Lecture Notes in Computer Science

10504

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Friedemann Mattern, Switzerland

Moni Naor, Israel

Bernhard Steffen, Germany

Doug Tygar, USA

Takeo Kanade, USA

Jon M. Kleinberg, USA

John C. Mitchell, USA

C. Pandu Rangan, India

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Advanced Research in Computing and Software Science Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, *University of Rome 'La Sapienza'*, *Italy* Vladimiro Sassone, *University of Southampton, UK*

Subline Advisory Board

Susanne Albers, *TU Munich, Germany*Benjamin C. Pierce, *University of Pennsylvania, USA*Bernhard Steffen, *University of Dortmund, Germany*Deng Xiaotie, *City University of Hong Kong*Jeannette M. Wing, *Microsoft Research, Redmond, WA, USA*

More information about this series at http://www.springer.com/series/7409

Vittorio Bilò · Michele Flammini (Eds.)

Algorithmic Game Theory

10th International Symposium, SAGT 2017 L'Aquila, Italy, September 12–14, 2017 Proceedings

Editors Vittorio Bilò University of Salento Lecce Italy

Michele Flammini University of L'Aquila L'Aquila Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-319-66699-0 ISBN 978-3-319-66700-3 (eBook) DOI 10.1007/978-3-319-66700-3

Library of Congress Control Number: 2017950086

LNCS Sublibrary: SL3 - Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 10th International Symposium on Algorithmic Game Theory (SAGT 2017), which was held on September 12–14, 2017, in L'Aquila, Italy.

This year, we received a record number of 66 submissions. Each submission was reviewed by at least three Program Committee members. After a careful reviewing process, the committee decided to accept 30 papers. The program also included three invited talks by distinguished researchers in Algorithmic Game Theory: Michal Feldman (Tel-Aviv University), Martin Hoefer (Goethe University), and Nicole Immorlica (Microsoft Research).

To accommodate the publishing traditions of different fields, the authors of accepted papers could request that only a one-page abstract of the paper appears in the proceedings. Among the 30 accepted papers, the authors of 4 papers opted to publish a one-page abstract. The accepted submissions cover various important aspects of algorithmic game theory, such as auctions, computational aspects of games, congestion games, network and opinion formation, mechanism design, incentives and regret minimization, and resource allocation. The best paper award, generously supported by Springer, has been shared between the papers *Tight Welfare Guarantees for Pure Nash Equilibria of the Uniform Price Auction* by Georgios Birmpas, Evangelos Markakis, Orestis Telelis and Artem Tsikiridis, and *Online Random Sampling for Budgeted Settings* by Alon Eden, Michal Feldman and Adi Vardi.

We would like to thank all authors who submitted their research work, the Program Committee members, and the external reviewers who assisted them, for their wonderful work. We are indebted to the Gran Sasso Science Institute of L'Aquila, Fondazione Cassa di Risparmio della Provincia dell'Aquila, the Department of Mathematics and Physics "Ennio De Giorgi" of the University of Salento, EATCS, and Springer for their generous support. We thank Anna Kramer and Alfred Hoffmann at Springer for helping with the proceedings. We are grateful for the use of the EasyChair paper management system.

July 2017 Vittorio Bilò Michele Flammini

Organization

Program Committee

Elliot Anshelevich Rensselaer Polytechnic Institute (RPI), USA

Vittorio Bilò (Co-chair) University of Salento, Italy Ioannis Caragiannis University of Patras, Greece George Christodoulou University of Liverpool, UK

Xiaotie Deng Shanghai Jiao Tong University, China

Angelo Fanelli CNRS, France

Michele Flammini University of L'Aquila and Gran Sasso Science Institute

(Co-chair) (GSSI), Italy

Dimitris Fotakis National Technical University of Athens, Greece

Martin Gairing University of Liverpool, UK
Paul Goldberg University of Oxford, UK
Tobias Harks Augsburg University, Germany
Thomas Kesselheim TU Dortmund, Germany
Elias Koutsoupias University of Oxford, UK

Stefano Leonardi University of Rome "La Sapienza", Italy

Marios Mavronicolas University of Cyprus, Cyprus
Gianpiero Monaco University of L'Aquila, Italy
Luca Moscardelli University of Chieti-Pescara, Italy

Giuseppe Persiano University of Salerno, Italy

Guido Proietti University of L'Aquila and Institute for Systems Analysis

and Computer Science (IASI-CNR), Italy

Amin Saberi Stanford University, USA
Rahul Savani University of Liverpool, UK
Guido Schaefer CWI Amsterdam, The Netherlands

Alexander Skopalik Heinz Nixdorf Institute and Paderborn University,

Germany

Nicolas Stier-Moses Torcuato Di Tella University, Argentina

Chaitanya Swamy
University of Waterloo, Canada
Vasilis Syrgkanis
Microsoft Research, USA

vasilis Syrgkallis Wilciosoft Research, USA

Marc Uetz University of Twente, The Netherlands

Adrian Vetta McGill University, Canada

Steering Committee

Elias Koutsoupias University of Oxford, UK Marios Mavronicolas University of Cyprus, Cyprus

Dov Monderer Technion, Israel

Burkhard Monien Paderborn University, Germany

Christos Papadimitriou UC Berkeley, USA

VIII Organization

Giuseppe Persiano University of Salerno, Italy Paul Spirakis (Chair) University of Liverpool, UK

Organizing Committee

Vittorio Bilò (Co-chair) University of Salento, Italy

Michele Flammini University of L'Aquila and Gran Sasso Science Institute

(GSSI), Italy (Co-chair)

Gran Sasso Science Institute (GSSI), Italy Gianlorenzo D'Angelo Gran Sasso Science Institute (GSSI), Italy Mattia D'Emidio

University of L'Aquila, Italy Gianpiero Monaco Luca Moscardelli University of Chieti-Pescara, Italy

Cosimo Vinci Gran Sasso Science Institute (GSSI), Italy

Additional Reviewers

Amanatidis, Georgios Fischer, Felix Baumeister, Dorothea Freeman, Rupert Bhaskar, Umang Greco, Gianluigi Bilò, Davide Gualà, Luciano Birmpas, Georgios Biro, Peter Gur. Yonatan

Carosi, Raffaello Hajiaghavi, Colini Baldeschi.

Riccardo

Cord-Landwehr, Andreas Cseh, Ágnes de Jong, Jasper De Keijzer, Bart Deligkas, Argyrios Drees, Maximilian Duetting, Paul Eden, Alon Epitropou, Markos Fearnley, John Feldkord, Björn

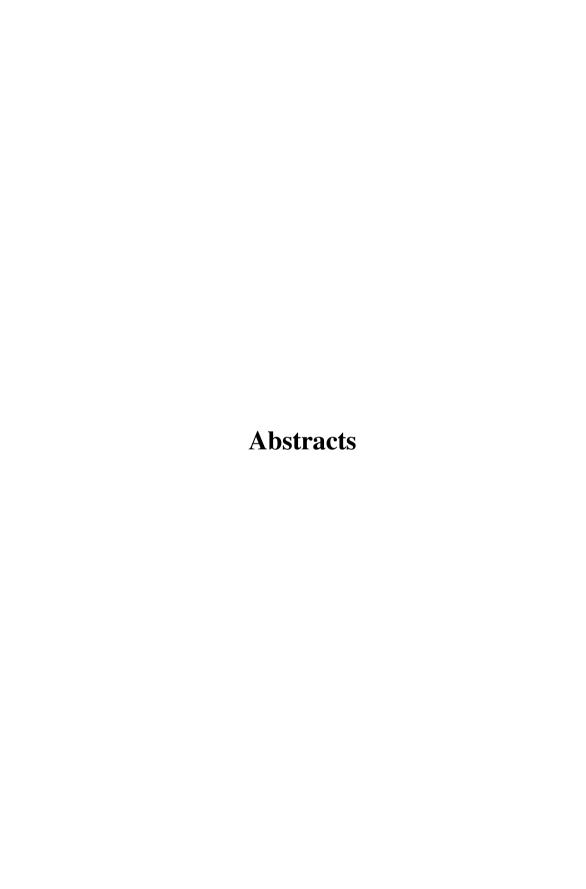
Feldotto, Matthias Ferraioli, Diodato Filos-Ratsikas, Aris Giannakopoulos, Yiannis

Mohammadtaghi

Hamada, Koki Hoeksma, Ruben Igarashi, Ayumi Jabbari, Shahin Kern, Walter Kliemann, Lasse Kodric, Bojana Krimpas, George Krysta, Piotr Kyropoulou, Maria Lazos, Philip Lenzner, Pascal

Leucci, Stefano Lianeas, Thanasis Liu, Zhengyang

Lykouris, Thodoris Maillé, Patrick Malladi, Surai


Mandal, Debmalya Manlove, David Markakis, Evangelos Peters, Dominik

Schroder, Marc Schwiegelshohn, Chris Sgouritsa, Alkmini

Shameli, Ali

Skochdopoloe, Nolan Tuffin, Bruno Tönnis, Andreas Vegh, Laszlo Ventre, Carmine von Stengel, Bernhard Voudouris, Alexandros

Xiao, Tao Yukun, Cheng Zick, Yair

Position Ranking and Auctions for Online Marketplaces

Leon Yang Chu, Hamid Nazerzadeh, and Heng Zhang

Data Sciences and Operations Department, University of Southern California, Los Angeles, CA, USA, 90089

{leonyzhu,hamidnz,Heng.Zhang.2019}@marshall.usc.edu

Abstract. E-commerce platforms such as Amazon, Ebay, Taobao, and Google Shopping connect thousands of sellers and consumers everyday. When a consumer enters a search keyword related to a product of interest, the platform's search engine returns a list. Typically, the consumer looks for a desired item by searching downward in the list. With a large volume of returned results, consumers rarely consider all of the items because examining each option is costly. Therefore, the ranking of items is an important decision that determines the welfare of sellers, consumers and the platform. In this work, we study how such platforms should rank products displayed, and utilize the top and most salient slots. Building on the optimal sequential search theory, we present a model that considers consumers' search costs and the externalities sellers impose on each other. This model allows us to study a multi-objective optimization, whose objective includes consumer and seller surplus, as well as the sales revenue, and derive the optimal ranking decision. One of the challenges in obtaining a satisfactory solution in practice is information asymmetry. The platform may be unaware of sellers' private benefits of each consumer purchase, for example, profits, brand effects, and so on. We show that an uninformed decision, one in which sellers' private valuations are unknown to the platform, can lead to an arbitrary loss of average welfare. We propose selling the platform's top slots to extract private information, using the surplus-ordered ranking (SOR) mechanism. This mechanism is motivated in part by Amazon's sponsored search program. We study this mechanism in a mechanism design framework, and show that it is a near-optimal solution. In addition, when the platform sells all slots, we show that our mechanism can be implemented as a Nash equilibrium in a modified generalized second price (GSP) auction.

Asymptotic Existence of Fair Divisions for Groups

Pasin Manurangsi¹ and Warut Suksompong²

Department of Computer Science, UC Berkeley 253 Cory Hall, Berkeley, CA 94720, USA pasin@berkeley.edu
Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA 94305, USA warut@cs.stanford.edu

The problem of dividing resources fairly occurs in many practical situations and is therefore an important topic of study in economics. In this paper, we investigate envy-free divisions in the setting where there are multiple players in each party. While all players in a party share the same set of resources, each player has her own preferences. In this generalized setting, we consider a division to be envy-free if every player values the set of items assigned to her group at least as much as that assigned to any other group.

We show that under additive valuations drawn randomly from probability distributions, when all groups contain an equal number of players, an envy-free division is likely to exist if the number of goods exceeds the total number of players by a logarithmic factor, no matter whether the players are distributed into several groups of small size or few groups of large size. In particular, any allocation that maximizes social welfare is likely to be envy-free. A similar result holds when there are two groups with possibly unequal numbers of players and the distribution on the valuation of each item is symmetric.

To complement our existence results, we show on the other hand that we cannot get away with a much lower number of items and still have an envy-free division with high probability. In particular, if the number of items is less than the total number of players by a superconstant factor, or if the number of items is less than the total number of players and the number of groups is large, the probability that an envy-free division exists is low. This leaves the gap between asymptotic existence and non-existence of envy-free divisions at a mere logarithmic factor.

Finally, we tackle the issue of truthfulness and show that a simple truthful mechanism, namely the random assignment mechanism, is α -approximate envy-free with high probability for any constant $\alpha \in [0,1)$. Approximate envy-freeness means that even though a player may envy another player in the resulting division, the values of the

The full version of this paper is available at http://arxiv.org/abs/1706.08219.

player for her own allocation and for the other player's allocation differ by no more than a multiplicative factor of α . Our result shows that it is possible to achieve truthfulness and approximate envy-freeness simultaneously in a wide range of random instances, and improves upon the previous result for the setting with one player per group in several ways.

Approximate Maximin Shares for Groups of Agents

Warut Suksompong

Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA 94305, USA

warut@cs.stanford.edu

We consider the problem of fairly allocating indivisible goods to interested agents. Several notions of fairness have been proposed, including envy-freeness and proportionality. However, the existence of allocations satisfying these notions, or even a multiplicative approximation of them, cannot be guaranteed. A notion that was designed to fix this problem and has been a subject of much interest in the last few years is the maximin share.

In this paper, we apply the concept of maximin share to a more general setting of fair division in which goods are allocated not to individual agents, but rather to groups of agents who can have varying preferences on the goods. Several practical situations involving fair division fit into this model. For instance, an outcome of a negotiation between countries may have to be approved by members of the cabinets of each country who have different opinions on the outcome. Another example is a large company or university that needs to divide its resources among competing groups of agents (e.g., departments in a university). The agents in each group have different and possibly misaligned interests; the professors who perform theoretical research may prefer more whiteboards and open space in the department building, while those who engage in experimental work are more likely to prefer laboratories.

We extend the maximin share to groups in a natural way by calculating the maximin share for each agent using the number of groups instead of the number of agents. When there are two groups, we completely characterize the cardinality of agents in the groups for which it is possible to approximate the maximin share within a constant factor regardless of the number of goods. In particular, an approximation is possible when one of the groups contain a single agent, when both groups contain two agents, or when the groups contain three and two agents respectively. In all other cases, no approximation is possible in a strong sense: There exists an instance with only four goods in which some agent with positive maximin share necessarily gets zero utility.

We then generalize to the setting with several groups of agents. On the positive side, we show that a constant factor approximation is possible if only one group contains more than a single agent. On the other hand, we show on the negative side that when all groups contain at least two agents and one group contains at least five agents, it is possible that some agent with positive maximin share will be forced to get zero utility, which means that there is no hope of obtaining an approximation in this case.

The full version of this paper is available at http://arxiv.org/abs/1706.09869.

On Black-Box Transformations in Downward-Closed Environments

Warut Suksompong

Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA 94305, USA

warut@cs.stanford.edu

A major line of work in algorithmic mechanism design involves taking a setting where the optimization problem is computationally intractable, and designing computationally tractable mechanisms that yield a good global outcome and such that the agents have a truth-telling incentive. The widespread success of designing such mechanisms has raised the question of whether there exists a "black-box transformation" for transforming any computationally tractable algorithm into a computationally tractable mechanism without degrading the approximation guarantee. Chawla et al. showed that no fully general black-box transformation exists for single-parameter environments.

Despite this negative result, it is still conceivable that there are transformations that work for certain large subclasses of single-parameter environments. One important subclass is that of downward-closed environments, which occur in a wide variety of settings in mechanism design. In this paper, we consider such settings and assume, crucially, that the black-box transformation is aware that the feasible set is downward-closed. We investigate the potentials and limits of black-box transformations when they are endowed with this extra power.

We begin by showing the limits of black-box transformations in downward-closed environments. We prove that such transformations cannot preserve the full welfare at every input, even when the private valuations can take on only two arbitrary values. Preserving a constant fraction of the welfare pointwise is impossible if the ratio between the two values l < h is sublinear, i.e., $h/l \in O(n^{\alpha})$ for $\alpha \in [0,1)$, where n is the number of agents, while preserving the approximation ratio is also impossible if the values are within a constant factor of each other and the transformation is restricted to querying inputs of Hamming distance o(n) away from its input.

Next, we show the powers of black-box transformations in downward-closed environments. We prove that when the private valuations can take on only a constant number of values, each pair of values separated by a ratio of $\Omega(n)$, it becomes possible for a transformation to preserve a constant fraction of the welfare pointwise, and therefore of the approximation ratio as well. The same is also true if the private valuations are all within a constant factor of each other. Combined with the negative results, this gives us a complete picture of constant-fraction welfare-preserving transformations for multiple input values. Not only are these results interesting in their own right, but they also demonstrate the borders of the negative results that we can hope to prove.

The full version of this paper is available at http://arxiv.org/abs/1707.00230.

Contents

A	11	CI	'n	n	n	S

Liquid Price of Anarchy	3
Tight Welfare Guarantees for Pure Nash Equilibria of the Uniform Price Auction	16
Georgios Birmpas, Evangelos Markakis, Orestis Telelis, and Artem Tsikiridis	
Online Random Sampling for Budgeted Settings	29
Liquid Welfare Maximization in Auctions with Multiple Items	41
Computational Aspects of Games	
On the Nucleolus of Shortest Path Games	55
Earning Limits in Fisher Markets with Spending-Constraint Utilities Xiaohui Bei, Jugal Garg, Martin Hoefer, and Kurt Mehlhorn	67
Robustness Among Multiwinner Voting Rules	80
Computing Constrained Approximate Equilibria in Polymatrix Games Argyrios Deligkas, John Fearnley, and Rahul Savani	93
Group Activity Selection on Graphs: Parameterized Analysis	106
The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games	119
Conditional Value-at-Risk: Structure and Complexity of Equilibria	131

Congestion Games, Network and Opinion Formation Games	
Reconciling Selfish Routing with Social Good	147
Selfish Network Creation with Non-uniform Edge Cost	160
Opinion Formation Games with Aggregation and Negative Influence	173
The Efficiency of Best-Response Dynamics	186
Efficient Best Response Computation for Strategic Network Formation	
Under Attack	199
Path Deviations Outperform Approximate Stability in Heterogeneous Congestion Games	212
Mechanism Design, Incentives and Regret Minimization	
Agent Incentives of Strategic Behavior in Resource Exchange Zhou Chen, Yukun Cheng, Xiaotie Deng, Qi Qi, and Xiang Yan	227
A 3-Player Protocol Preventing Persistence in Strategic Contention with Limited Feedback	240
Hedging Under Uncertainty: Regret Minimization Meets Exponentially Fast Convergence	252
Resource Allocation	
Tradeoffs Between Information and Ordinal Approximation for Bipartite Matching	267
Group Strategyproof Pareto-Stable Marriage with Indifferences via the Generalized Assignment Game	280

	Contents	XIX
The Spectrum of Equilibria for the Colonel Blotto and the Colon Lotto Games		292
On Proportional Allocation in Hedonic Games		307
Stable Marriage with Covering Constraints—A Complete Computational Trichotomy		320
Fairly Allocating Contiguous Blocks of Indivisible Items Warut Suksompong		333
Author Index		345