ M[w]. For the upper bound, we first observe that the
minimal forbidden factors of length 1 of [w] are precisely the elements of A \ A(w). We now count the
minimal forbidden factors of length greater than 1. By Lemma 2, we know thatM[w] =Mww∩A≤|w|. Let
ww = w1w2 · · ·w2n. Consider a position i in ww such that n ≤ i < 2n. We claim that there are at most |A|
distinct elements ofM[w] of length greater than 1 whose longest proper prefixes have an occurrence ending
in position i. Indeed, by contradiction, let b ∈ A such that there exist ub, vb ∈M[w] and both u and v occur
in ww ending in position i. This implies that ub and vb are one suffix of another, against the minimality
of the minimal forbidden factors. Since the letter b must be different from the letter of ww occurring in
position i+ 1, we therefore have that the number of minimal forbidden factors obtained for i ranging from

7

n to 2n− 1 is at most n(|A(w)| − 1). For i such that 1 ≤ i < n (resp. i = 2n), if an element ub ∈ M[w],
b ∈ A, is such that u has an occurrence in ww ending in position i, then u has also an occurrence ending in
position i+ n (resp. n), so it has already been counted. Hence,

|M[w]| ≤ |A| − |A(w)|+ n(|A(w)| − 1) = |A|+ (n− 1)|A(w)| − n.

The bounds in the previous lemma are tight. For the lower bound, we have for example that the set
of minimal forbidden factors of the circular word [w] = [an] is A \ {a}; for the upper bound, the word
[w] = [an−1b] over the alphabet A = {a, b} has n distinct minimal forbidden factors, namely an and
baib for every i = 0, 1, . . . , n − 2. As another example, if [w] is a binary de Bruijn word of order k (and
hence length 2k), then for every binary word v of length k there exists exactly one letter a such that va
is a minimal forbidden factor of [w], hence |M[w]| = |w|. For instance, if [w] = [aaababbb], then one
has M[w] = {aaaa, aabb, abaa, abba, baab, baba, bbab, bbbb}. Over the alphabet A = {a, b, c}, for any
odd n, the circular word [w] = [abn/2cbabn/2c−1c], of length n, has 2n distinct minimal forbidden factors.
Moreover, over the alphabet A = {a1, a2, . . . , an}, the circular word [w] = [a1a2 · · · an] has n(n − 1)
distinct minimal forbidden factors.

We now give a result analogous to Theorem 1 in the case of circular words.

Theorem 4. If M is the set of the minimal forbidden factors of a primitive circular word [w], then the
automaton output from algorithm L-AUTOMATON on the input trie T recognizing M , after removing sink
states, is the minimal automaton recognizing the language Fw∗ of factors of [w].

Proof. Let A = (Q,A, i,Q \ T, δ) be the automaton output by algorithm L-AUTOMATON with input the
trie T recognizing the set of the minimal forbidden factors of a circular word [w]. Let w = w1w2 · · ·wn

be a linearization of [w]. By the property of algorithm L-AUTOMATON, the automaton A recognizes the
language Fw∗ , since its input is the trie that recognizes the languageM[w] = MFw∗ . To prove that A is
minimal, we have to prove that any two states are distinguishable. Suppose by contradiction that there are
two nondistinguishable states p, q ∈ Q. By construction, p and q are respectively associated with two proper
prefixes, vp and vq, of words inMFw∗ , which, by Lemma 2, is equal toMww∩A≤|w|. Therefore, vp and vq
are factors ofw∗ of length≤ |w|. Hence, they are both factors ofw2. Let us then writew2 = xvpy = x′vqy

′,
with x and x′ of minimal length.

Suppose first that there exists i such that xvp and x′vq both end in w1w2 · · ·wi. Then vp and vq are one
suffix of another. Since p and q are nondistinguishable, there exists a word z such that vpz and vqz end in a
sink state, that is, are elements ofM[w]. This is a contradiction sinceM[w] is an antifactorial set and vpz
and vqz are one suffix of another.

Suppose now that xvp ends in w1w2 · · ·wi and x′vq ends in w1w2 · · ·wj for i 6= j. Since p and q are
nondistinguishable, for any word u one has that that vpu ∈ Fw∗ if and only if vqu ∈ Fw∗ . Since Fw∗ is a
factorial language, we therefore have that there exists a word z of length |w| such that vpz and vqz are both
in Fw∗ . But this implies that z = wi+1wi+2 · · ·wi = wj+1wj+2 · · ·wj , and this leads to a contradiction
since w is primitive and therefore all its rotations are distinct.

If one is interested in retrieving the circular word [w] from the minimal automaton recognizing the
language Fw∗ , this can be done with a simple Depth-First-Search procedure in linear time and space with
respect to the size of the automaton. Indeed, the circular word [w] corresponds to a cycle in the (multi-)graph
of the automaton, and it can be proved that the size of the minimal automaton recognizing the language Fw∗

8

is linear in the length of w. This follows from the fact that the size of the output of L-AUTOMATON is, by
construction, the same as the size of its input (except for the sink states), and we have that the size of the
trie recognizing the minimal forbidden factors of [w] is linear in the size of w — as this is a subtrie of the
trie recognizing the minimal forbidden factors of ww (Lemma 2), and this latter has a size that is linear in
the length of w, as observed in the previous section.

However, it is possible to give more precise bounds on the size of the minimal automaton recognizing
the language Fw∗ in terms of the length of w, as shown below.

Theorem 5. Let w be a word of length n. The minimal automaton recognizing the language Fw∗ has at
most 2n− 1 states.

Proof. Let w = a1a2 · · · an. Let Sw∗ be the set of suffixes of words in the language w∗. For every
x ∈ Fw∗ different from the empty word, let Ew(x) = {i ∈ {1, . . . , n} | x ∈ Sw∗a1a2 · · · ai}, and
let Ew(ε) = {1, 2, . . . , n}. We define the equivalence x ≡w y if and only if Ew(x) = Ew(y). This
equivalence clearly being right-invariant (x ≡w y implies xa ≡w ya for every letter a), there exists a DFA
A recognizing Fw∗ whose states are identified with the equivalence classes of ≡w. It is readily verified that
for every x, y ∈ Fw∗ , either Ew(x) and Ew(y) are disjoint or one is contained in the other. They therefore
form a non-overlapping family of nonempty subsets of {1, 2, . . . n}, which implies that there are at most
2n − 1 of them (see for example Lemma 1 in [6], where the value 2n − 1 is replaced by 2n because the
authors consider the equivalence in Σ∗ rather than in Fw∗ thus allowing the empty set as an extra class
corresponding to the additional sink state). This shows that there exists an automaton recognizing Fw∗ with
at most 2n− 1 states.

The bound in the previous theorem is tight for n > 2. As an example, consider w = abn−1. The states
of the minimal automaton recognizing the language Fw∗ are identified with the classes of the equivalence
relation defined on Fw∗ by: x ≡M y if and only if for every word z one has xz ∈ Fw∗ ⇔ yz ∈ Fw∗ . Now,
it is easy to see that the factors bi and abi, 0 ≤ i < n− 1, are each in a distinct class, while bn−1 and abn−1

are together in another class, whence there are at least 2n− 1 states in the minimal automaton recognizing
Fw∗ .

In view of these considerations, we define the factor automaton of a circular word [w] as the minimal
automaton recognizing the language Fw∗ .

4. Circular Fibonacci Words and Minimal Forbidden Factors

In this section, we illustrate the combinatorial results discussed in the previous section in the special
case of the circular Fibonacci words. The Fibonacci words are a paradigmatic example that often represents
the limit case for some property. For example, it is well known the worst-case running time of some pattern
matching algorithms is realized by the Fibonacci words (see, e.g., [20]).

We fix the alphabet A = {a, b}. The sequence (fn)n≥1 of Fibonacci words is defined recursively by:
f1 = b, f2 = a and fn = fn−1fn−2 for n > 2. The length of the word fn is the Fibonacci number Fn. The
limit of this sequence is the infinite Fibonacci word f = limn→∞ fn = abaababaabaab · · · .

Every Fibonacci word fn has a factor automaton with |fn|+ 1 states (thus attaining the lower bound on
the number of states that the factor automaton of a word can have) and the structure of the factor automaton
of the Fibonacci words allows one to derive several combinatorial properties of these words (cf. [26, 16]).

We will now describe the structure of the sets M[fn] of minimal forbidden factors of the circular Fi-
bonacci words [fn].

9

f1 = b

f2 = a

f3 = ab

f4 = aba

f5 = abaab

f6 = abaababa

f7 = abaababaabaab

f8 = abaababaabaababaababa

u3 = ε

u4 = a

u5 = aba

u6 = abaaba

u7 = abaababaaba

u8 = abaababaabaababaaba

Table 1: The first few Fibonacci words fn and the first few words un.

Let us recall some well-known properties of the Fibonacci words (the reader may also see [21, Chap. 2]).
For every n ≥ 3, one can write fn = unab if n is odd or fn = unba if n is even, where un is a palindrome.
Moreover, since fn = fn−1fn−2 and the words un are palindromes, one has that for every n ≥ 5

fn = unxy = un−1yxun−2xy = un−2xyun−1xy (5)

for letters x, y such that {x, y} = {a, b}. Indeed, since un is a palindrome, one has that un = un−1yxun−2
is equal to its mirror image, ũn−2xyũn−1, which is equal to un−2xyun−1 since un−1 and un−2 are palin-
dromes. The first few Fibonacci words fn and the first few words un are shown in Table 1.

The words fn (as well as the words fnfn) are balanced, that is, for every pair of factors u and v of the
same length, one has ||u|a − |va|| ≤ 1 (and therefore also ||u|b − |vb|| ≤ 1).

A bispecial factor of a word w over the alphabet A = {a, b} is a word v such that av, bv, va, vb are all
factors of w.

Proposition 6. For every n ≥ 3, the set of bispecial factors of the word fnfn is {u3, u4, . . . , un}.

Proof. As it is well known (cf. [15, Proposition 10]), the bispecial factors of the infinite Fibonacci word
f are the central words un, n ≥ 3. Since fnfn is a factor of f (the prefix fn+3 of f can be written as
fn+3 = fn+2fn+1 = fn+1fnfnfn−1) we have that the set of bispecial factors of the word fnfn is contained
in

⋃
n≥3 un. Since by construction un−1 appears in un both as a prefix and as a suffix, we are left to prove

that un is a bispecial factor of fnfn, since this will imply that also the words um, 3 ≤ m ≤ n, are bispecial
factors of fnfn.

The claim can be easily checked for n = 3, 4. Let us then suppose n ≥ 5. We know that fnfn =
unxyunxy for letters x, y such that {x, y} = {a, b}. Hence, unx and yun appear as factors in fnfn. We
will now show that also xun and uny appear as factors in fnfn. Indeed, using (5), we have

fnfn = unxy · unxy
= un−1yxun−2 · xy · un−1yxun−2 · xy
= un−1y · xun−2xyun−1y · xun−2xy
= un−1y · xuny · xun−2xy

that gives the desired occurrences of xun and uny.

10

f̂3 = aa

f̂4 = bab

f̂5 = aabaa

f̂6 = babaabab

f̂7 = aabaababaabaa

f̂8 = babaababaabaababaabab

ĝ3 = bb

ĝ4 = aaa

ĝ5 = babab

ĝ6 = aabaabaa

ĝ7 = babaababaabab

ĝ8 = aabaababaabaababaabaa

Table 2: The first few elements of the sequences f̂n and ĝn.

M[f1] ={a}
M[f2] ={b}
M[f3] ={aa, bb}
M[f4] ={bb, aaa, bab}
M[f5] ={bb, aaa, aabaa, babab}
M[f6] ={bb, aaa, babab, aabaabaa, babaabab}
M[f7] ={bb, aaa, babab, aabaabaa, aabaababaabaa, babaababaabab}
M[f8] ={bb, aaa, babab, aabaabaa, babaababaabab,

aabaababaabaababaabaa, babaababaabaababaabab}

Table 3: The first few sets of minimal forbidden factors of the circular Fibonacci words.

Let us now define the sequence of words (f̂n)n≥3 by f̂n = auna if n is odd, f̂n = bunb if n is even.
These words are known as singular words. Analogously, we can define the sequence of words (ĝn)≥3 by
ĝn = bunb if n is odd, ĝn = auna if n is even. For every n, the word ĝn is obtained from the word f̂n
by changing the first and the last letter. The elements of the sequence ĝn are indeed the minimal forbidden
factors of the infinite Fibonacci word f (see [22]). The first few values of the sequences f̂n and ĝn are shown
in Table 2.

The structure of the sets of minimal forbidden factors of circular Fibonacci words can be described in
terms of the words f̂n and ĝn, as follows. The first few sets M[fn] are displayed in Table 3. We have
M[f1] =M[b] = {a},M[f2] =M[a] = {b} andM[f3] =M[ab] = {aa, bb}. The following theorem gives
a characterization of the setsM[fn] for n ≥ 4.

Theorem 7. For every n ≥ 4,M[fn] = {ĝ3, ĝ4, . . . , ĝn, f̂n}.

Proof. By Lemma 2,M[fn] =Mfnfn ∩A≤|fn|. Let xuy, u ∈ A∗, x, y ∈ A, be inMfnfn ∩A≤|fn|. Then,
xu has an occurrence in fnfn followed by letter ȳ, the letter different from y, and uy has an occurrence in
fnfn preceded by letter x̄, the letter different from x. Therefore, u is a bispecial factor of the word fnfn,
hence, by Proposition 6, u ∈ {u3, u4, . . . , un}. Thus, an element inM[fn] is of the form αuiβ for some

11

3 ≤ i ≤ n and α, β ∈ A.
We first prove that for every 3 ≤ i ≤ n, if α 6= β, then the words αuiβ and βuiα occur as factors in

fnfn. Let us write fnfn = unxyunxy, for letters x, y such that {x, y} = {a, b}.
As observed in the proof of Proposition 6, fnfn contains an internal occurrence of xuny =

xun−1yxun−2y, hence it contains an occurrence of xun−1y and an occurrence of xun−2y. On the other
hand, fnfn = unxyunxy = unxyun−2xyun−1xy, hence fnfn contains an occurrence of yunx, an occur-
rence of yun−1x and an occurrence of yun−2x. Continuing this way, recursively, we see that fnfn contains
an occurrence of xuiy and one of yuix for every 3 ≤ i ≤ n.

Thus, a word inM[fn] can only be of the form f̂i or ĝi, for some 3 ≤ i ≤ n.
Claim: f̂n is a minimal forbidden factor of fnfn.
Proof: Let f̂n = xunx, x ∈ A. By Proposition 6, we know that xun and unx are factors of fnfn. It

remains to show that f̂n does not occur in fnfn = unxyunxy, y 6= x. If xunx occurs in fnfn, then it occurs
in unxyun. But it is known that the longest repeated prefix of unxyun is un (cf. [14]), so unx cannot appear
in unxyun.

Claim: f̂n is a factor of fn+1fn+1.
Proof: The first letter of f̂n is equal to the last letter of fn+1 and, by removing the first letter from f̂n,

one obtains a prefix of fn+1. Hence, f̂n is a factor of fn+1fn+1.
Claim: For every 3 ≤ i < n, ĝi is a minimal forbidden factor of fnfn.
Proof: By the previous claim, it follows that for every 3 ≤ i < n, the word f̂i is factor of the word fnfn.

Therefore ĝi cannot be a factor of fnfn otherwise the word fnfn would not be balanced. Since removing
the first or the last letter from the word ĝi one obtains a factor of the word fnfn, the claim is proved.

Claim: ĝn is a minimal forbidden factor of fnfn.
Proof: ĝn = yuny is a minimal forbidden factor of the infinite Fibonacci word f , so it cannot be a factor

of fnfn. On the other hand, we proved in Proposition 6 that un is a bispecial factor of fnfn, hence yun and
uny occur in fnfn.

Notice that, by Lemma 2, for any circular word [w], one has that |w| is an upper bound on the length of
the minimal forbidden factors of [w]. The previous theorem shows that this bound is indeed tight. However,
the maximum length of a minimal forbidden factor of a circular word [w] is not always equal to |w|. For
example, for w = aabbab one hasM[w] = {aaa, bbb, aaba, abab, babb, bbaa}.

About the cardinality of the set of minimal forbidden factors, however, Fibonacci words are not ex-
tremal. Indeed, by Lemma 3, we know that a binary word can have a number of distinct minimal forbidden
factors equal to its length, while in the case of the Fibonacci words this number is only logarithmic in the
length of the word, as we have, by Theorem 7, that the cardinality ofM[fn] is n− 1 and the length of fn is
exponential in n.

By Theorem 4, if T is the trie recognizing the set {ĝ3, ĝ4, . . . , ĝn, f̂n}, then algorithm L-AUTOMATON

on the input trie T builds the minimal deterministic automaton recognizing Ff∗
n

. Since the automaton
output by algorithm L-AUTOMATON has the same set of states of the input trie T after removing sink states,
and since removing the last letter from each word ĝi results in a prefix of f̂i+1, we have that the factor
automaton of the circular Fibonacci word [fn] (that is, the minimal automaton recognizing Ff∗

n
) has exactly

2Fn − 1 states (see Figure 4 for an example). In view of Theorem 5, circular Fibonacci words have a factor
automaton with the largest possible number of states, while in the linear case it is well known that Fibonacci
words have a factor automaton with the smallest possible number of states.

12

0

1

2

3

4

5

6

7

8

a

b

a

a

b

a

b

b

a

a

a

b

0

1

2

3

4

5

6

7

8

a

b

a

a

b

b

a

a

b

a
ba

Figure 4: The trie T recognizing the setM[f5] (top), and the automaton output by algorithm L-AUTOMATON on the input trie T
after removing sink states (bottom), which is the minimal automaton recognizing Ff∗

5
. It has 9 = 2F5 − 1 states.

5. Conclusions and Open Problems

We investigated combinatorial properties of minimal forbidden factors of circular words.
We proved that the automaton built by algorithm L-AUTOMATON on the input trie recognizing the

set of minimal forbidden factors of a circular word is minimal. More generally, it would be interesting to
characterize those antifactorial languages for which algorithm L-AUTOMATON builds a minimal automaton.

In addition to being interesting from the point of view of formal language theory, we believe the study
of minimal forbidden factors of circular words will also lead to new applications in sequence analysis. An
example on this direction is given in [8].

6. Acknowledgements

We thank anonymous referees for several valuable comments.

References

[1] C. Barton, A. Héliou, L. Mouchard, and S. P. Pissis. Linear-time computation of minimal absent words using suffix array.
BMC Bioinformatics, 15:388, 2014.

[2] C. Barton, A. Héliou, L. Mouchard, and S. P. Pissis. Parallelising the computation of minimal absent words. In PPAM,
volume 9574 of LNCS, pages 243–253. Springer, 2015.

[3] M. Béal, M. Crochemore, F. Mignosi, A. Restivo, and M. Sciortino. Computing forbidden words of regular languages.
Fundam. Inform., 56(1-2):121–135, 2003.

[4] M. Béal, F. Mignosi, A. Restivo, and M. Sciortino. Forbidden words in symbolic dynamics. Advances in Applied Mathemat-
ics, 25(2):163–193, 2000.

13

[5] D. Belazzougui, F. Cunial, J. Kärkkäinen, and V. Mäkinen. Versatile succinct representations of the bidirectional Burrows–
Wheeler transform. In ESA, volume 8125 of LNCS, pages 133–144. Springer, 2013.

[6] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnell. Linear size finite automata for the set of all subwords
of a word: an outline of results. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 21:12–20, Oct. 1983.

[7] S. Chairungsee and M. Crochemore. Using minimal absent words to build phylogeny. Theoretical Computer Science,
450:109–116, 2012.

[8] P. Charalampopoulos, M. Crochemore, G. Fici, R. Mercaş, and S. P. Pissis. Alignment-free sequence comparison using
absent words. Information and Computation, to appear.

[9] M. Crochemore. Transducers and repetitions. Theoretical Computer Science, 45:63–86, 1986.
[10] M. Crochemore, G. Fici, R. Mercaş, and S. P. Pissis. Linear-time sequence comparison using minimal absent words &

applications. In LATIN 2016, Proceedings, pages 334–346. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
[11] M. Crochemore and C. Hancart. Automata for matching patterns. In Handbook of Formal Languages, pages 399–462.

Springer, 1997.
[12] M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words. Information Processing Letters, 67:111–117,

1998.
[13] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using antidictionaries. In ICALP, volume 1644 of

LNCS, pages 261–270. Springer, 1999.
[14] A. De Luca, G. Fici, and L. Zamboni. The sequence of open and closed prefixes of a sturmian word. Advances in Applied

Mathematics, 90:27–45, 2017.
[15] A. de Luca and F. Mignosi. Some combinatorial properties of sturmian words. Theoret. Comput. Sci., 136(2):361–285, 1994.
[16] G. Fici. Special factors and the combinatorics of suffix and factor automata. Theoretical Computer Science, 412:3604–3615,

2011.
[17] G. Fici, F. Mignosi, A. Restivo, and M. Sciortino. Word assembly through minimal forbidden words. Theoretical Computer

Science, 359(1):214–230, 2006.
[18] G. Fici, A. Restivo, and L. Rizzo. Minimal forbidden factors of circular words. In WORDS, volume 10432 of LNCS, pages

36–48. 2017.
[19] H. Fukae, T. Ota, and H. Morita. On fast and memory-efficient construction of an antidictionary array. In ISIT, pages

1092–1096. IEEE, 2012.
[20] D. E. Knuth, J. H. Morris Jr., and V. R. Pratt. Fast pattern matching in strings. SIAM J. Comput., 6(2):323–350, 1977.
[21] M. Lothaire, editor. Algebraic Combinatorics on Words. Cambridge University Press, 2001.
[22] F. Mignosi, A. Restivo, and M. Sciortino. Words and forbidden factors. Theoretical Computer Science, 273(1-2):99–117,

2002.
[23] T. Ota and H. Morita. On antidictionary coding based on compacted substring automaton. In ISIT, pages 1754–1758. IEEE,

2013.
[24] T. Ota and H. Morita. On a universal antidictionary coding for stationary ergodic sources with finite alphabet. In ISITA, pages

294–298. IEEE, 2014.
[25] A. J. Pinho, P. J. S. G. Ferreira, and S. P. Garcia. On finding minimal absent words. BMC Bioinformatics, 11, 2009.
[26] W. Rytter. The structure of subword graphs and suffix trees of Fibonacci words. Theoretical Computer Science, 363(2):211–

223, 2006.

14

	1 Introduction
	2 Preliminaires
	2.1 Minimal Forbidden Factors
	2.2 Automata for Minimal Forbidden Factors

	3 Minimal Forbidden Factors of a Circular Word
	4 Circular Fibonacci Words and Minimal Forbidden Factors
	5 Conclusions and Open Problems
	6 Acknowledgements

