
The University of Manchester Research

SePCAR: A secure and privacy-enhancing protocol for car
access provision
DOI:
10.1007/978-3-319-66399-9_26

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Symeonidis, I., Aly, A., Mustafa, M. A., Mennink, B., Dhooghe, S., & Preneel, B. (2017). SePCAR: A secure and
privacy-enhancing protocol for car access provision. In Computer Security – ESORICS 2017 - 22nd European
Symposium on Research in Computer Security, Proceedings (pp. 475-493). (Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10493 LNCS).
Springer Nature. https://doi.org/10.1007/978-3-319-66399-9_26
Published in:
Computer Security – ESORICS 2017 - 22nd European Symposium on Research in Computer Security,
Proceedings

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:19. Apr. 2024

https://doi.org/10.1007/978-3-319-66399-9_26
https://research.manchester.ac.uk/en/publications/a99deaba-1b7b-4b39-9faf-6d8e8e5e342a
https://doi.org/10.1007/978-3-319-66399-9_26

SePCAR: A Secure and Privacy-enhancing
Protocol for Car Access Provision

Iraklis Symeonidis1, Abdelrahaman Aly1, Mustafa A. Mustafa1, Bart
Mennink2, Siemen Dhooghe3, Bart Preneel1

1 imec-COSIC, KU Leuven, Belgium first.last@esat.kuleuven.be
2 Radboud University, The Netherlands b.mennink@cs.ru.nl

3 KU Leuven, Belgium siemen.dhooghe@student.kuleuven.be

Abstract. We present an efficient secure and privacy-enhancing pro-
tocol for car access provision, named SePCAR. The protocol is fully
decentralised and allows users to share their cars conveniently in such
a way that the security and privacy of the users is not sacrificed. It
provides generation, update, revocation, and distribution mechanisms
for access tokens to shared cars, as well as procedures to solve disputes
and to deal with law enforcement requests, for instance in the case of
car incidents. We prove that SePCAR meets its appropriate security
and privacy requirements and that it is efficient: our practical efficiency
analysis through a proof-of-concept implementation shows that SePCAR
takes only 1.55 seconds for a car access provision.

1 Introduction

As opposed to the traditional car ownership, the idea of car sharing, which allows
users to share their cars conveniently, is gaining popularity. Statistics have shown
that the worldwide number of users for car sharing services has grown from 2012
to 2014 by 170% (4.94 million) [1–4] with a tendency to increase by 2021 [5].
With the use of portable devices and in-vehicle telematics, physical car keys are
slowly becoming obsolete. Keyless car Sharing Systems (KSSs) allow car owners
to rather use their portable devices such as smartphones to distribute temporary
digital car keys (access tokens) to other users and several car manufacturers
(including Volvo [6], BMW [7] and Toyota [8]) have started investing in such
systems. Moreover, unlike traditional car rental companies, KSSs can provide a
relatively inexpensive alternative to users who need a car occasionally and on-
demand [9]. The use of KSSs can also contribute to a decrease in the number of
cars, effectively reducing CO2 emissions [10] and the need for parking space [11].

In spite of these advantages, information collection in car sharing systems
does not only jeopardise a system’s security, but also the users’ privacy. Uber
used a tool called “Hell” to spy on their rival company drivers [12], whereas
their mobile app always tracks their users’ locations [13]. In short, an adversary
may try to eavesdrop and collect information exchanged within the KSS, tamper
with the car sharing details, extract the key of a car stored in untrusted devices,
generate a rogue access token to maliciously access a car or to deny having
accessed a car. Regarding users’ privacy, an adversary may try to correlate and
link two car sharing requests for the same user or the car, to identify which user

used which car and deduce the users’ sharing preferences. These preferences
can be established by collecting information about sharing patterns such as
rental time, duration, pickup location, when, where and with whom someone
is sharing a car. An adversary may even attempt to infer sensitive information
about users such as racial and religious beliefs [14] or their health status, by
identifying users who use cars for disabled passengers or visit hospitals regularly.
Sensitive personal data are related to fundamental rights and freedoms, and merit
protection regarding the collection and processing as it is articulated in the
new EU General Data Protection Regulation (GDPR) [15]. A KSS may further
introduce various other concerns with respect to connectivity issues [4], car key
revocations in case users’ device is stolen [16, 17], and the fact that malicious
users may attempt to manipulate or even completely destroy potential forensic
evidence on the car or their devices.

A naive way to mitigate the security and privacy concerns is to implement
a peer-to-peer protocol between both the users and the car. The car owner can
generate a temporary access token for her car using the car key and distribute
it to the other user, the consumer, who can use the token to access the car.
This approach has two main limitations: (i) the owner and the consumer may
not trust each other, thus affecting the accountability of the system, and (ii) the
owner has to have a copy of the car key on her personal device which is prone
to get lost or stolen. These limitations can be overcome by having a centralised
entity, which is trusted by both users, to perform the access token generation on
behalf of the car owner. However, such a centralised entity will have to be fully
trusted, which might not be realistic under real world scenarios. It can jeopardise
the users’ privacy as it will have access to users’ booking details and car keys.

Our Contributions. We design a concrete and fully decentralised secure and
privacy-enhancing protocol for car access povision, named SePCAR. The pro-
tocol provides generation and distribution of access tokens for car access provi-
sion, as well as update and revocation operations used for facilitating mutually
agreed modifications of the booking details and protecting against misbehaving
consumers, respectively. It internally uses secure multiparty computation to fa-
cilitate forensic evidence provision in case of car incidents or at the request of
law enforcement. SePCAR is described in detail in Section 4.

We prove that the protocol fulfils the desired security and privacy require-
ments bound to the standards of connected cars. First, departing from Syme-
onidis et al. [18], we give a detailed list of security and privacy requirements in
Section 2. Then, in Section 5, we prove that SePCAR meets its security and
privacy requirements as long as its underlying cryptographic primitives (listed
in Section 3) are secure.

Our theoretical complexity and practical efficiency analysis in Section 6
demonstrates SePCAR’s competitiveness. In particular, we implemented a pro-
totype as a proof-of-concept in C++ and we achieved a car access provision in
≈ 1.55 seconds.

Related Work. Enev et al. [19] showed that it is possible to reach high identifi-
cation rates of drivers, from 87% to 99% accuracy, based on data collected by the

2

Information flow

Authorities

OBU

Owner PDs

Consumer PDs

Database
Personal Device
Key-less Sharing Management System
On-Board Unit

DB
PD
KSMS
OBUPublic Ledger

KSMS

Car ManufacturerDB

Fig. 1. System model of a physical Keyless car Sharing System (KSS) [18].

sensors of a car from 15 minutes of open-road driving. Troncoso et al. [20] pro-
posed a pay-as-you-drive scheme that enhances the location privacy of drivers
by sending only aggregated data to insurance companies. Balasch et al. [21]
proposed an electronic toll pricing protocol where a car’s on-board unit calcu-
lates locally the driver’s annual toll fee while disclosing a minimum amount of
location information. To mitigate colluding (dishonest) users, Floriat et al. [22]
presented a privacy-preserving spot checking protocol that allows observations in
public spaces. Mustafa et al. [23] proposed an anonymous electric vehicle charg-
ing protocol with billing support. The EVITA [24] and PRESERVE [25, 26] are
designated projects on the design and specifications of the secure architecture of
on-board units of cars. Driven by the PRESERVE instantiation, Raya et al. [27]
described the need for Vehicular Public Key Infrastructure (VPKI), and Khodaei
et al. [28] proposed a generic pseudonymization approach aiming to preserve the
unlinkability of messages exchanged between vehicles and VPKI servers. None
of these solutions provides a full-fledged keyless car sharing system, though.

Dmitrienko and Plappert [4] designed a secure two-factor authentication pro-
tocol using mobile platforms and RFID tags, e.g., smart-cards. However, in con-
trast to our solution, their protocol assumes a fully trusted car sharing provider
which has access to the master key of smart-cards and also collects and stores
all the information exchanged between the car provider and their users for every
car access provision.

2 System Model and Requirements

In this section, we describe the system model and functionalities of a KSS. More-
over, we specify the threat model, the security, privacy and functional require-
ments which it needs to satisfy and the assumptions we will use.

System Model. We follow the KSS system model of Symeonidis et al. [18]. See
also Figure 1. Users are individuals who are willing to share their cars, owners
(uo), and use cars which are available for sharing, consumers (uc), with the use
of Portable Devices (PDs) such as smartphones. An On-Board Unit (OBU) is
an embedded or a standalone hardware/software component [29] which is part
of the secure access management system of a car. It has a wireless interface
such as Bluetooth, NFC or LTE. The Car manufacturer (CM) is responsible for

3

generating and embedding a digital key into each car. These keys are used for
car sharing and are stored in the manufacturers’ Database (DB). The Keyless
Sharing Management System (KSMS) is a complex of multiparty computation
(MPC) servers that assists owners with a car access token generation, distribu-
tion, update and revocation. Each server individually retrieves its share of the
car key, Kcar, and the servers jointly encrypt the booking details, MB , to gen-
erate an access token, AT car. The access token is published on a Public Ledger
(PL), which serves as a public bulletin board that guarantees the integrity of the
data [30]. The booking details are typically agreed upon by owner and consumer
prior to the beginning of the protocol.

Threat Model. Within the KSS the KSMS, the CM, and the PL are considered
honest-but-curious entities. They will perform the protocol honestly, but they
are curious to extract private information about users. Owners are passive adver-
saries while consumers and outsiders may be malicious. The car’s OBU is trusted
and equipped with Hardware Security Module (HSM) [25, 31] that supports se-
cure key storage and cryptographic operations such as symmetric and public key
encryption, following the EVITA [24] and PRESERVE [25] specifications. Users’
PDs are untrusted as they can get stolen, lost or broken.

Protocol Design Requirements. The keyless car sharing system should sat-
isfy the following security, privacy, and functional requirements, which we denote
by SR, PR and FR, respectively. Here, we recall that MB refers to the booking
details, AT car the access token to the car and Kcar the car key.

– SR1 - Confidentiality of MB. No one but the shared car, uo and uc should
have access to MB .

– SR2 - Authenticity of MB. The shared car should verify the origin and
integrity of MB from uo.

– SR3 - Confidentiality of AT car. No one but the shared car and uc should
have access to AT car.

– SR4 - Confidentiality of Kcar. No one but the shared car and the car man-
ufacturer should have access to Kcar.

– SR5 - Backward and forward secrecy of AT car. Compromise of a key used
to encrypt any AT car should not compromise other tokens (future and past)
published on the PL of any honest consumer.

– SR6 - Non-repudiation of origin of AT car. The uo should be able to prove
to uc and the shared car that AT car delivered to the car was originated by
uo.

– SR7 - Non-repudiation of delivery of AT car. The uc should be able to prove
to uo that the agreed AT car was delivered to the shared car.

– PR1 - Unlinkability of uc and the car. No one but the shared car, uo and uc
should be able to link two booking requests of the same uc for the car.

– PR2 - Anonymity of uc and the car. No one but the shared car, uo and uc
should learn the identity of uc and the car.

– PR3 - Undetectability of AT car operation. No one but the shared car, uo and
uc (if necessary) should be able to distinguish between AT car generation,
update and revocation.

4

– PR4 - Forensic evidence provision. The KSMS should be able to provide
authorities with forensic evidence for an access provision to a car at law
enforcement requests without violating the other users’ privacy.

– FR1 - Offline authentication. Access provision should be provided for loca-
tions where cars have limited (or no) network connection.

Assumptions. For SePCAR, we assume that before every evaluation, the book-
ing details are agreed upon by owner and consumer, but that both keep these
booking details confidential against external parties. SePCAR relies on PKI in-
frastructure [11, 25, 28], and we assume that each entity has her private/public
key pair with their corresponding digital certificates distributed authentically.
The communication channels are secure and authenticated among entities using
SSL-TLS and NFC. For an OBU, it is reasonable to assume that the cost for
any adversary to perform a physical attack while renting a car is higher than
the adversary’s capabilities due to the presence of the HSM [25, 31]. The MPC
servers are held by non-colluding organisations, i.e., organisations with conflict-
ing interests such as authorities, owner unions and car manufacturers.

3 Cryptographic Building Blocks

3.1 Cryptographic Functionalities

SePCAR uses the following cryptographic building blocks. The suggested instan-
tiations are the ones used in our proof-of-concept implementation.

– σ ← sign(Sk,m) and true/false← verify(Pk,m, σ) are public key operations
for signing and verification respectively. These can be implemented using
RSA.

– z ← prf(K, counter) is a pseudorandom function (PRF) using as input a
key and a counter. This function can be implemented using CTR mode with
AES (as the message input is small).

– c ← enc(Pk,m) and m ← dec(Sk, c) are public key encryption and decryp-
tion functions. These can be implemented using RSA.

– c← E(K,m) and m← D(K, c) are symmetric key encryption and decryption
functions. These can be implemented using CTR mode with AES.

– v ← mac(K,m) is a symmetric key MAC function. This function can be
implemented using CBC-MAC with AES.4

– z ← hash(m) is a cryptographic hash function. This function can be imple-
mented using SHA-2.

We will furthermore use the notation z ← query(x, y) to denote the retrieval
of the xth value from the yth database DB (to be defined in Section 4), and
z ← query an(y) to denote the retrieval of the yth value from the public ledger
PL through an anonymous communication channel such as Tor [33], aiming to
anonymously retrieve a published record submitted using the publish(y) function.

4 CBC-MAC is proven to be secure as long as it is only evaluated on equal-size mes-
sages (or on prefix-free messages) [32], which is the case for SePCAR. For variable
length messages, one should resort to encrypted CBC-MAC.

5

3.2 Multiparty Computation

Ben-or et al. [34] (commonly referred to as BGW) and Chaum et al. [35] proved
that it is possible to calculate any function with perfect security in the presence
of active and passive adversaries under the information-theoretic model, as long
as there is an honest majority: 1/2 for passive and 2/3 for active adversaries.
The former can be achieved by assuming the use of private channels among the
servers and the latter using Verifiable Secret Sharing (VSS).

Our protocol is MPC-agnostic, meaning that it does not depend on the solu-
tion that implements the MPC functionality, and example protocols that could
be executed within our protocol are SPDZ [36], BDOZ [37] and MASCOT [38].
However, the three-party protocol for Boolean circuits that was recently in-
troduced by Araki et al. [39] is fairly suited for our current needs, given its
performance and threshold properties. Thus, this is the protocol we use in our
simulation. It can perform non-linear operations with relatively high throughput
and somewhat low latency (when tested on 10 Gbps connections). The scheme
provides threshold security against semi-honest parties. Note that Furukawa et
al. [40] further adapt the protocol to provide security against a malicious adver-
sary.

On an incremental setup for KSMS. In essence, our protocol can support an in-
cremental setup and deployment where an (l>2)-case of KSMS servers is trivial,
e.g., using BGW [34]. The 2-party case setting could also be trivially achieved by
using l-party MPC protocols such as SPDZ [36], however, the forensic properties
of our setup would no longer be attainable.

Multiparty Computation Functionalities. SePCAR uses the following cryp-
tographic functionalities for MPC:

– [x] ← share(x) is used to secretly share an input. This function can be in-
stantiated using Araki et al.’s sharing functionality.

– x← open([x]) reconstructs the private input based on the secret shares.
– [z]← XOR([x], [y]) outputs a secret shared bit, representing the XOR of se-

cret shared inputs [x] and [y]. Note that for both the arithmetic or Boolean
circuits, such functionality could be implemented without requiring any com-
munication cost.

– [z] ← AND([x], [y]) outputs a secret shared bit, representing the AND of
two secret shared inputs [x] and [y]. This function can be instantiated using
Araki et al.’s AND operation.

– [z] ← eqz([x], [y]) outputs a secret shared bit, corresponding to an equality
test of two secret shared inputs [x] and [y]. This is equivalent to computing

[z]← [x]
?
= [y] where z ∈ {0, 1}.

– [C] ← E([K], [M]) secretly computes a symmetric encryption from a secret
shared key [K] and a secret shared message [M]. Several protocols have been
proposed to achieve this, e.g., [41, 42]. We include a succinct review on how
to implement AES below.

– [V]← mac([K], [M]) secretly computes a MAC from a secret shared key [K]
and a secret shared message [M].

6

Table 1. Notations.

Symbol Description

KSMS, Si, PL, CM, uo, uc Set of KSMS servers, the ith server for i ∈ {1 . . . l}, Public Ledger, Car Manu-
facturer, owner, consumer

IDB , IDuo , IDuc , IDcar ID of booking, uo, uc, car
CDuc/ACuc , Lcar Set of conditions/access rights under which uc is allowed to access a car, car’s

location
DBCM / DBSi Database that CM holds with (IDuo , IDcaruo , Kcaruo) / that Si holds with

(IDuo , [IDcaruo], [Kcaruo]) for all owners (uo’s) and their registered cars
~Duo Car records (IDuo

x , [ID
caruo
y], [K

caruo
y]) of the xth uo for the yth car extracted

(query) from DBSi , where |~Duo | = n

~Dcar The matched (eqz output) yth car key (
1

[0] · · · [0]
y

[1][0] · · ·
n

[0]), where |~Dcar| = n
Pkx / Skx, Certuc Public/private key pair of the KSS entity x, certificate of uc

MB Booking details, i.e, {hash(Certuc), IDcar, Lcar, CDuc , ACuc , IDB}
σuo , σcar

Access Signature (sign output) of MB with Skuo , and {MB , TScar
Access} with Skcar

Kcar, Kuc , Kuc
1 /Kuc

2 Symmetric key of the car, uc’s master key, uc’s session keys generated be (prf
output) Kuc and counter/counter + 1

Muc , ATuc Concatenation of MB with σuo , a secure access token as the encryption (E
output) of Muc with Kcar

CSi Ciphertext (enc output) of session keys {[Kuc
1], [Kuc

2]} with PkSi

[Cuc] Ciphertext (E output) of {[ATuc], [IDcar]} with [Kuc
1]

CB , [CB] Message digest (mac output) of MB with Kuc
2 , and [MB] with [Kuc

2]
TSPub

i , TScar
Access Time-stamp of uc accessing the shared car, a record published (publish) on the

PL submitted by Si

Owner (uo)

MB

Consumer (uc)
MB

Kuc
1 ,Kuc

2

OBU

Kcar

Car

Public Ledger (PL)

TSPub
i [CB] [Cuc]

14774098 ersdf3tx0 fwefw234
.
14827104 fsd23f0x0 l2jhusa3u

1.1 CSi ← enc(PkSi , {[Kuc
1], [Kuc

2]})

Server 1

[Kcar]

Server i

[Kcar]

Server l

[Kcar]

KSMS

Car manufacturer
1.2 IDuo , CSi , [Muc]

0. [Kcar]

2. [CB], [Cuc]

3.1 query an([CB], [Cuc])

3.2 AT car, IDcar4. Auth.

Fig. 2. SePCAR high level overview.

On the secure equality test. Various protocols have been proposed to implement
the equality tests (previously referred eqz functionality). Common approaches
provide either constant rounds or a logarithmic number of them on the bit size
of its inputs, which could be proven more efficient for sufficiently small sizes.
Furthermore, they also offer different security levels, i.e., perfect or statistical
security. We refer the reader to the constructions presented in [43–45] for fur-
ther details on their implementation and inner working. We assume the use of
logarithmic depth comparison circuits.

On AES over MPC. AES has been the typical functionality used for bench-
marking MPC protocols during the last few years. This and its usability on
MPC based applications have motivated faster and leaner MPC implementa-
tions of the cipher. As it was previously stated, they consider the case where the
computational parties hold a secret shared key K and a secret shared message
M . The product of the operation is a secret shared AES encrypted ciphertext.
We refer the reader to [42, 46–48] for further details and treatment on the state
of the art. Note that in this paper we assume the use of Damg̊ard and Keller [46]
with some minor code optimisations.

7

4 SePCAR

In this section, we provide a detailed description of SePCAR. For simplicity and
without loss of generality, we consider a single owner, consumer and a shared
car. The description straightforwardly scales to a larger set of owners, consumers,
and cars. Table 1 lists the notation used in the paper and Fig: 2 illustrates the
high-level overview of SePCAR.

SePCAR consists of four steps: session keys generation and data distribution,
access token generation, access token distribution and verification and car access.
We will discuss these steps in detail in the remainder of the section, with a general
overview picture given in Figure 8 in Appendix A. Before discussing these steps,
we first discuss a few prerequisite steps which have to be performed. After the
discussion of the fourth (and last) step, we complete the section with an overview
of the possible operations after SePCAR: access token update and revocation.

Prerequisite. Before SePCAR can commence, two prerequisite steps need to
take place: car key distribution and setting the details for the car booking.

Car key distribution takes place immediately after the xth owner, IDuo
x , has

registered her yth car, ID
caruo
y , with the KSMS. The KSMS forwards ID

caruo
y

to the Car Manufacturer (CM) to request the symmetric key, K
caruo
y , of the car.

The CM retrieves K
caruo
y from its DB, DBCM and generates l secret shares of

K
caruo
y and ID

caruo
y , denoted by [K

caruo
y] and [ID

caruo
y], respectively. Then, it

forwards each share to the corresponding KSMS server, i.e., Si. Upon receipt of
the shares, each Si stores IDuo together with the shares, [ID

caruo
y] and [K

caruo
y],

in its local DB, DBSi . The representations of the DB of CM and Si are shown
in Figure 3. For simplicity, in some parts of SePCAR we will use IDuo , IDcar

and Kcar instead of IDuo
x , ID

caruo
y and K

caruo
y .

DBCM =



IDuo
1 ID

caruo
1 K

caruo
1

...
...

...
IDuo

x ID
caruo
y K

caruo
y

...
...

...
IDuo

m ID
caruo
n K

caruo
n

 DBSi =



IDuo
1 [ID

caruo
1] [K

caruo
1]

...
...

...
IDuo

x [ID
caruo
y] [K

caruo
y]

...
...

...
IDuo

m [ID
caruo
n] [K

caruo
n]


Fig. 3. The car manufacturer CM (left) and the DB of the ith server Si (right).

Car booking allows uo and uc to agree on the booking details, i.e., MB =
{hash(Certuc), IDcar, Lcar, CDuc , ACuc , IDB}, where hash(Certuc) is the hash
of the digital certificate of uc, L

car is the pick-up location of the car, CDuc is
the set of conditions under which uc is allowed to use the car (e.g., restrictions
on locations, time period), ACuc are the access control rights under which uc
is allowed to access the car and IDB is the booking identifier. Recall that it is
assumed that an owner and a consumer agree on the booking details beforehand.

Step 1: Session Keys Generation and Data Distribution. uc generates
two symmetric session keys, Kuc

1 and Kuc
2 . Key Kuc

1 will be used by each Si

8

Owner (uo) Consumer (uo) S1 . . .Si . . .Sl

msg{SES K GEN REQ, IDB}
Kuc

1 ← prf(Kuc , counter)
Kuc

2 ← prf(Kuc , counter + 1)
counter ← counter + 2
[Kuc

1]← share(Kuc
1)

[Kuc
2]← share(Kuc

2)
for i = 1 . . . l do
CSi ← enc(PkSi , {[Kuc

1], [Kuc
2]})

end for

σuo ← sign(Skuo ,MB)
Muc ← {MB , σuo}
[Muc]← share(Muc)

msg{SES K GEN ACK, IDB , {CS1 , . . . , CSl}}
msgi{AT GEN REQ, IDuo , CSi , [Muc]}

Fig. 4. Step 1: session keys generation and data distribution.

to encrypt the access token, such that only uc has access to it. Kuc
2 will be

used to generate an authentication tag which will allow uc to verify that the
access token contains MB which was agreed upon during the car booking. In
addition, uo sends the necessary data to each Si, such that the access token can be
generated. In detail, as it is shown in Figure 4, uo sends a session-keys-generation
request, SES K GEN REQ, along with IDB to uc. Upon receipt of the request,
uc generates Kuc

1 and Kuc
2 using the prf() function instantiated by uc’s master

key, i.e., Kuc and counter and counter+1. Then, uc transforms these into l secret
shares, [Kuc

1] and [Kuc
2], one for each Si in such a way that none of the servers will

have access to the keys but that they can jointly evaluate functions using these
keys securely. Then, it encrypts [Kuc

1] and [Kuc
2] with the public key of each

Si, C
Si = enc(PkSi , {[Kuc

1], [Kuc
2]}), such that only the corresponding Si can

access the corresponding shares. Finally, uc forwards to uo an acknowledgment
message, SES K GEN ACK, along with IDB and {CS1 , . . . , CSl}.

While waiting for the response of uc, the owner uo signs MB with her private
key, i.e., σuo = sign(Skuo ,MB). In a later stage, the car will use σuo to verify
that MB has been approved by uo. Then uo transforms Muc = {MB , σuo} into
l secret shares, i.e., [Muc]. Upon receipt of the response of uc, uo forwards to
each Si an access-token-generation request, AT GEN REQ, along with IDuo ,
the corresponding CSi and [Muc].

Step 2: Access Token Generation. The servers generate an access token
and publish it on the PL. In detail, as it is shown in Figure 5, upon receipt of
AT GEN REQ from uo, each Si uses the IDuo to extract [Kcar] from DBSi as
follows. Initially, each Si uses IDuo to retrieve the list of identities of all cars
and car key shares related to the set of records that correspond to uo. The result

is stored in a vector ~Duo of size n× 3, i.e.,

~Duo =


IDuo [ID

caruo
1] [Kcar

1]
...

...
...

IDuo [ID
caruo
y] [Kcar

y]
...

...
...

IDuo [ID
caruo
n] [Kcar

n]

 ,

where n is the number of cars which uo has registered with the KSS.

9

Public Ledger (PL) S1 . . .Si . . .Sl

~Duo ← query(IDuo , DBSi)
for y = 1 . . . n do
~Dcar

y ← eqz([IDcar], [ID
caruo
y])

end for
[Kcar]← ~Dcar × ~Duo

[AT car]← E([Kcar], [Muc])
{[Kuc

1], [Kuc
2]} ← dec(SkSi , CSi)

[Cuc]← E([Kuc
1], {[AT car], [IDcar]})

[CB]← mac([Kuc
2], [MB])

msgi{AT PUB REQ, [CB], [Cuc]}

Fig. 5. Step 2: access token generation.

To retrieve the record for the car to be shared, each Si extracts [IDcar] from

[Muc] and performs a comparison with each of the n records of ~Duo using the
eqz() function. The comparison outcomes 0 for mismatch and 1 for identifying

the car at position y. The result of each iteration is stored in a vector ~Dcar with
size 1× n, i.e.,

~Dcar =
(1

[0] · · · [0]
y

[1][0] · · ·
n

[0]
)
.

Each Si then multiplies ~Dcar and ~Duo to generate a third vector of size 1 × 3,
i.e.,

~Dcar × ~Duo =
(
IDuo [ID

caruo
y] [K

caruo
y]

)
,

from which the share of the car’s secret key, [Kcar], can be retrieved. Then,
the KSMS servers Si collaboratively encrypt [Muc] using the retrieved [Kcar] to
generate an access token for the car in a shared form, [AT car].

As AT car and IDcar need to be available only to uc, a second layer of en-
cryption is performed using Kuc

1 . To retrieve the shares of the session keys,
{[Kuc

1], [Kuc
2]}, each Si decrypts CSi using its private key. Then, the servers

encrypt [AT car] and [IDcar] with [Kuc
1] to generate [Cuc]. In addition, they

generate an authentication tag, [CB], using the mac() function with [Kuc
2] and

[MB] as inputs. Finally, each Si sends to PL an access-token-publication request,
AT PUB REQ, along with [CB] and [Cuc].

Step 3: Access Token Verification and Distribution. The PL publishes
the shares of the encrypted access token which are then retrieved by uc. Once
retrieved, uc can obtain the access token and use it to access the car. In detail,
as it is shown in Figure 6, upon receipt of AT PUB REQ, PL publishes [CB],
[Cuc] and TSPub, which is the time-stamp of publishing the encrypted token.
Then PL sends an acknowledgement of publication, AT PUB ACK, along with
TSPubi to at least one Si which forwards it to uo who, in turn, forwards it to uc.

Upon receipt of AT PUB ACK, uc uses TSPubi to anonymously retrieve [Cuc]
and [CB] from PL, such that PL cannot identify uc. Then, uc uses the open()
function to reconstruct CB and Cuc using the retrieved shares. Next, uc verifies
the authentication tag CB locally using the mac() function with Kuc

2 and MB

as inputs. In case of successful verification, uc is assured that the token contains
the same details as the ones agreed during car booking. Then, uc decrypts Cuc

using Kuc
1 to obtain the access token and the car identity, {AT car, IDcar}.

10

Owner (uo) Consumer (uo) Public Ledger (PL) S1 . . .Si . . .Sl

publish(TSPub
i , [CB], [Cuc])

msg{AT PUB ACK,TSPub
i }

msg{AT PUB ACK,TSPub
i }

msg{AT PUB ACK,TSPub
i }

query an(TSPub
i)

TSPub
i [CB] [Cuc]

14774098 ersdf3tx0 fwefw234
.

msg{[CB], [Cuc]}

CB ← open([CB])

if CB ?
= mac(Kuc

2 ,MB) then
Cuc ← open([Cuc])

end if
{AT car, IDcar} ← D(Kuc

1 , Cuc)

Fig. 6. Step 3: access token distribution and verification.

Step 4: Car Access. The consumer uses the access token to obtain access to
the car. In detail, uc sends {AT car, IDcar,Certuc} to the car using a secure and
close range communication channel such as NFC or Bluetooth (see Figure 7).
Upon receipt, the car’s OBU obtains Muc = {MB , σuo} by decrypting AT car

with Kcar. It then performs three verifications. It checks if the access attempt
satisfies the conditions specified in MB . Then, it verifies σuo to be assured that
the booking details, MB , have not been modified and have been indeed approved
by the car owner. Finally, it verifies the identity of uc. For the last verification,
as the OBU receives Certuc (along with the hash(Certuc) in MB), it can use
any challenge-response protocol based on public/private key [49] and RFIDs [4].
If any of these verifications fails, the OBU terminates the car access process
and denies access to the car. Otherwise, it grants uc access to the car, signs
{MB , TScarAccess}, where TScarAccess is the time-stamp of granting the access and
asynchronously sends msg{σcarAccess, TS

car
Access} to uo.

Access Token Update and Revocation. Upon an agreement between uo and
uc to update or revoke an access token, SePCAR can be performed as described
in steps 1-3. The values of an update request can be changed according to new
booking details, M̂B , whereas for revocation, each of the parameters in M̂B

can receive a predefined value indicating the revocation action. However, there
are occasions when uo may need to enforce an update or revocation of an access
token. To prevent uc from blocking such operations, SePCAR should be executed
only by uo, without the involvement of uc. More detailed, uo generates session
keys, requests an access token, queries the PL, and sends the token to the car
using long range asynchronous communication channel such as LTS.

Owner (uo) Car Consumer (uo)
msg{AT car, IDcar,Certuc}

{MB , σuo} ← D(Kcar, AT car)
verify(Pkuo ,MB , σuo)

Challenge / Response

σcar
Access ← sign(Skcar, {MB , TScar

Access})

msg{σcar
Access, TS

car
Access}

verify(Pkcar, {MB , TScar
Access}, σcar

Access)

Fig. 7. Step 4: car access. Dashed lines represent close range communication.

11

5 Security and Privacy Analysis

We prove that SePCAR satisfies the security and privacy requirements of Sec-
tion 2, provided that its underlying cryptographic primitives are sufficiently se-
cure. Below theorem statement and proof are informal; a formal description of
the security models and the proof will be given in the full version of the paper.

Theorem 1. If communication takes place over private channels, the MPC is
statistically secure,

– the signature scheme sign is multi-key existentially unforgeable [50],
– the pseudorandom function prf is multi-key secure [51],
– the public key encryption scheme enc is multi-key semantically secure [52],
– the symmetric key encryption scheme E is multi-key chosen-plaintext se-

cure [53],
– the MAC function mac is multi-key existentially unforgeable [50], and
– the hash function hash is collision resistant [54],

then SePCAR fulfils the security and privacy requirements of Section 2.

Note that, indeed, for each of the keyed cryptographic primitives we require
security in the multi-key setting, as these are evaluated under different keys.
For example, sign is used by all owners, each with a different key; enc is used
for different keys, each for a different party in the KSMS, and E and mac are
used for independent keys for every fresh evaluation of the protocol. We refer to
Bellare et al. [52] for a discussion on generalizing semantic security of public key
encryption to multi-key security; the adaptation straightforwardly generalizes to
the other security models.

Proof (sketch). We treat the security and privacy requirements, and discuss how
these are achieved from the cryptographic primitives, separately. We recall that
consumer and owner have agreed upon the booking details prior to the evaluation
of SePCAR, hence they know each other.

SR1 - Confidentiality of MB. In one evaluation of the protocol, uc, uo, and the
shared car learn the booking details by default or design. The KSMS servers only
learn shares of the booking data, and under the assumption that the MPC is
statistically secure, nothing about the booking data is revealed during the MPC.
The outcomes of the MPC are CB and Cuc satisfying

CB = mac(Kuc
2 ,MB) , (1)

Cuc = E(Kuc
1 , {E(K

caruo
y , {MB , σuo}), IDcar}) , (2)

both of which reveal nothing about MB to a malicious outsider due to the
assumed security of mac, E, and the independent uniform drawing of the keys
Kuc

1 and Kuc
2 . The nested encryption E does not influence the analysis due to

the mutual independence of the keys Kuc
1 and K

caruo
y .

12

SR2 - Authenticity of MB. An owner who initiates the access token generation
and distribution, first signs the booking details using its private key before send-
ing those to the KSMS in shares. Therefore, once the car receives the token and
obtains the booking details, it can verify the owner’s signature on the booking
details. In other words, the car can verify the source of the booking details, the
owner and their integrity. Suppose, to the contrary, that a malicious consumer
can get access to a car of an owner uo. This particularly means that it created
a tuple (MB , σuo) such that verify(Pkuo ,MB , σuo) holds. If σuo is new, this
means that uc forges a signature for the secret signing key Skuo . This is impossi-
ble by assumption that the signature scheme is existentially unforgeable. On the
other hand, if (MB , σuo) is old but the evaluation is fresh, this means a collision
hash(Certuc) = hash(Certuc′), which happens with negligible probability as hash
is collision resistant.

SR3 - Confidentiality of AT car. The access token is generated by the KSMS
servers obliviously (as the MPC is statistically secure), and only revealed to the
public in encrypted form, through Cuc of (2). Due to the uniform drawing of
the key Kuc

1 , only the legitimate user can decrypt and learn the access token. It
shares it with the car over a secure and private channel.

SR4 - Confidentiality of Kcar. Only the car manufacturer and the car itself hold
copies of the car key. The KSMS servers learn these in shared form, hence learn
nothing about it by virtue of the statistical security of the MPC. Retrieving a
car key from encryptions made under this key constitutes a key recovery attack,
which in turn allows to break the chosen-plaintext security of the symmetric key
encryption scheme.

SR5 - Backward and forward secrecy of AT car. The access token is published
on the public ledger as Cuc of (2), encrypted under symmetric key Kuc

1 . Every
honest consumer generates a fresh key Kuc

1 for every new evaluation, using a
pseudorandom function prf that is secure, i.e., that is indistinguishable from a
random function. This implies that all session keys are drawn independent and
uniformly at random. In addition, the symmetric encryption scheme E is multi-
key secure. Concluding, all encryptions Cuc are independent and reveal nothing
of each other. (Note that nothing can be said about access tokens for malicious
users who may deviate from the protocol and reuse one-time keys.)

SR6 - Non-repudiation of origin of AT car. The car, who is a trusted identity,
verifies the origin through verification of the signature, verify(Pkuo ,MB , σuo).
The consumer uc verifies the origin through the verification of the MAC function,

CB
?
= mac(Kuc

2 ,MB). Note that the consumer does not effectively verify AT car,
but rather CB , which suffices under the assumption that the MPC servers eval-
uate their protocol correctly. In either case, security fails only if the asymmetric
signature scheme or the MAC function are forgeable.

SR7 - Non-repudiation of delivery of AT car. The owner can verify correct de-
livery through the verification of the message sent by the car to the owner,
verify(Pkcar, {MB , TScarAccess}, σcarAccess) at the end of the protocol. Security breaks
only if the signature scheme is forgeable.

13

PR1 - Unlinkability of uc and the car. The only consumer-identifiable data is
in the consumer’s certificate included in the booking details. Note that these
are agreed upon between the consumer and the owner, so the owner learns the
identity of the consumer by default. Beyond that, the consumer only communi-
cates with the car, which is supposed to learn the consumer’s identity so that
it can perform proper access control. The consumer consults the public ledger
over an anonymous channel. The booking details are transferred to and from the
KSMS, but these are encrypted and do not leak by virtue of their confidentiality
(security requirement SR1).

PR2 - Anonymity of uc and the car. The reasoning is identical to that of PR1.

PR3 - Undetectability of AT car operation. Access token generation, update, or
revocation is performed using the same steps and the same type of messages sent
to the KSMS and PL. Hence, outsiders and system entities can not distinguish
which operation has been requested.

PR4 - Forensic evidence provision. In the case of disputes, the information
related to a specific transaction (and only this information) may need to be
reconstructed. This reconstruction can be done only if the KSMS servers collude
and reveal their shares. In our setting, these servers have competing interests,
thus they would not collude unless law authorities enforce them to do so. Due to
the properties of threshold secret sharing, the private inputs can be reconstructed
by a majority coalition. This is, if the KSMS consists of three parties, it suffices
two of such parties to reconstruct the secrets (for semi-honest and malicious
cases).

FR1 - Offline authentication. Note that steps 1-3 of the protocol require a net-
work connection, but step 4, car access, is performed using close range communi-
cation and with no need of a network connection. The decryption and verification
of the access token can be performed by the car offline (it has its key Kcar and
the owner’s public key Pkuo stored). Sending the confirmation signature σcarAccess
can also be done offline. ut

6 Performance Evaluation

In this section, we provide a theoretical complexity and practical efficiency anal-
ysis of SePCAR.

Theoretical Complexity. The complexity of multiparty protocols is typically
measured by the number of communication rounds produced by non-linear op-
erations, as linear operations can usually be done without any information ex-
change and are virtually free of charge. We refer the reader to [55] for an extended
review on complexity analysis on MPC. In one evaluation of SePCAR, the non-
linear operations performed by the KSMS servers are (i) the retrieval of the car
key by means of using multiple calls of the eqz functionality using the IDcar

and their counterparts in ~Dcar as parameters, and (ii) two evaluations of the
encryption scheme E and one evaluation of mac.

14

For (i) the evaluations of the eqz functionality, we consider a multiplicative
depth of dlog(|IDcar|)e+ 1, where |IDcar| is the amount of bits in IDcar. Note

that we can parallelize the eqz call for all ~Dcar entries. Therefore, the bulk of the
overhead of extracting the car key comes from implementing the equality test in
logarithmic depth [44]. Besides executing the eqz tests, we also have to perform
an extra communication round since we need to multiply the result of each
equality test with its corresponding car key. The total number of communication
rounds for (i) is thus dlog(|IDcar|)e+ 1.

For (ii) the two evaluations of the encryption scheme E and the single evalu-
ation of mac we use, as mentioned in Section 3, CTR mode with AES and CBC-
MAC with AES, respectively. Note that in a single AES evaluation the number
of non-linear operations equals the number of S-Boxes evaluated in these func-
tions, but many can be parallelized. Denote by ν the number of communication
rounds needed to encrypt a single 128-bit block using AES. The two evaluations
of CTR mode can be performed in parallel, and cost 2 · ν rounds. The evalua-

tion of CBC-MAC is inherently sequential and costs
⌈
|MB |
128

⌉
· ν communication

rounds.
The total amount of communication rounds can thus be expressed as(

dlog(|IDcar|)e+ 1
)

+ 2 · ν +

⌈
|MB |
128

⌉
· ν . (3)

Practical Efficiency. Our protocol, as well as above computation, is agnostic
towards the underlying multiparty protocol. In our experiments we have incor-
porated the 3-party semi-honest protocol by Araki et al. [39], given its relative
efficiency of AES calls compared to alternatives such as Sharemind [56] and
others [57–59]. The upshot of our experiments is that SePCAR needs only 1.55
seconds for a car access provision. We elaborate on our simulation below, follow-
ing the steps of Section 4. A detailed segregation of the time into the different
steps is given in Table 2.

Step 1. Recall that step 1 handles the preparation and sharing of the booking
details and generation of keys. For enc we use RSA with 2048 bit keys (≈ 2ms)
and for sign we use RSA with SHA-2 with a 512 bit output (≈ 50µs). The prf
is implemented using AES in CTR mode (≈ 2µs). For all these functions we
use OpenSSL [60]. The share function is implemented by the sharing primitive
introduced by Araki et al. [39].

Step 2. In this step, the KSMS servers retrieve the car key and perform the
corresponding encryption and other subroutines linked to generating the MAC.
We consider the following message configuration size: hash(Certuc) of 512 bits,
IDcar of 32 bits, Lcar of 64 bits, CDuc of 96 bits, ACuc of 8 bits, IDB of 32
bits and σuo of 512 bits. The booking details MB are of size 768 bits (including
padding) and the final access token ATuc is of size 1408 bits (including padding).
For the dec function we use RSA with 2048 bit keys (≈ 2ms). The symmetric
encryption E is implemented in CTR mode and the mac in CBC mode. As
mentioned before, the functions E, mac, and eqz use the basic primitives from

15

Table 2. Performance of SePCAR, where time is averaged over 1000 runs.

Phase Description Time (in sec)

Step 1 Sharing the booking details and keys 0.220± 0.027
Step 2 Extracting car key and making access token 1.274± 0.032
Step 3 Verifying the access token 0.055 (+1 Tor [62])
Total 1.551± 0.043 (+1 Tor)

Araki et al. [39], and we use the multiparty AES implementation of Damg̊ard
and Keller [46].

Step 2 also includes the MPC. Using Damg̊ard and Keller [46], a single S-Box
evaluation takes 5 communication rounds. A single evaluation of AES consists
of 20 sequential evaluations of an S-Box, where we included the key expansion
and took into account that parallelizable S-Boxes do not add up to the number
of communication rounds, and can thus be encrypted in ν = 100 communica-
tion rounds. From (3) we obtain that in our simulation the total number of
communication rounds is(

5 + 1
)

+ 2 · 100 + 6 · 100 = 806 .

We remark that key expansion for different keys only needs to be performed once,
and for multiple evaluations of SePCAR for the same car the round complexity
reduces.

Step 3. In this step the consumer retrieves, reconstructs, and verifies the as-
signed access token. The PL is implemented using SQLite. The implementation
of open again follows the basic primitive given by Araki et al. [39], and mac is
implemented using AES in CBC mode (≈ 13µs).

Step 4. The final step consists of a challenge-response protocol between uc and
the car, but it does not directly affect the performance of SePCAR and we omit
it from our implementation.

Environment Settings. We implemented a realistic simulation for SePCAR in
C++ and evaluated it using a machine equipped with an Intel i7, 2.6Ghz CPU
and 8GB of RAM.5 The communication within the KSMS was simulated using
socket calls and latency parameters. We used Araki et al. [39] to simulate the
LAN latency (≈ 0.13ms) and Ramamurthy et al. [61] for Wi-Fi (≈ 0.50ms). We
did not assume any specific network configuration for our experimentation.

7 Conclusion

SePCAR is proven to be secure and privacy-enhancing, efficiently performing in
≈ 1.55 seconds for a car access provision. We presented a formal analysis of the
security and privacy requirements of our protocol and we provided a prototype
as proof-of-concept. As future work, we plan to extend SePCAR to support
additional operations such as booking and payment.

5 The implementation can be obtained from https://bitbucket.org/Siemen11/sepcar.

16

References

1. Shaheen, S., Cohen, A.: Innovative mobility carsharing outlook. University of
Berkeley, California (2013)

2. Deloitte: Smart mobility: Reducing congestion and fostering faster, greener, and
cheaper transportation options. https://www.mysql.com/ Accessed April, 2017.

3. ACEA: Carsharing: Evolution, Challenges and Opportunities.
https://goo.gl/NTec4l Accessed April, 2017.

4. Dmitrienko, A., Plappert, C.: Secure free-floating car sharing for offline cars. In:
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017. 349–360

5. Bert, J., Collie, B., Gerrits, M., Xu, G.: What’s ahead for car sharing?: The new
mobility and its impact on vehicle sales. (2016)

6. Volvo: Volvo Keyless Cars. https://youtu.be/FF6JtS3y1xA Accessed Nov., 2016.
7. BMW: DriveNow Car Sharing. https://drive-now.com/ Accessed November, 2016.
8. USA TODAY: Toyota will test keyless car sharing. http://tinyurl.com/hl8m6a7

Accessed November, 2016.
9. Wielinski, G., Trépanier, M., Morency, C.: Electric and hybrid car use in a free-

floating carsharing system. International Journal of Sustainable Transportation
11(3) (2017) 161–169

10. Shaheen, S.A., Cohen, A.P.: Car sharing and personal vehicle services: worldwide
market developments and emerging trends. Int. Journal of Sustainable Transporta-
tion 7(1) (2013) 5–34

11. Naphade, M.R., Banavar, G., Harrison, C., Paraszczak, J., Morris, R.: Smarter
cities and their innovation challenges. IEEE Computer 44(6) (2011) 32–39

12. The Guardian: Hell of a ride: even a PR powerhouse couldn’t get Uber on track.
https://goo.gl/UcIihE Accessed April, 2017.

13. Daring Fireball: Regarding Ubers New Always Location Tracking.
https://goo.gl/L1Elve Accessed April, 2017.

14. reddit: Identifying Muslim cabbies from trip data and prayer times.
https://goo.gl/vLrW1s Accessed April, 2017.

15. Council of the EU Final Compromised Resolution: General Data Protection Reg-
ulation. http://www.europarl.europa.eu Accessed Feb, 2015.

16. statista: Number of smartphone users in the United States from 2010 to
2021. https://www.statista.com/statistics/201182/forecast-of-smartphone-users-
in-the-us/ Accessed April, 2017.

17. GOV.UK: Reducing mobile phone theft and improving security.
https://www.gov.uk/government/publications/reducing-mobile-phone-theft-
and-improving-security Accessed April, 2017.

18. Symeonidis, I., Mustafa, M.A., Preneel, B.: Keyless car sharing system: A security
and privacy analysis. In: IEEE International Smart Cities Conference, ISC2 2016,
Trento, Italy, September 12-15, 2016. 1–7

19. Enev, M., Takakuwa, A., Koscher, K., Kohno, T.: Automobile driver fingerprinting.
PoPETs 2016(1) (2016) 34–50

20. Troncoso, C., Danezis, G., Kosta, E., Balasch, J., Preneel, B.: PriPAYD: Privacy-
Friendly Pay-As-You-Drive Insurance. IEEE Trans. Dependable Sec. Comput. 8(5)
742–755

21. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I., Geuens, C.:
PrETP: Privacy-Preserving Electronic Toll Pricing. In: 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings. 63–78

22. Kerschbaum, F., Lim, H.W.: Privacy-preserving observation in public spaces. In:
Computer Security - ESORICS 2015 - 20th European Symposium on Research in
Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part II.
(2015) 81–100

17

23. Mustafa, M.A., Zhang, N., Kalogridis, G., Fan, Z.: Roaming electric vehicle charg-
ing and billing: An anonymous multi-user protocol. In: IEEE SmartGridComm.
(Nov 2014) 939–945

24. EVITA: E-safety Vehicle Intrusion Protected Applications (EVITA).
http://www.evita-project.org/ Accessed November, 2016.

25. PRESERVE: Preparing Secure Vehicle-to-X Communication Systems (PRE-
SERVE). https://www.preserve-project.eu/ Accessed November, 2016.

26. Stotz, J., Bißmeyer, N., Kargl, F., Dietzel, S., Papadimitratos, P., Schleiffer, C.: Se-
curity requirements of vehicle security architecture, preserve-deliverable 1.1 (2011)

27. Raya, M., Papadimitratos, P., Hubaux, J.: Securing vehicular communications.
IEEE Wireless Commun. 13(5) 8–15

28. Khodaei, M., Jin, H., Papadimitratos, P.: Towards deploying a scalable &
robust vehicular identity and credential management infrastructure. CoRR
abs/1601.00846

29. INVERS: Make Mobility Shareable. https://invers.com/ Accessed April, 2017.
30. Micali, S.: Algorand: The efficient and democratic ledger. arXiv preprint

arXiv:1607.01341 (2016)
31. Trusted Computing Group: TPM 2.0 Library Profile for Automotive-Thin.

http://tinyurl.com/jrklfqj Accessed June, 2016.
32. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining

message authentication code. J. Comput. Syst. Sci. 61(3) 362–399
33. Tor Project: Protect your privacy. Defend yourself against network surveillance

and traffic analysis. https://www.torproject.org/ Accessed April, 2017.
34. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In: STOC, ACM (1988) 1–10
35. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.

In: STOC, ACM (1988) 11–19
36. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from

somewhat homomorphic encryption. In: CRYPTO ’12. Volume 7417 of LNCS.,
Springer (2012) 643–662

37. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryp-
tion and multiparty computation. In: EUROCRYPT ’11. Volume 6632 of LNCS.,
Springer (2011) 169–188

38. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October
24-28, 2016. (2016) 830–842

39. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’16

40. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part II. 225–255

41. Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. Cryptology ePrint Archive, Report 2016/687 (2016)

42. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Springer (2015) 430–454

43. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: TCC 2006. Volume 3876 of LNCS., Springer (2006) 285–304

18

44. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: ICALP (2). (2013) 645–656

45. Catrina, O., Hoogh, S.D.: Improved primitives for secure multiparty integer com-
putation. In: SCN. (2010) 182–199

46. Damg̊ard, I., Keller, M.: Secure multiparty AES. In: International Conference on
Financial Cryptography and Data Security, Springer (2010) 367–374

47. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.: Implementing AES via
an Actively/Covertly Secure Dishonest-Majority MPC Protocol. In: Security and
Cryptography for Networks. Volume 7485 of LNCS., Springer (2012) 241–263

48. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-Friendly
Symmetric Key Primitives. Cryptology ePrint Archive, Report 2016/542 (2016)

49. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2) 107–125

50. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2) 281–308

51. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4) (1986) 792–807

52. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
Security proofs and improvements. In: Advances in Cryptology - EUROCRYPT
2000, International Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. 259–274

53. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997. 394–403

54. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In: FSE. Volume 3017 of LNCS., Springer (2004) 371–388

55. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press (2015)

56. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Computer Security - ESORICS 2008, 13th European
Symposium on Research in Computer Security, Málaga, Spain, October 6-8, 2008.
Proceedings. (2008) 192–206

57. Talviste, R.: Applying secure multi-party computation in practice. Ph.D disserta-
tion (2016)

58. Laur, S., Talviste, R., Willemson, J.: From oblivious AES to efficient and secure
database join in the multiparty setting. In: Applied Cryptography and Network
Security - 11th International Conference, ACNS 2013, Banff, AB, Canada, June
25-28, 2013. Proceedings. (2013) 84–101

59. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. SIGPLAN Not. 47(9) (September
2012) 189–200

60. OpenSSL: Cryptography and SSL/TLS Toolkit. https://www.openssl.org/ Ac-
cessed April, 2017.

61. Ramamurthy, H., Prabhu, B., Gadh, R., Madni, A.M.: Wireless industrial moni-
toring and control using a smart sensor platform. IEEE sensors journal 7(5) (2007)
611–618

62. Tor: TorMETRICS. https://metrics.torproject.org/torperf.html Accessed April,
2017.

A SePCAR Complete Representation.

19

Owner (uo) Car Consumer (uc) Public Ledger (PL) S1 . . .Si . . .Sl

MB = {hash(Certuc), IDcar, Lcar, CDuc , ACuc , IDB}
msg{SES K GEN REQ, IDB}

Kuc
1 ← prf(Kuc , counter)

Kuc
2 ← prf(Kuc , counter + 1)

counter ← counter + 2
[Kuc

1]← share(Kuc
1)

[Kuc
2]← share(Kuc

2)
for i = 1 . . . l do
CSi ← enc(PkSi , {[Kuc

1], [Kuc
2]})

end for

σuo ← sign(Skuo , {MB})
Muc ← {MB , σuo}
[Muc]← share(Muc)

msg{SES K GEN ACK, IDB , {CS1 , . . . , CSl}}

msgi{AT GEN REQ, IDuo , CSi , [Muc]}
~Duo ← query(IDuo , DBSi)
for y = 1 . . . n do
~Dcar

y ← eqz([IDcar], [ID
caruo
y])

end for
[K

caruo
y]← ~Dcar × ~Duo

[AT car]← E([K
caruo
y], [Muc])

{[Kuc
1], [Kuc

2]} ← dec(SkSi , CSi)
[Cuc]← E([Kuc

1], {[AT car], [IDcar]})
[CB]← mac([Kuc

2], [MB])

msgi{AT PUB REQ, [CB], [Cuc]}

publish(TSPub
i , [CB], [Cuc])

msg{M PUB ACK,TSPub
i }

msg{AT PUB ACK,TSPub
i }

msg{AT PUB ACK,TSPub
i }

query an(TSPub
i)

TSPub
i [CB] [Cuc]

14774098 ersdf3tx0 fwefw234
.

msg{[CB], [Cuc]}

CB ← open([CB])

if CB ?
= mac(Kuc

2 ,MB) then
Cuc ← open([Cuc])

end if
{AT car, IDcar} ← D(Kuc

1 , Cuc)

msg{AT car, IDcar,Certuc}

{MB , σuo} ← D(Kcar, AT car)
verify(Pkuo ,MB , σuo)

Challenge / Response

σcar
Access ← sign(Skcar, {MB , TScar

Access})

msg{σcar
Access, TS

car
Access}

verify(Pkcar, {MB , TScar
Access}, σcar

Access)

Fig. 8. SePCAR complete representation.

20

