
Stringer: Measuring the Importance of Static
Data Comparisons to Detect Backdoors and

Undocumented Functionality

Sam L. Thomas(B), Tom Chothia, and Flavio D. Garcia

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
{s.l.thomas,t.p.chothia,f.garcia}@cs.bham.ac.uk

Abstract. Finding undocumented functionality in commercial off-the-
shelf (COTS) device firmware is an important and challenging task. This
paper proposes a new static analysis method that measures the influence
individual pieces of static data (such as strings) have upon the control
flow of binaries in firmware. Our method automatically identifies static
data comparison functions within binaries, then labels each function’s
basic blocks with the set of sequences of static data that must be matched
against to reach them. Then using these sets, it assigns a score to each
function, which measures the extent to which the function’s branching
is influenced by static data. Special keywords triggering backdoor func-
tionality will have a large impact on the program flow. This allows us
to identify three authentication backdoors – two of which previously
undocumented. Moreover, we show our method is effective in aiding the
recovery of both previously known and proprietary text-based protocols.
We have developed a tool, Stringer which implements our technique; we
demonstrate the effectiveness of our approach as well as its applicability
to lightweight analysis by running it on a data set of 2,451,532 binaries
from 30 different COTS device vendors.

1 Introduction

The current state of commercial off-the-shelf (COTS) embedded device security
needs much improvement: from manufacturers deploying outdated, vulnerable
software components within device firmware, to so-called debug interfaces being
accidentally enabled within production versions of firmware1. Several backdoors,
undocumented commands and daemons have been reported2,3,4,5. The impact
of these malicious or simply bad practices is exacerbated by the sheer number of
devices available, with each device potentially having multiple firmware versions.

1 e.g., https://github.com/elvanderb/TCP-32764.
2 https://ics-cert.us-cert.gov/advisories/ICSA-13-136-01.
3 https://w00tsec.blogspot.nl/2015/11/arris-cable-modem-has-backdoor-in.html.
4 http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/.
5 https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories txt/2016012

1-0\ AMX\ Deliberately\ hidden\ backdoor\ account\ v10.txt.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part II, LNCS 10493, pp. 513–531, 2017.
DOI: 10.1007/978-3-319-66399-9 28

https://github.com/elvanderb/TCP-32764
https://ics-cert.us-cert.gov/advisories/ICSA-13-136-01
https://w00tsec.blogspot.nl/2015/11/arris-cable-modem-has-backdoor-in.html
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/
https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories_txt/20160121-0protect global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore AMXprotect global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore Deliberatelyprotect global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore hiddenprotect global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore backdoorprotect global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore accountprotect global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore v10.txt
https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories_txt/20160121-0protect unhbox voidb@x kern .06emvbox {hrule width.3em}AMXprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Deliberatelyprotect unhbox voidb@x kern .06emvbox {hrule width.3em}hiddenprotect unhbox voidb@x kern .06emvbox {hrule width.3em}backdoorprotect unhbox voidb@x kern .06emvbox {hrule width.3em}accountprotect unhbox voidb@x kern .06emvbox {hrule width.3em}v10.txt

514 S.L. Thomas et al.

Organizations handling sensitive data or critical infrastructure need a mean to
determine the trustworthiness of a device before bringing it into their systems
or networks. This work is currently either simply not done or is carried out
manually by an expert analyst who dissembles the devices firmware with IDA
Pro or similar tools. This is a very costly process that does not scale. Moreover,
because the evaluation is so expensive and it needs to be done for each firmware
version, it has the negative effect of motivating corporations to not update the
device’s firmware, leaving them exposed to known security vulnerabilities.

This work aims to reduce the effort of manual analysis by automating the
identification of interesting code structures and functions within binaries from
Linux-based embedded device firmware. This analysis is performed in a lightweig-
ht, scalable manner and is thus applicable to processing large collections of
binaries from both device firmware and commodity hardware.

We say that a section of code is interesting when it exhibits unexpected
behaviour. This behaviour is generally triggered when certain conditions are
met – such as on the input of a special keyword. The code executed as a result
of successful comparison with a special keyword is often not accessible by any
other means, and is thus, uniquely guarded by that keyword.

This work automates much of the process of identifying functions that may
contain functionality that is guarded by such keywords. Our method first auto-
matically identifies the static data comparison functions within a binary. Fol-
lowing this, for each function we contruct the sets of sequences of static data
that must be successfully compared against to reach each basic block within said
function. We then use these sets to compute a score, which provides a measure
of how much of a function’s conditional processing is dependent on comparisons
with static data.

We show that using our methods, we are able to find three backdoors, which
manifest as hard-coded credential checks. In addition, we are able to demonstrate
the recovery of both a known text-based protocol and a previously unknown
proprietary protocol. In the case of text-based protocols, our method allows a
human analyst with knowledge of known protocols to first isolate the function
responsible for parsing the protocol and then identify superfluous (which are
often indicative of additional, undocumented functionality) protocol messages
with relative ease compared to manual analysis with tools such as IDA Pro,
strings or grep.

1.1 Our Contribution

This paper proposes a method for lightweight large-scale static analysis of com-
modity embedded device firmware. We implement our techniques in a tool Stri-
nger, which we use to demonstrate the effectiveness of our methods through iden-
tification of three backdoors, which we later present as case-studies in Sect. 5.2.
Concretely, the overall contributions of this paper are:

– A set of heuristics for automatically identifying static data comparison
functions.

Stringer: Measuring the Importance of Static Data Comparisons 515

– A metric for measuring the degree a binary’s functions branching is influenced
by comparisons with static data.

– The result of applying Stringer to a set of 7,590 firmware images, which
exposes a number of backdoors. Additionally, we demonstrate how our meth-
ods can automatically identify static data processing routines. Specifically:

• We demonstrate the recovery of the full FTP command set handled by a
variant of vsftpd from Linksys firmware and the recovery of the SOAP-
based RPC command set from a Netgear firmware’s web-server.

• We identify two previously undiscovered authentication backdoors rely-
ing on hard-coded credentials: one in a Q-See DVR and the other in a
TRENDnet router.

• We identify a third (previously reported) backdoor in firmware from Ray
Sharp.

1.2 Related Work

Cojocar et al. [6] explore the notion of a function-level metric to discover general
parsing routines; they employ a fully automated approach in a similar manner
to that proposed by this work; it is however, unclear of the applicability of their
metric for use on a large-scale. Further, their metric relies on purely discrete
counts of particular code features as opposed to more complex properties as
utilised in our metric. McCabe [13] defines so-called cyclomatic complexity as a
metric for computing the complexity of control flow graph (CFG); it quantifies
the number of linearly independent paths through the CFG – and is hence a
reasonable estimate of the branching complexity within a given CFG.

While the field of program analysis is mature, adapting traditional tech-
niques to embedded devices is relatively new and challenging. Zaddach et al. [19],
propose a framework, Avatar, for performing semi-automated dynamic analysis
upon embedded device firmware. This is done through insertion of a minimal
debugger stub into the firmware itself – and hence, requires physical access to
the device. A hybrid approach is taken to the dynamic analysis – relying on
S2E [5] and KLEE [3], where execution is performed both on commodity hard-
ware through emulation and symbolic execution and in a standard manner upon
the device itself. Similarly, FIE [11] by Davidson, et al., is a symbolic execu-
tion engine based upon KLEE, which is geared towards finding vulnerabilities
in embedded microcontrollers. FIRMADYNE [4] is a framework by Chen et al.
that like Avatar, allows for dynamic analysis via emulation of embedded device
firmware; In contrast to Avatar, it does this in a completely automated manner
without the need for physical access to the hardware under analysis, at the cost
of only being able to analyse Linux-based firmware. Subramanyan et al. [17]
also use symbolic execution, in this case to verify the information flow proper-
ties of firmware. Firmalice [16], provides a means of identifying authentication
bypass vulnerabilities, or backdoors, within device firmware, again by use of a
symbolic execution engine; their techniques are however not practical for light-
weight, large-scale use due to the inherent performance limitations imposed by

516 S.L. Thomas et al.

symbolic execution (taking between 12 to 705 min to complete on the exam-
ples presented – which were binaries of moderate complexity). Pewny et al. [14]
propose a means of identification of bugs and vulnerabilities across different
architectures and apply their technique to identify a previously known software
backdoor amongst a number of firmware images from various differing vendors.
Schuster and Holz [15] attempt to identify potentially malicious, or anomalous
code-paths in binaries on a number of architectures, including those from embed-
ded device firmware. Their technique relies on dynamically interacting with the
binary in order to explore the effect of sending specific protocol messages; thus,
relies on prior knowledge of the protocol used within the binary. Thomas et al.
[18] use a hybrid approach of machine and a domain specific language to identify
anomalous behaviour (including backdoors) in binaries from embedded device
firmware. Both [8,9] rovide a large-scale analysis of consumer embedded device
firmware, which in the former case identified a number of known vulnerabilities
within firmware; whilst the latter applies particular focus to web-frontend based
vulnerabilities, the former is a more general, high-level analysis.

All of [2,7,10,12] propose methods for automatic protocol reverse-
engineering. Although it is not the primary goal of our method, Stringer is
able to extract text-based protocol messages in a lightweight, semi-automated
manner.

2 Methodology

For a given binary, our method works as follows:

1. First we identify all possible static data comparison functions.
2. Then we label the basic blocks of all functions with the sets of static data

sequences that must be matched against to reach them.
3. Then using the computed sets, we calculate a score for each element of static

data.
4. Finally, using the scores for each item of static data we compute a score for

each function.

While one approach to identifying static data comparison functions might
rely on the symbol names of imported functions and look for references such
as strcmp or strncmp, many binaries in firmware have their symbols stripped.
Furthermore, in the case of statically linked binaries, there is no list of imported
functions to extract such information. We therefore have developed a means to
automatically identify static data comparison functions which overcomes both
of these problems. We do this by looking for function calls where at least one
of the arguments passed is static data and the result of the function call influ-
ences control flow. Following this we rank the functions based on how they are
used overall within the binary – such as the properties of the arguments they
are passed and the number of arguments they are passed; Sect. 3 provides the
complete details.

Stringer: Measuring the Importance of Static Data Comparisons 517

Once the static data comparison functions have been identified, we label the
basic blocks of each function within the binary with a set of static data sequences.
These sets dictate the sequences of static data that must be matched to reach
that block. Then we calculate a score for each static data item based on how
it influences the branching within the function. Finally we calculate a score for
each function based on the scores assigned to the static data.

The score assigned to a function is dependent on the scores assigned to its
static data. This score is used to impose an ordering of functions where those that
score highly are those which contain complex decision logic that is dependent on
comparisons with static data. In general, functions that implement protocol han-
dling or contain parsing functionality are scored the highest. Further analysis of
the static data and corresponding scores of those functions enables us to identify
additional, undocumented functionality and (possible) backdoor functionality.

For the proof of concept tool we have developed, Stringer, we leverage
components of BAP [1] and IDA Pro6 in order to perform analysis upon concrete
binaries. We rely on a number of useful components provided by BAP; in par-
ticular, the IL (intermediate language) it uses: BIL, its code-lifting components
and the extensive set of algorithms implemented for handling graphs.

2.1 Notation

In this section we outline the notation used for the remainder of the paper. We
denote an arbitrary binary as B where B is the set of its functions, denoted as
f ∈ B. fblocks defines the set of basic blocks for a function f . For a given block b,
baddr denotes the entry address of the block and binsns denotes the sequence of
lifted (BIL) instructions of b. succs(b) and preds(b) compute the set of successor
and predecessor blocks of a block b.

We use the abstract notion of “sections” to denote regions of program mem-
ory that have particular properties. We assume three basic sections exist: sectio-
ndata which corresponds to the section holding data that can both be read and
written and sectionrodata which corresponds to the section with constant, read-
only data; we use section∗ to denote the union of the other two sections.

We use the notation mk where m is a map to evaluate to the value corre-
sponding to the key k within m. mk ← v associates the value v with the key k
within m.

3 Heuristics for Identifying Static Data Comparisons

In general, COTS Linux-based firmware images contain binaries that use a mix-
ture of static and dynamic linking to call external library routines (such as the
C standard library). Additionally, both Linux-based binaries and standalone
firmware images (which in themselves can be seen as a homogeneous binary) are
often devoid of symbol names. Therefore, it is both unreliable and restrictive

6 https://www.hex-rays.com/products/ida/.

https://www.hex-rays.com/products/ida/

518 S.L. Thomas et al.

to rely on symbol names to indicate functions used for static data comparison.
To remedy this, we propose a collection of heuristics which together are able to
reliably identify static data comparison functions, based on their usage within
a binary. We list below the properties we expect calls to potential static data
comparisons to have.

Argument References. At least one function argument is either a pointer or
a direct reference to either read-only program memory, or the initialised data
section. From our analysis, those arguments are generally unique in functions
that perform a substantial amount of static data processing.

Function Arity. A comparison is made between at least two items, therefore
the arity, or number of rguments to a data comparison function should be at
least two.

Branching Properties. From observation, the result of a call to a data com-
parison function generally influences a branching condition. Thus, one of the
variables influencing the branch should be tainted by the return value of said
comparison function. Further, a literal value of 0 should be compared against
in the branching condition – which, in a boolean (i.e. matched/not matched)
context represents true or false.

Local Call Frequency. We observe that data processing routines such as pro-
tocol parsers generally utilise the same comparison function many times with
different static data arguments as opposed to different comparison functions for
each element of static data to be compared against. Therefore, we should score
functions used in this way relatively highly.

Data Properties. From our analysis of binaries, where comparison functions
are used in protocol or message–based parsing routines we see that the static
data is contained within either sectionrodata or sectiondata and it is generally
an ASCII-based, NUL terminated string. The string itself also satisfies certain
properties:

– It does not contain any characters (or combination of characters) that are
indicative of a format string. Concretely, we scan the string for the ‘%’ char-
acter followed by common format directives such as ‘d’, ‘s’, etc.

– It does not contain certain whitespace characters other than new line, line
feed and space, such as: tab (‘\t’), vertical tab (‘\v’), etc. or those characters
that are used as control characters.

3.1 An Algorithm for Finding Static Data Comparisons

We now outline our algorithm for identifying static data comparison functions.
For each function in the binary, we identify all blocks that contain function
calls. Of those function calls, we filter out those that don’t influence branching
conditions where that condition is a comparison against 0. Of the remaining
function calls, we analyse the arguments passed. For those arguments we define
two cases: the ideal case and a “catch-all”se.

Stringer: Measuring the Importance of Static Data Comparisons 519

The ideal case occurs when the function invocation involves at least two
arguments where one of those is a reference to static data that conforms to the
properties outlined in Sect. 3. In addition to those constraints upon the data
references, at least two of the arguments should not be register-based constants
such as integers or floating point numbers (that are not also address references
to section∗). We impose this restriction as we expect a comparison to make two
references to data – one static, the other dynamic. The general “catch-all” case
occurs when at least two of the arguments identified do not reference constant
data.

The result of applying our algorithm is a set of comparison functions along
with a score representing the likelihood that that function is a comparison
function.

Fig. 1. Algorithm to compute heuristic scores

We use the notation νaddr to represent the heuristic score for the function
with entry point at address addr. ς represents the value to increase νaddr by
when a block satisfying the ideal case is encountered. When the ideal case is
not encountered, we use a multiplier δ to scale ς such that 0 < δ ≤ 1 prior to
incrementing.

After processing the function f , local scores for each possible data comparison
function are merged into a global map of scores. Prior to this merge, we apply
two modifiers as rewards and penalties: we scale up the score of the suspected
static data comparison function with the highest number of call-site occurrences

520 S.L. Thomas et al.

within f by a constant μ+, where μ+ ≥ 1 (local call frequency), we scale down
the score of every function h that references the same static data multiple times
by α , where 0 < α ≤ 1 (argument references). We apply further scaling of α
by α∗ which is raised to the number of non-unique data references n, used as
arguments to h. That is, if h has the address haddr, haddr ← haddr · α · αn

∗ .
The algorithm in Fig. 1 outlines the computation performed to calculate the

heuristic scores for all possible comparison functions within B. For brevity, the
algorithm makes reference to a number of functions: containsIdealSD which
evaluates to true if at least one of the expressions in the set passed as an argu-
ment satisfy the aforementioned data constraints; branchesOnCall evaluates to
true if any variable in the conditional expression of the block is tainted by the
last function invocation within the block; branchesOnZCmp evaluates to true
if the conditional expression of the block depends on a comparison with 0 (or a
semantically equivalent boolean comparison); degin/degout evaluate to the num-
ber of incoming/outgoing edges from the block; dependentCall evaluates to the
function that would cause branchesOnCall to evaluate to true; dependentArgs
evaluates to a map of at most n expressions that correspond the arguments
passed to the function call that dependentCall evaluates to. applyPenalties
and applyRewards perform the previously outlined score modifications. While
mergeScores merges the locally computed scores (on a function-level basis) into
the global map of scores. For each function, we use a local map, ν′ to store the
computed values for that function prior to merging into μ. In our implementa-
tion, the variables are assigned values based on small-scale experiments; in all
cases (50 binaries) the C standard string comparison functions are identified.

4 A Metric for Scoring the Importance of Code

This section defines our metric that is used to determine the degree to which
a given piece of static data influences the execution of a function. Our metric
provides:

– A means to discover those branches within each function that are dependent
upon static data and assign them and the associated static data a score of
relative importance in relation to other such branches within that function
based upon how much unique functionality they guard.

– A function-level score that signifies which functions contain a relatively high
density of decision logic that depends on comparison with static data (i.e. a
large amount of their decision logic is influenced by comparison with static
data).

4.1 Requirements of the Metric

Our metric’s goal is to score functions that contain decision logic that depends
upon static data comparisons where that static data tends to uniquely isolate
functionality within a function highly.

Stringer: Measuring the Importance of Static Data Comparisons 521

We assign a score to a given element of static data depending on how it
isolates functionality within a function’s CFG – if the only way to reach part of
the CFG is via successful comparison with an item of static data, that static data
shall score highly. The scores for each piece of static data are computed based
on the successor blocks following the use of that static data as an argument to
a comparison function.

Within CFGs there are a number of possibilities how to propagate values;
we base those on observations of basic block properties:

Number of Incident Blocks. A block that has many incident edges can be
considered a join-point, that is its functionality is of less importance to the
functionality of a single isolated code path as it is reachable by many paths
throughout the function. Thus, the influence that such a block should have upon
its predecessor blocks should be distributed relative to the number of incident
edges (i.e. degin(b)).

Branches as “guards” of Functionality. We associate the code of successor
blocks with the branch that is guarded by the branch condition evaluating to
true. For any given static data comparison, the degree it divides the overall CFG
along the branch which is followed when the comparison is true is a general
indicator of the importance of that string comparison. The static data which
guards large amounts of functionality should have a higher score than that that
does not. Applying this directly to a scoring metric however would cause those
comparisons that happen first within the CFG to be assigned significantly higher
scores than those that happen later. A notion of dependence and a means to be
able to diminish the value of that dependence in a manner proportional to the
distance along the path of static data comparisons required to reach a given
point within the CFG should overcome this.

4.2 Definition of the Metric

The calculation of our metric is performed as a two stage process: we first con-
struct sets of static data sequences at each block within the CFG; then using
these computed sets we perform a single pass over all blocks within the CFG and
assign a score to each branching block that contains a comparison with static
data.

The computed static data sequence set for a block represents all possible
positive static data comparisons taken to reach that block. For instance in Fig. 2,
if we consider both nodes 1 and 2 static data comparisons where the branches
from 1 → 2 and 2 → 3 are taken if the comparisons at 1 and 2 evaluate to true.
Then the sets we compute are as in Fig. 3. We use the notation si to represent
the static data compared against at node i.

We compute the sets by using the algorithm in Fig. 4; it is applied to each
block until the computed static data sequences reach a fixpoint. The notation
++ is used to denote the concatenation operator on sequences, branchData(b)
computes the static data compared to at block b, branchesOnStaticData(b)
evaluates to true if the block b’s branching is dependent upon a comparison

522 S.L. Thomas et al.

(1)

(3)

(2)

(4)

Fig. 2. Example CFG with static data
comparisons

Label Computed string sequence set

1 {[]}
2 {[s1]}
3 {[s2, s1]}
4 {[s1]}

Fig. 3. Computed string sequence sets
for Fig. 2

with static data. Loops are ignored when determining if a fixpoint is reached;
this ensures termination and avoids the construction of sequences with repeated
sub-sequences.

Fig. 4. Algorithm to compute static data sequences

In computeSDS(b), if
after iterating over all of
preds(b), bs is equivalent to
∅, then we set bs to {[]}.
This represents there is no
known path to reach b that
is dependent upon success-
ful comparison with static
data.

We compute the scores
for each block using the
algorithm in Fig. 5. In our
implementation, the func-
tion to compute basic block
complexity (ω(b)) evaluates to |binsns| – the number of lifted (BIL) instructions
within the block. The algorithm takes each previously computed static data
sequence and computes a score for each block that is associated with a static
data comparison. For each block, we take the set of static data sequences S and
update the score of each element of static data found within those sequences.
The final result is a map of static data and corresponding scores.

For each block, the computation is approached in two sub-phases: the first
constructs a mapping of static data to the number of times said element of
static data s occurs within the sequences within the set of static data sequences.
This count is used to determine a scaling factor which is a fraction of the total
number of sequences and the count of those that s is present in. This value
is representative of how much the reachability of a given block depends upon
successful comparison with a given element of static data: if the static data has
to be matched to reach the block then the fraction shall be equivalent to 1.
Following this, for each element of static data within the previously discussed
map, we compute the sum of the base score assigned to the block (computed by
ω(b)) scaled by the mentioned scaling factors and the current score assigned.

Stringer: Measuring the Importance of Static Data Comparisons 523

Fig. 5. Algorithm to compute scores

An additional scaling factor is also computed which is equivalent to the
inverse of the number of incident edges to the block: i.e. 1

degin(b)
.

The previous two phases compute a block-level score. We define the impor-
tance of a function as the sum of scores assigned to each element of static data.
This allows us to identify functions where decision logic is largely influenced by
comparisons with static data.

5 Results

We have implemented the aforementioned heuristics and metric within our tool,
Stringer which automates the entire analysis process: firmware acquisition,
unpacking and report generation. In this section we discuss the outcomes of
running our tool upon a firmware collection totalling 7,590 successfully unpacked
firmware images, equating to 2,451,532 individual binaries.

5.1 Experiment Methodology

While Stringer automates the majority of the analysis process, a degree of
manual intervention is required to discern the most interesting binaries from the
processed data-set.

First we use a web and FTP crawler to download 15,438 firmware images
from 30 different vendors. For each firmware image downloaded, we attempt to
extract its filesystem using existing tools: binwalk, sasquash and jefferson.
Our resulting data-set consists of 7,590 successfully unpacked firmware images.
With the resulting filesystems, we search for binaries and each of the 2,451,532
binaries are passed to Stringer, which generates a report for each.

Then we perform semi-automated analysis of the generated reports. We
attempt to discover routines handling common protocols; for this we devise some
simple models of what static data we expect to be grouped together within a

524 S.L. Thomas et al.

single function. For instance, for a web-server we expect the terms GET and POST
and possibly, PUT, HEAD and DELETE. Additional static data found within these
routines is further analysed manually. In addition to this, we use grep to search
the reports for interesting, “low-hanging fruit” by searching for terms such as
admin, Administrator and root. Our report format details the highest scoring
functions along with the associated static data, which is tagged with the score
it contributes to the overall score for the function.

Once an interesting binary is identified, we perform manual analysis using
IDA Pro. The standard manual analysis process is aided by the fact the functions
and strings of interest are available from the generated reports and so anomalous
functionality such as backdoors or undocumented commands can quickly be
checked for, and confirmed.

Due to the modest amount of backdoors publically available that are both
present in embedded device firmware and also backdoors that are of the class
that can be detected by Stringer, calculating the FP rate of our technique is
infeasible.

5.2 Case-Studies

Due to the large amount of binaries processed as part of the analysis, we present
a selection of case-studies. Each case-study follows a similar form: we first present
the scores and ranking of possible comparison functions as computed by applica-
tion of our heuristics. Then we present interesting functions identified by appli-
cation of our metric.

5.2.1 Identification of the FTP Command Set
The vsftpd FTP server, shared amongst numerous Linksys device firmware
images provides a clear example of the effectiveness of our approach. The binary
analysed, contains a total of 600 functions, uses static linking and is stripped of
symbol information. Our heuristic identifies 44 potential comparison functions;
those ranked highest are: sub 10814 (394.84), sub 1622C (35.00), sub 10754
(27.20), and sub 139FC (12.20). As vsftpd is open-source software, we are able
to discover that sub 10814 corresponds to the function str equal text – a
string equality check for the vsftpd’s custom string implementation.

The metric finds the highest ranking function to be the main protocol pars-
ing routine: sub C4F0 which is assigned a score of 942.08 (and corresponds to
process post login). The FTP command set handled by vsftpd is extensive;
we therefore omit the specific output of the tool and associated CFG due to its
size.

The metric scores for sub C4F0 group the protocol messages; the uniformity
that is apparent reflects the implementation of the state-machine used to handle
connections. That is, following matching the input with a protocol message; a
secondary function is called which handles further processing of the input or
the functionality of a specific command. The group of highest scoring protocol
messages (HELP, . . .) have scores of 16.00, while the lowest (such as PROT) score

Stringer: Measuring the Importance of Static Data Comparisons 525

8.03. The largest group of commands with uniform scores of 10.00 contains the
core command set (STOR, RETR, PASV, PORT, LIST, QUIT, . . .).

5.2.2 Hard-Coded Credential Backdoor #1
In a number of firmware images for QSee DVR products, Stringer iden-
tifies numerous hard-coded credentials – to the best of our knowledge, this
backdoor is previously undiscovered – which provide differing levels of access
to the device. The binary used for this case study, td3520 contains a total
of 15, 669 functions and is statically linked. The heuristics identify a pos-
sible 911 comparison functions, those that are ranked highest are: strcmp
(1464.70), strncmp (779.33), CRYPTO malloc (685.10) (from the statically
linked OpenSSL library), ZNKSs7compareEPKc (C++’s string equality operator)
(376.20), strstr (306.00) and strcasecmp (196.00). All but one of those func-
tions is a static data comparison function; a single false positive, CRYPTO malloc
is identified due to its usage patterns being almost identical to that of an expected
comparison function.

We identify the third highest ranked function by our metric as ZN9CLoginDl-
g5LogInEPKcS1 b (scoring 421.38) which contains a hard-coded credential check-
ing routine. Figure 6 shows the scores and sets of static data sequences of the
static data extracted from that function, while Fig. 7 shows the simplified CFG
with static data labelled using those in Fig. 6.

Label Score Static Data Function Depends

1 171.39 admin strcmp {[]}
2 58.92 ppttzz51shezhi strcmp {[admin]}
3 45.13 6036logo strcmp {[admin]}
4 42.14 6036adws strcmp {[admin]}
5 37.54 6036huanyuan strcmp {[admin]}
6 35.21 6036market strcmp {[admin]}
7 31.05 jiamijiami6036 strcmp {[admin]}

Fig. 6. Scores for ZN9CLoginDlg5LogInEPKcS1 b

We observe that successor nodes that are dependent on the highest ranked
static data (admin) follow from the left branch of the comparison node. All
other static data comparisons are dependent upon a successful comparison with
admin. The static data ranked as second most important isolates most unique
functionality relative to the other identified static data (in this case that past
the node labelled with a +: this is the functionality associated with a successful
login with administrative credentials.

This binary was first located by searching through the reports generated by
Stringer for common privileged usernames: namely, admin; verification of the
backdoor was performed manually using IDA Pro.

526 S.L. Thomas et al.

5.2.3 Hard-Coded Credential Backdoor #2
Stringer also finds a hard-coded credential check within firmware from Ray
Sharp – a popular CCTV DVR vendor. The binary containing the backdoor,
raysharp dvr contains a total of 7,605 functions, is dynamically linked and
stripped of local symbol names. The heuristics reveal the highest ranked compar-
ison functions to be those from the C standard library: strcmp (ranked highest)
(5170.30), strncmp (1109.73), strstr (353.93) and memcmp (222.00). Addition-
ally, sub 1C7EC (1351.96) is ranked second – which from manual analysis with
IDA Pro is identified as a wrapper around strcmp.

(7)

(5)
(1)

(3)
(2)

(6)
(4)

+

Fig. 7. CFG for
ZN9CLoginDlg5LogInEPKcS1 b

The functions our metric scores high-
est consist of complex parsing routines –
indicated by their relatively high scores
compared to other interesting functions
identified. sub 60118 contains the func-
tionality responsible for the backdoor.
Figure 9 details the CFG of the func-
tion along with the scores assigned to
the username and password combination
and Fig. 8 shows the scores as assigned
by the metric as well as computed static
data sequence sets. Figure 10 shows an
IDA Pro CFG snippet of the backdoor.

This binary was identified by search-
ing the logs for common usernames
that are associated with privileged user
accounts: in this case, root.

A posteriori research online shows
that (in contrast to the other case stud-
ies) this discovery was not original.
The backdoor has been previously doc-
umented7 and is present in a multitude
of devices from many vendors: Swann,
Lorex, URMET, KGuard, Defender, DEAPA/DSP Cop, SVAT, Zmodo, BCS,
Bolide, EyeForce, Atlantis, Protectron, Greatek, Soyo, Hi-View, Cosmos, and
J2000.

5.2.4 Additional Functionality Within Standard Protocols
Label Score Static Data Function Depends

1 30.23 664225 strcmp {[]}
2 2.77 root strcmp {[664225]}

Fig. 8. Scores for sub 60118

In the bundled web-server
found within the firmware
of a number of TRENDnet
devices, Stringer identi-
fies a hard-coded credential

7 https://community.rapid7.com/community/metasploit/blog/2013/01/28/ray-sharp-
cctv-dvr-password-retrieval-remote-root.

https://community.rapid7.com/community/metasploit/blog/2013/01/28/ray-sharp-cctv-dvr-password-retrieval-remote-root
https://community.rapid7.com/community/metasploit/blog/2013/01/28/ray-sharp-cctv-dvr-password-retrieval-remote-root

Stringer: Measuring the Importance of Static Data Comparisons 527

pair within the routine handling basic HTTP authentication. The comparisons
are performed via standard string comparison (strcmp) – which is ranked by the
heuristic as the most likely static data comparison function. It identifies 40 such
functions out of a total of 391 functions within the entire binary. strcmp is ranked
highest by a large margin with a score of 1635.01, followed by strstr (481.20),
nvram get (413.10), strncmp (265.45) and sub A2D0 (131.00). sub A2D0 provides
a wrapper around hsearch r – a lookup function for hash tables, evaluating to
0 on failure. Both nvram get and sub A2D0 may be regarded as false-positives:
the former provides a lookup of the embedded devices NVRAM (Non-Volatile
RAM – an area on the device usually used for storing configuration that can
persist across device restarts).

(2)

(1)

Fig. 9. Ray Sharp hard-coded
credential check

Fig. 10. IDA Pro CFG snippet of the
Ray Sharp backdoor

The additional functionality is embedded within the eighth highest scoring
function – sub B958, with a score of 827.99. Whilst validating the credentials for
HTTP basic authentication, an additional code path checks for the hard-coded
username/password pair: emptyuserrrrrrrrrrrr and emptypasswordddddddd
both via strcmp, which score 106.00 and 103.47, respectively and rank as the sec-
ond and fourth most important strings. The most important string is the string
comparison to detect if basic authentication is being used and scores 151.84. We
omit a diagrammatic representation of the CFG due to space considerations.

This binary was located by matching the logs against the common authentica-
tion header strings used in HTTP authentication. To the best of our knowledge,
the hard-coded credentials have not been previously documented. Again, manual
analysis was performed using IDA Pro.

528 S.L. Thomas et al.

Label Score Static Data

1 7.64 EnableTrafficMeter

2 7.64 SetTrafficMeterOptions

3 7.64 SetGuestAccessEnabled

4 7.64 SetGuestAccessEnabled2

5 7.64 SetGuestAccessNetwork

6 7.64 SetWLANNoSecurity

7 7.64 SetWLANWPAPSKByPassphrase

Fig. 11. Selection of static data from
soap parent ctrl handle

(4)

(3)

(1)

(2)

(7)

(5)

(6)

Fig. 12. CFG fragment for
soap parent ctrl handle

5.2.5 Recovery of SOAP-based Protocol Command Set
The firmware from a number of Netgear devices contains a web-server,
mini httpd that uses SOAP8 for RPC. The binary contains 331 functions
in total, 60 of which are identified as possible static data comparison functions
by the heuristic. Those that are ranked highest are a combination of standard
functions from the C standard library: strcmp, strstr and strcasecmp scoring
380.52, 185.00 and 184.00, respectively as well as a custom comparison function
(ranked second): safestrcmp scoring 221.00.

The function ranked highest by the metric is handle request (scoring
952.91) – which processes the HTTP protocol. Ranked second is do file scoring
486.47, while the main (scoring 449.55) function is ranked third – which provides
argument parsing for the binary. soap parent ctrl handle is assigned a score
of 328.75 and is ranked fourth; it handles the processing of the SOAP command
set. This function exemplifies the effectiveness of Stringer in extracting protocol
command sets that are previously unknown to the analyst. The scores assigned
to individual command strings within the function are uniform. Figure 12 is a
fragment of the CFG for soap parent ctrl handle and Fig. 11 contains the
scores of the static data present in that fragment.

The command set was discovered by searching logs for web-server related pro-
tocol strings, in this case: GET. This string existed (amongst other HTTP com-
mands) in the higher scoring function handle request; soap parent ctrl han-
dle was located by looking at other high ranking functions within the binary.

5.3 Performance

On average a firmware image contains a total of 379 binaries; with each binary
taking 1.31 s to process. Larger binaries, with a greater number of functions or
larger CFGs take considerably longer; though, the performance is still acceptable

8 https://www.w3.org/TR/soap12/.

https://www.w3.org/TR/soap12/

Stringer: Measuring the Importance of Static Data Comparisons 529

for large scale analysis. As a concrete example, the binary td3520 (Sect. 5.2.2)
which contains 15,669 functions, took 46.043 s. A significant portion of the total
runtime for Stringer is due to the invocation of IDA Pro to export data required
for CFG recovery. The total time taken to invoke IDA takes on average 11.26%
of the total execution time. Processing this data takes on average 0.63% of the
total time. The remainder of the time is due to computation of the heuristic and
metric scores.

5.4 Comparison with Näıve Techniques

The techniques we have shown improve upon existing techniques for identifi-
cation of interesting static data. Past work has used a combination of linux
functions strings, to extract stings from binaries, and grep, to find inter-
esting terms, or more advanced processing methods such as using IDA Pro
with IDAPython to export static data coupled with function names with fur-
ther processing performed using grep. Neither of these existing tool combina-
tions provide any indication of the importance of a given piece of static data
in relation to any other. Furthermore, neither provide a means of ranking the
importance of functions in relation to how much of their conditional process-
ing is influenced by static data. The lack of both of these properties limit the
effectiveness of these methods, meaning that a large amount of manual analysis,
and some luck are required when analysing large pieces of firmware. Moreover,
these techniques only scale to locate functionality based upon known protocols
or easily recognisable strings.

6 Conclusion

We have presented a novel approach to identify static data comparison functions
within binaries, which when combined with our function-level scoring metric, as
demonstrated, is effective in discovering undocumented functionality and recov-
ery of text-based protocol messages and commands. In the case of the former,
we have identified a three instances of authentication backdoors in commodity
firmware images from a number of vendors. Our approach is shown to be suitable
for large-scale analysis – with methods presented for reducing the effort required
by a human analyst processing the resulting data. With our technique we are
able to isolate functions of interest ranking them within the first tens of func-
tions as opposed to an analyst having to trawl through potentially thousands
of functions. A concrete example of this is from our case-study in Sect. 5.2.2,
whereby the most interesting function for an analyst is ranked as third most
important out of 15, 669 functions.

Our approach improves on existing large-scale analysis methods upon embed-
ded device firmware by performing more complex static analysis – that considers
the control-flow properties of code – as opposed to propagating known bitstring
patterns over the data-set. Moreover, we introduce a new means of identifying
potential functionality for binary analysis – which is applicable beyond binaries
within embedded device firmware.

530 S.L. Thomas et al.

References

1. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
463–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 37

2. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: automatic extraction of pro-
tocol message format using dynamic binary analysis. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, CCS 2007. ACM
(2007)

3. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008. USENIX Association (2008)

4. Chen, D.D., Egele, M., Woo, M., Brumley, D.: Towards automated dynamic analy-
sis for Linux-based embedded firmware. In: Network and Distributed System Secu-
rity (NDSS) Symposium, NDSS 2016 (2016)

5. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-
path analysis of software systems. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI. ACM (2011)

6. Cojocar, L., Zaddach, J., Verdult, R., Bos, H., Francillon, A., Balzarotti, D.: PIE:
parser identification in embedded systems. In: Proceedings of the 31st Annual
Computer Security Applications Conference. ACM (2015)

7. Comparetti, P.M., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: protocol spec-
ification extraction. In: 2009 IEEE Symposium on Security and Privacy (2009)

8. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: 23rd USENIX Security Symposium, USENIX
Security 2014 (2014)

9. Costin, A., Zarras, A., Francillon, A.: Automated dynamic firmware analysis at
scale: a case study on embedded web interfaces. In: 11th ACM Asia Conference on
Computer and Communications Security (AsiaCCS), ASIACCS 2016 (2016)

10. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: automatic
reverse engineering of input formats. In: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security, CCS 2008. ACM (2008)

11. Davidson, D., Moench, B., Ristenpart, T., Jha, S.: Fie on firmware: finding vulner-
abilities in embedded systems using symbolic execution. In: 22nd USENIX Security
Symposium (USENIX Security 2013) (2013)

12. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engineer-
ing through context-aware monitored execution. In: NDSS 2008 (2008)

13. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2, 308–320 (1976)
14. Pewny, J., Garmany, B., Gawlik, R., Rossow, C., Holz, T.: Cross-architecture bug

search in binary executables. In: 2015 IEEE Symposium on Security and Privacy
(2015)

15. Schuster, F., Holz, T.: Towards reducing the attack surface of software backdoors.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security, CCS 2013. ACM (2013)

16. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice - auto-
matic detection of authentication bypass vulnerabilities in binary firmware. In:
Network and Distributed System Security (NDSS) Symposium, NDSS 2015 (2015)

http://dx.doi.org/10.1007/978-3-642-22110-1_37

Stringer: Measuring the Importance of Static Data Comparisons 531

17. Subramanyan, P., Malik, S., Khattri, H., Maiti, A., Fung, J.: Verifying information
flow properties of firmware using symbolic execution. In: 2016 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE (2016)

18. Thomas, S.L., Garcia, F.D., Chothia, T.: HumIDIFy: a tool for hidden functionality
detection in firmware. In: Polychronakis, M., Meier, M. (eds.) Detection of Intru-
sions and Malware, and Vulnerability Assessment, pp. 279–300. Springer, Cham
(2017). doi:10.1007/978-3-319-60876-1 13

19. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D.: Avatar: a framework to
support dynamic security analysis of embedded systems’ firmwares. In: Network
and Distributed System Security (NDSS) Symposium, NDSS 2014 (2014)

http://dx.doi.org/10.1007/978-3-319-60876-1_13

	Stringer: Measuring the Importance of Static Data Comparisons to Detect Backdoors and Undocumented Functionality
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Methodology
	2.1 Notation

	3 Heuristics for Identifying Static Data Comparisons
	3.1 An Algorithm for Finding Static Data Comparisons

	4 A Metric for Scoring the Importance of Code
	4.1 Requirements of the Metric
	4.2 Definition of the Metric

	5 Results
	5.1 Experiment Methodology
	5.2 Case-Studies
	5.3 Performance
	5.4 Comparison with Naïve Techniques

	6 Conclusion
	References

