Skip to main content

An Application of Computer Vision Systems to Unmanned Aerial Vehicle Autolanding

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10459))

Included in the following conference series:

  • 1437 Accesses

Abstract

The paper considers an approach to autolanding system for multi rotor unmanned aerial vehicle based on computer vision and visual markers usage instead of global positioning and radio navigation systems. Different architectures of autolanding infrastructure are considered and requirements for key components of autolanding systems are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aksenov, A.Y., Kuleshov, S.V., Zaytseva, A.A.: An application of computer vision systems to solve the problem of unmanned aerial vehicle control. Transp. Telecommun. 15(3), 209–214 (2014)

    Google Scholar 

  2. Altug, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. Rob. Res. 24(5), 329–341 (2005)

    Article  Google Scholar 

  3. Schmid, K.: View planning for multi-view stereo 3D reconstruction using an autonomous multicopter. J. Intell. Rob. Syst. 65(1–4), 309–323 (2012)

    Article  Google Scholar 

  4. Barbasov, V.K.: Multirotor unmanned aerial vehicles and their capabilities for using in the field of earth remote sensing. Ingenernye izyskaniya 10, 38–42 (2012). (in Russian)

    Google Scholar 

  5. Zinchenko, O.N.: Unmanned aerial vehicles: the use of aerial photography in order to map. P.1. Racurs, Moscow, 12 p. (2012) (in Russian)

    Google Scholar 

  6. Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Rob. Autom. 19(3), 371–380 (2003)

    Article  Google Scholar 

  7. Garcia Carrillo, L.R., Dzul Lopez, A.E., Lozano, R.: Combining stereo vision and inertial navigation system for a quad-rotor UAV. J. Intell. Rob. Syst. 65, 373 (2012). doi:10.1007/s10846-011-9571-7

    Article  Google Scholar 

  8. Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S.: A vision-based guidance system for UAV navigation and safe landing using natural landmarks. In: 2nd International Symposium on UAVs, Reno, Nevada, USA, pp. 233–257, 8–10 June 2009

    Google Scholar 

  9. Corke, P.: An inertial and visual sensing system for a small autonomous helicopter. J. Rob. Syst. 21(2), 43–51 (2004)

    Article  Google Scholar 

  10. Cesetti, A., Frontoni, E., Mancini, A.: A visual global positioning system for unmanned aerial vehicles used in photogrammetric applications. J. Intell. Rob. Syst. 61, 157 (2011). doi:10.1007/s10846-010-9489-5

    Article  Google Scholar 

  11. Levin, A., Szeliski, R.: Visual odometry and map correlation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, D.C., USA (2004)

    Google Scholar 

  12. ETH IDSC. Flying Machine Arena, Zurich (2014). http://www.idsc.ethz.ch

  13. Ritz, R., Müller, M.W., Hehn, M., D’Andrea, R.: Cooperative quadrocopter ball throwing and catching. In: Proceedings of Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference, Vilamoura, October 2012, pp. 4972–4978. IEEE (2012)

    Google Scholar 

  14. Open Computer Vision. http://sourceforge.net/projects/opencvlibrary/. Accessed May 2017

  15. Kuleshov, S.V., Yusupov, R.M.: Is softwarization the way to import substitution? SPIIRAS Proc. 46(3), 5–13 (2016). doi:10.15622/sp.46.1. (in Russian)

    Article  Google Scholar 

  16. Kuleshov, S.V., Zaytseva, A.A.: The selection and localization of semantic frames. Inf. J. Inf.-Measur. Control Syst. 10(6), 88–90 (2008). (in Russian)

    Google Scholar 

  17. Kuleshov, S.V., Zaytseva, A.A.: Object localization of semantic blocks on bitmap images. SPIIRAS Proc. 7, 41–47 (2008). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra A. Zaytseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aksenov, A.Y., Kuleshov, S.V., Zaytseva, A.A. (2017). An Application of Computer Vision Systems to Unmanned Aerial Vehicle Autolanding. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2017. Lecture Notes in Computer Science(), vol 10459. Springer, Cham. https://doi.org/10.1007/978-3-319-66471-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66471-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66470-5

  • Online ISBN: 978-3-319-66471-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics