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Abstract. Many computer vision pipelines involve dynamic programming prim-
itives such as finding a shortest path or the minimum energy solution in a tree-
shaped probabilistic graphical model. In such cases, extracting not merely the
best, but the set of M-best solutions is useful to generate a rich collection of can-
didate proposals that can be used in downstream processing. In this work, we
show how M-best solutions of tree-shaped graphical models can be obtained by
dynamic programming on a special graph with M layers. The proposed multi-
layer concept is optimal for searching M-best solutions, and so flexible that it
can also approximate M-best diverse solutions. We illustrate the usefulness with
applications to object detection, panorama stitching and centerline extraction.

Note: We have observed that an assumption in 4 is not always fulfilled, see the
corrigendum on page 17 for details.

1 Introduction

A large number of problems in image analysis and computer vision involve the search
for the shortest path (e.g., finding seams and contours) or for the maximum-a-posteriori
(MAP) configuration in a tree structured graphical model, as in hierarchies of segmenta-
tion hypotheses or deformable part models. To compute the solution to those problems,
one relies on efficient and optimal methods from dynamic programming [4] such as Di-
jkstra’s algorithm [7]. In many of these scenarios, it is of interest to find not merely the
single lowest energy (i.e., MAP) solution, but the M solutions of lowest energy (M -
best) [17,26,19,23,3]. This can e.g. be useful for learning [16], tracking-by-detection
methods that allow competing hypotheses [18,13,24], or for re-ranking [28] solutions
based on higher order features which would be prohibitively complex for the original
optimization problem. If theseM solutions are required to differ in more than one label,
the problem is referred to as diverse M -best [2,14,22].

Contributions: In this work, we show how the optimal second best (M = 2) solu-
tion of a tree-shaped graphical model can be found through dynamic programming in a
multi-layer graph by using a replica of the original graph as second layer and connecting
both layers through edges with special jump potentials (Section 3). Using these building
blocks, we extend our approach to exactly find theM > 2 best solutions sequentially by
constructing M -layer graphs (Section 4). While the above can be seen as a special case
of [29], our multi-layer approach is an intuitive interpretation that allows flexible mod-
eling of the desired result. We thus develop two heuristics using multiple layers to find
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the approximate diverseM -best solutions for tree-shaped graphical models (Section 5).
Lastly, we experimentally compare the different diversity approximations to prior work,
and show results for a variety of applications, namely: i) panorama stitching, ii) nested
segmentation hypotheses selection, and iii) centerline extraction (Section 6).

2 Related Work

M-best MAP: An algorithm for sequentially finding the M most probable configura-
tions of general combinatorial problems was first presented in [17]. To find the next best
solution, they branch on the state of every single variable, resolve, and finally choose
the best of all resulting configurations. While this works for any optimization method
and model, it is in practice prohibitively expensive. Several works have extended this
to junction trees [26,19] that work in O(|V|(L2 + M + M log(|V|M))), while [23,9]
developed a similar bucket elimination scheme (O(M |V|L|V|)). A similar idea was ap-
plied in [8] to find the M shortest paths jointly by building an auxiliary graph with a
heap at every node that contains the M -best paths to reach that node. For situations
where the optimal or approximative max-marginals can be computed, [29] derived an
improvement on [19] such that the max-marginals have to be computed only 2M times,
yielding the same runtime complexity (O(M |V|L2)) as the method we present here. A
method that finds the M best solutions on trees in only O(L2V + log(L)|V|(M − 1))
by an algebraic formulation that is similar to sending messages containing M best val-
ues as in [9] was presented by [25, Chapter 8]. However, in contrast to [29,25], our
approach provides a lot of modeling flexibility, allowing it to be used to approximate
diverse M best solutions as well. A polyhedral optimization view of the sequential M -
best MAP problem is given in [10]. There, a linear programming (LP) relaxation is con-
structed by characterizing the assignment-excluding local polytope through spanning-
tree-inequalities.This LP relaxation is tight for trees for M = 2, but not for higher
M or loopy graphs because the assignment-excluding inequalities could together cut
away other integral vertices of the polytope. An efficient message passing algorithm for
the same LP relaxation exploiting the structure of the polytope was designed by [3].
A completely orthogonal way to explore solutions around the optimum would be to
sample from the modeled distribution, e.g. using Perturb-and-MAP [20].

Diverse M -Best: For general graphical models, the first formulation of the diverse
M -best problem can be found in [2]. Even though their Lagrangian relaxation of the di-
versity constraint can work with any choice of metric, it is not even tight for Hamming
distances of k > 1. Different diversity metrics are explored in [22], where a greedy
method to find good instances from the (exponentially big) set of possible solutions is
designed by setting up a factor graph with higher order potentials, assuming that the
diversity metric is submodular. In [14], the authors construct a factor graph that jointly
finds the diverseM -best solutions by replicating the original modelM times and insert-
ing factors for the diversity penalty depending on the structure of the chosen distance.
It is shown that maximizing the diversity of the M -best solutions jointly, not only se-
quentially as in [2], can yield better results. They propose a reformulation that preserves
solvability with α-β-swap-like methods. Still, when applied to trees, the factors intro-
duced for diversity unfortunately turn the problem into a loopy graph and prevent the
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(a) (b)

Fig. 1. A schematized two-layer grid-graph construction to find the second best shortest path
from the source σ in the lower, to the target τ in the upper layer. A valid path is required to
jump between layers, which is allowed everywhere for the best path. (a) Shown in blue is the
best solution, which could have jumped to the upper layer at every node along the path with the
lowest cost. (b) To find the second best path, layer jumps are forbidden at the nodes used by the
best solution. Thus the second path diverges to the jump location leading to the next minimal cost
path.

application of dynamic programming. All those approaches incorporate the diversity
constraint into the original optimization problem by Lagrangian relaxation. In contrast,
the constructions we propose in this work yield a solution with the desired diversity in a
single shot. A different line of work [6,5] focused on extracting the M -best modes, but
those methods’ computational complexity renders them intractable for large graphs.

3 Optimal Second Best Tree Solutions

We now present how the second best solution of a tree-shaped graphical model can be
obtained using dynamic programming on a special graph construction. By second best,
we mean a solution that differs from the best configuration in at least one node, i.e.,
that has a Hamming distance of k ≥ 1 to the best solution. We begin with an informal
motivation based on the search for the second best shortest path.

Motivation: The Dual Dijkstra method from [11] allows finding not only the best, but
a collection of M shortest paths from a source σ to a target τ in a graph. To do so, two
shortest path trees are constructed, one starting at the source and one at the target. Thus,
for every node v, the shortest path from the source Pσ,v and to the target Pv,τ is known.
Summing the distances to source and target gives the length of the shortest path from σ
to τ via v. An important property is that, for all vertices along the shortest path from σ
to τ , this sum is equal to the length of the shortest path.

Now imagine these shortest path trees as two copies of the initial graph stacked as
two layers, as seen in Figure 1(a). The lower layer indicates the lowest cost to reach
every vertex v from σ, and the upper layer the cost of the shortest path to reach τ from
v. By selecting any vertex v and connecting the paths at v in the lower and upper layer,
one can again find the shortest path from σ to τ via v, this time by introducing an
auxiliary jump edge between the two layers.

The benefit of this two layer setup is that to find the second best solution, we simply
have to search for the vertex that does not lie on the best path, at which jumping between
the layers leads to the minimal cost path.
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Fig. 2. (a) Minimal tree structured graph of nodes v1, v2, and v3, with two states each, visualized
as stacked boxes. v3 is arbitrarily designated as the root, or target. Unary and pairwise costs
are shown as numbers in boxes and along edges, respectively. Its optimal solution is highlighted
in red in (b). Green edges correspond to the argmin incoming configurations for each state,
and green numbers depict the accumulated min-sum messages. (c) Two-layer tree used to find
the second best solution. Blue arcs represent layer-jump-edges with finite potential, which are
available at states not occupied by the best solution. Purple dashed edges need to be considered
if, at a branching point (such as v2

3), not all incoming messages are coming from the upper layer.
The second best solution is represented in green. (d) Searching for the 3rd-best solution (blue)
with a Hamming distance of k = 1 to the best (red) and second best solution. The new solution
must jump twice to reach the upper layer, by taking a state that was not used in the configuration
represented by layers 1 and 2.

Dynamic Programming: Let us briefly review the dynamic programming (DP) paradigm
on an undirected tree-shaped graph Ḡ = (V, Ē). We denote the state of a node v ∈ V
as xv , and the full state vector as x = {xv : v ∈ V}. The potentials of node v (unary
potential) and of the edge connecting nodes u and v (pairwise potential) are represented
by θv(xv) and θuv(xu,xv), respectively. From this, we define the inference problem as
an energy minimization task [15] with objective

min
x

∑
v∈V

θv(xv) +
∑

(u,v)∈Ē

θuv(xu,xv). (1)

When applying dynamic programming, one successively computes the energy E of op-
timal solutions of subproblems of increasing size. One node of the graph Ḡ is arbitrarily
selected as the root node r. This results in a directed graph G = (V, E) where edges
point towards the root. Let

←−
N (v) denote the neighboring nodes along incoming edges
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of v in G. Using the tree-imposed ordering of edges, one starts processing at the leaves
and sends messages embodying the respective subproblem solutions towards the root.
Whenever a node v has received a message from all incoming edges, it can – disre-
garding its successors in G – compute the lowest energies Ev(xv) of the subtree rooted
at v for every state xv , and send a message to its parent [21]. Because leaves have no
incoming edges, their energy is equal to their unary potentials. All subsequent nodes
combine the incoming messages with their unary potentials to obtain the energy of the
subtree rooted at them by

Ev(xv) := θv(xv) +
∑

u∈
←−
N (v)

min
xu

[θuv(xu,xv) + Eu(xu)] . (2)

While sending these messages, each node v stores which state (arg minxu
) of the

previous node (u ∈
←−
N (v), v) along each incoming edge led to the minimal energy

of every state xv . When the root has been processed, the state that led to the mini-
mal energy is selected and, by backtracking all the recorded arg min, the best global
configuration x? can be found. Figure 2 shows a minimal tree example.

Regarding DP runtime complexity, consider that (2) needs to be evaluated for every
state of every node exactly once. In addition, in (2), we consider all states of every
incoming edge, of which there are |E| = |V| − 1 in a tree. If L denotes the maximum
number of states, one obtains O(|V|L2).

Two-layer Model: Once the optimal solution is found, we might be interested in the
second best solution x, which assigns a different state to at least one node ∃v ∈ V :
xv 6= x?v . Because messages in DP only convey the optimal subtree energies, we cannot
immediately extract this second best solution. Hence we are looking for a way to enforce
that a different state is attained at least once, but we do not know at which node(s) this
should happen to yield the optimal energy. Fortunately, we can apply the same idea as
in the second shortest path example: We duplicate the graph to get a second layer and
insert edges connecting the two layers such that jumping is only permitted at states not
used in the optimal solution x?. After propagating messages through both layers, the
second best solution can be obtained by backtracking from the minimum energy state
of the root in the second layer to leaves in the first layer. This means that messages must
have jumped to the second layer at least once at some node v with a state different to
x?v , fulfilling our requirement for the second best solution.

We here state the layer setup conceptually and provide the formal construction in
the Supplementary. To create the two layers, we duplicate graph G (Figure 2a) such
that we get a layer 1, and a layer 2 replica. We address the instances of every node
v ∈ V by v1 and v2 for layer 1 and layer 2, respectively. When duplicating the graph,
the unary and pairwise potentials of nodes and edges are copied to layer 2. At every
node v ∈ V , we insert a layer-jump-edge from v1 to v2 (blue edges in Figure 2c) with a
pairwise potential θv1v2 that is only zero if both variables take the same state xv1 = xv2
different from v’s state in x?, and infinity (forbidden) otherwise. This way, finite valued
messages in layer two represent configurations that did differ from x? at least once.
These jump edges would suffice for a chain graph, but the branching points in a tree
need special consideration. When a layer 2 branching point is not reached by a layer
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jump, the current construction only allows considering incoming messages from layer
2. However, since we only require one variable to take a new state, only one branch
is necessary to reach layer 2 on a path with finite cost. To cope with this situation, we
insert layer-crossing edges from u1 to v2 for all edges (u, v) ∈ E (dashed purple edges
in Figure 2c) with the same pairwise potential as in the original graph θu1v2 = θuv , and
alter the DP update equation for nodes in layer 2 to

Ev2(xv2) := min

(
θv1v2(xv1 ,xv2) + Ev1(xv1), (3)

θv2(xv2) + min
L2⊆
←−
N (v)

|L2|≥1

∑
u∈L2

min
xu2

[θu2v2(xu2 ,xv2) + Eu2(xu2)]

+
∑

u∈
←−
N (v)\L2

min
xu1

[θu1v2(xu1 ,xv2) + Eu1(xu1)]

)
. (4)

Compared to (2), we now have two options instead of one at every node v in layer
2. Firstly, we can reach v2 by a layer jump. Note that, in case of a jump (S5), we
do not account for the unary θv2(xv2) as Ev1(xv1) contains the same term already.
Alternatively, at least one of the incoming messages must come from a nonenpty set L2

of predecessors in layer 2 (S6), while the remaining messages could cross layers. These
options are visualized in Figure 2c.

Optimality and Runtime: By duplicating the directed graph and inserting two sets of
new edges which are oriented towards the root in layer two, the topology of the graph
remains a directed acyclic graph, and DP hence yields the optimal configuration. As
long as the solution has finite energy, no forbidden layer-jump-edge is used, giving
us the second best solution. In terms of runtime complexity, we have duplicated the
number of vertices and have four times as many edges, which are small constant factors
that disappear in O(|V|L2). For optimal performance, one can reuse the messages in
layer 1 because these do not change.

4 Optimal M -Best Tree Solutions

The two-layer setup can easily be extended to multiple layers, which allows us to search
for the M -best solutions with a Hamming distance of k ≥ 1. We use one additional
layer per previous best configuration; that is, M layers. Each layer is responsible for
one of the previous solutions, hence its layer-jump-edges are restricted according to
the respective solution. Solutions must be ordered by increasing cost; such that the first
layer constrains jumps with respect to the best configuration, the second layer for the
second best, and so on. The new update rules from in Section 3 can then be applied to
every consecutive pair of layers. Figure 2d shows an example.

Optimality and Runtime: When considering more than one previous solution using the
multi-layer setup, the jump restrictions encoded in the layer-jump-edge potentials are
independent at each layer. For any given node and state in a layer, the cost and path to
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reach it are optimal with respect to all layers below. This straightforwardly holds for
the one and two layer cases, and is the reason why layers must be ordered by increasing
cost of the represented previous solutions. For the sake of argument, layers could be
flattened as they are getting processed, bringing back the problem to a series of M − 1
optimal two-layer cases, which yields a computational complexity of O(M |V|L2).

5 Approximate Diverse M -Best Solutions

In the classical diverse-M -best setting [2], additional solutions are required to have e.g. a
Hamming distance of k > 1. Here, we look at the straightforward multi-layer extension
of Section 3 to handle k > 1. We argue that this approach is suboptimal, and present a
two-layer approximation that trades quality for efficiency. Lastly, we discuss how this
could be used to find M diverse solutions.

Multi-layer Model: To ensure that the next solution differs by at least k from the best
one, we could construct a k + 1-layer graph using the same jumping criteria between
all layers. To reach the top layer, a solution must hence jump k times. This raises two
challenges: (a) a branching point at layer N can be reached by a combination of edges
from different layers such that the predecessors in total account for a Hamming distance
of N , and (b) a solution should never jump more than once at a single node, otherwise
it will not have the desired diversity. Both can be achieved by adjusting the DP update
equation to consider a set of admissible incoming edge combinations. We provide the
precise expression in the Supplementary.

Unfortunately, this simple setup does not yield optimal solutions. To forbid two
jumps in a row, one needs to introduce a dependence on a previously made decision.
These dependencies invalidate the subproblem optimality criterion for DP to yield the
correct result. It is thus possible that DP does not reach the root on layer k with finite
cost, as shown in the Supplementary. Using the same reasoning, even if a valid solution
is found, it is not necessarily optimal. Additionally, the set of admissible combinations
of incoming edges grows combinatorially, making this approach unsuited for large k.

Diversity Accumulation: Instead of using k layers, one can also formulate a heuristic
on a two-layer graph that ensures that any found solution contains the desired amount
of diversity. To do so, we reformulate the Hamming distance constraint (that the new
solution must differ from the previous one at k nodes) as a constraint on accumulated
diversity, i.e., that

∑
v∈V αv(xv) > T , where α is a measure of diversity per node

and state, and T a threshold. We change the DP update rules as follows. First, while
propagating messages from the leaves of the tree to the root in layer 1, one must also
propagate the amount of diversity accumulated by the corresponding configuration of
the subtree. Let us denote nodes and edges of the subtree rooted at node v in layer 1 by
←−
Vv1 and

←−
Ev1 , respectively. The accumulated diversity A is given by

Av1(xv1) :=
∑
i∈
←−
Vi1

αi(xi) +
∑

(i,j)∈
←−
Ei1

αij(xi,xj). (5)
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Then, we define the layer jump potential θ̃v1v2(xv1 ,xv2) to be infinity as long as the
accumulated diversity is below the desired threshold Av1(xv1) < k. The limitation of
this heuristic is that, at each node and state, we find the optimal subtree configuration by
minimizing the energy without considering diversity. This can prevent us from finding
solutions with large diversity. Yet, as we will see in the experiments, this approach has
an attractive runtime because it only requires two layers to find a solution with any
Hamming distance k, and thus has the constant runtime complexity of O(|V|L2) per
solution.

Extension to M Diverse Solutions: Finding M solutions with a Hamming distance of
k could be achieved by stacking M × (k + 1) layers, but then the long range depen-
dency problems depicted above are even more prominent. With diversity accumulation
on the other hand, M diverse solutions can be obtained heuristically by using one di-
versity map α and one accumulator A per previous solution. The jump criterion must
then ensure that enough diversity has been accumulated with respect to each previous
solution.

6 Applications and Experiments

We now evaluate the performance of our heuristics to obtain diverse solutions with prior
work, and demonstrate its applicability to several problems in Computer Vision1.

Comparison with Existing Works: [2,28,14] search for the diverse-M -best solutions by
incorporating the diversity constraint via Lagrangian relaxation. Our heuristics follow
a different approach and turn the constraint into a lower bound instead of relaxing it.
The resulting advantage is that we guarantee the set of solutions to be as diverse as
required, at the possible expense of a higher cost or the inability to find a solution at
all. On 50 random trees, with 100 nodes each, all nodes having 3 states with unary
and pairwise potentials drawn uniformly from the range [0, 1], we evaluate different
Hamming distances in Figure 3. We let the method of [2] run for 100 iterations with
a step size of 1/n in iteration n or stop at convergence. In terms of runtime, diversity
accumulation stands out as it constantly requires only two layers. Because the distance
to the best configuration is not enforced by hard constraints, solutions found by [2]
often contain too little diversity, yielding a too low mean Hamming distance. Diversity
accumulation gives solutions with more diversity than required, and hence also deviates
more from the optimal energy. In terms of returned diversity and energy, the multi-
layer dynamic programming solution yields favorable results compared to the other
two methods, but is unfortunately slower – it suffers from the combinatorial explosion
of admissible edge sets to consider – and fails to find a valid solution on several trees
due to the limitations described in Section 5.

Medial Axis Identification in Biological Objects: Identifying the medial axis of biolog-
ical objects is a common problem in bioimage analysis, as it serves as a basis for length
or growth estimation and tracking-by-assignment. Simple dynamic programming can

1 See the Supplementary for an application to depth estimation from stereo.
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Fig. 3. Comparison of the k+ 1-layer dp and diversity accumulation heuristic for obtaining
diverse solutions (Section 5) against divmbest [2]. All results show mean, minimum and max-
imum over the valid solutions obtained for every setting on 50 random trees, where (d) shows the
number of experiments that did not find a valid solution. (a) Energy ratio between the optimal
unconstrained solution and the one with Hamming distance k. (b) Runtime. (c) Hamming dis-
tance of the resulting solution. Lower is better in all plots but (c), where the returned Hamming
distance should be close to, or preferably above the drawn diagonal.

(a) (b) (c)

Fig. 4. Diverse shortest path finding in noisy bioimages featuring objects in close contact. (a) Raw
brightfield microscope images of C. elegans, (b) first best path, and (c) 5th best path between auto-
selected end points using an exclusion corridor of 30 pixels and a required accumulated diversity
of k ≥ 25.

achieve this task given the end points, although, as biological images tend to get noisy
or crowded, designing a robust cost function is difficult. In Figure 4, we illustrate the
usefulness of searching for a collection of possible best solutions instead of only one
shortest path in brightfield microscopy images of C. elegans nematodes.

Selection of Segmentation Hypotheses: In datasets with cell clumps, it is often hard
to select the correct detections from a set of segmentation hypotheses. We illustrate
this problem in images from the Mitocheck project dataset2 [12] using the tree model
proposed in [1]. There, the task is to assign a class label to each element of a set of
nested maximally stable extremal regions. The labels indicate the number of objects
that each particular region represents. In the tree, nodes correspond to regions, and
edges between parent and child node model the nestedness properties. In Figure 5,
we show results obtained when constraining dynamic programming with our M -best
approach. This is useful to generate segmentation or pose candidates as needed by joint
segmentation and tracking procedures, e.g. [13,24].

2 http://www.mitocheck.org/
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Fig. 5. Finding the M-best configurations of a tree (a) of MSER segmentation hypotheses as
in [1]. The best (b), second (c) and third (d) best configuration found by blocking previous so-
lutions in the respective layer-jump-edge potentials. The selected label at each node denotes the
predicted object count of the first nonzero ancestor in the tree.

(a) (b)

Fig. 6. Finding diverse best paths (seams) for panorama stitching. Once the best solution (a) has
been found, layer-jump-edges were blocked in a corridor around it to obtain the diverse second
best solution (b).

Panorama Stitching: In our motivation in Section 3, we mentioned that the proposed
multi-layer setup can also be used for shortest paths. Here, we apply that in the context
of boundary seam computation for panorama stitching [27]. We stitch images taken dur-
ing the Apollo 11 moon landing (Apollo-Armstrong: 2 images of 2349×2366, courtesy
of NASA). As observed in Figure 6, the second diverse shortest path also corresponds
to a visually correct stitching, although the resulting path significantly differs from the
globally optimal one.

7 Conclusion

We have presented a multi-layer graph construction that allows formulating the M -best
problem for tree-shaped graphical models efficiently through dynamic programming.
This flexible framework can be used to find M -best solutions for a Hamming distance
of k = 1 optimally. For k > 1, we present two heuristics, one using a multi-layer
graph, and one using two-layers where each new configuration must accumulate diver-
sity before it can reach the upper layer. We evaluated both heuristics against diverse-M -
best [2], revealing that both perform favourably with certain strengths over the baseline.
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We demonstrated for several practical applications that the presented methods can re-
veal interesting alternative solutions.
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1 Optimal Second Best Tree Solutions: Graph Construction

We formally construct the auxiliary directed graph G̃ = (Ṽ, Ẽ) composed of two in-
stances of the original directed graph G = (V, E) stacked up vertically. We address the
lower layer with index 1, and the upper one with index 2. The new set of nodes and
edges is given by

Ṽ := {1, 2} × V,
Ẽ := E1

in ∪ E2
in ∪ Ejump ∪ Ecross.

In the following, the first and second layer copies of an original node v ∈ V are written
as v1 and v2, respectively.

E1
in := {(u1, v1)|(u, v) ∈ E} (S1)
E2

in := {(u2, v2)|(u, v) ∈ E} (S2)
Ejump := {(v1, v2)|v ∈ V} (S3)
Ecross := {(u1, v2)|(u, v) ∈ E} (S4)

Edges are duplicated for each layer (S1), (S2). Additionally, we introduce layer-
jump-edges (S3) that directly go from any node v1 in layer 1 to its duplicate v2 in layer
2. Lastly, we add edge duplicates that originate in layer 1 and go to layer 2. These
layer-crossing-edges (S4) are needed for message passing at branching points. Unary
and pairwise potentials θ̃ are also replicated for all nodes v ∈ V and edges (u, v) ∈ E
as

∀v ∈ V θ̃v1 := θv, θ̃v2 := θv

∀u, v ∈ E θ̃u1v1 := θuv, θ̃u2v2 := θuv, θ̃u1v2 := θuv.

To run dynamic programming on this new graph G̃, messages are propagated start-
ing at all leaves in layer 1, towards the designated root r2 ∈ Ṽ on the upper layer. From
every node v1 in the lower layer, a message – embodying the partial solution of the sub-
tree rooted at v1 in layer 1 – is propagated in three directions: directly to its successors
within layer 1, crossing layers to the successors’ duplicates in the upper layer, and as a
jump to this node’s duplicate v2 subject to a user-specified jumping criterion.
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In summary, in the lower layer, standard messages are being sent as in the lowest
energy solution. In the upper layer, every junction point is reached by three kinds of
messages: those from within layer 2, those that are incoming from predecessors in layer
1, and those along layer jump edges between node duplicates. At junction points in
layer 2, these incoming messages from both layers must be combined. The important
requirement for a valid configuration of any layer 2 junction point is that at least one of
the incoming messages must have come from layer 2 (we denote this nonempty set of
predecessor nodes as L2), and must thus have jumped to layer 2 in the subtree rooted at
this junction point. We therefore change the DP rules in layer 2 to

Ev2(xv2) := min

(
θ̃v1v2(xv1 ,xv2) + Ev1(xv1), (S5)

θ̃v2(xv2) + min
L2⊆
←−
N (v)

|L2|≥1

∑
u∈L2

min
xu2

[
θ̃u2v2(xu2 ,xv2) + Eu2(xu2)

]

+
∑

u∈
←−
N (v)\L2

min
xu1

[
θ̃u1v2(xu1 ,xv2) + Eu1(xu1)

])
. (S6)

Compared to the standard dynamic programming rules, we now have two options in-
stead of one in layer 2. Firstly, we can reach the node by a layer jump. Note that, in
case of a jump (S5), we do not account for θ̃v2(xv2) as Ev1(xv1) already contains this
term. Alternatively, at least one of the incoming messages is coming from layer 2 using
edges from E2

in (S6), while the remaining messages may cross layers and originate from
Ecross.

If we choose to set all layer-jump-edge potentials to zero, every vertex qualifies as
jump location and we obtain at the root the same solution we would get in the original
graph G. If we want to find the second best solution with a Hamming distance of 1,
we set the jump potentials of all states used by the previous solution to infinity. Then,
a jump can only happen when the current solution differs from the previous one at this
node. In addition, note that the duplicates of all leaf nodes v2 must be reached via a
layer jump. This can be achieved by setting their unaries to infinity θ̃v2 :=∞.

2 Approximate Diverse M -Best Solutions

In (S5) and (S6), we already considered edges from layer 1 and 2 such that at least one
of them came from layer 2 if that specific node was not used for a jump. In the case of
k + 1 layers, we define the set of admissible incoming edge combinations A . We thus
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Fig. S1. (a) Visualization of different ways of obtaining a Hamming distance of 2, where the
red states show the previous solution. To reach v3

5 , one can jump two times at different nodes
(green) and arrive in layer 3, jump once before to layer 2 and then to 3 at v5 (orange), or combine
two incoming branches from layer 2 to get to layer 3 (blue). (b) Counterexample for k = 2.
If Ej2 < Ej1 , the minimization will pick the predecessors shown in blue, which prevents the
algorithm from jumping to layer 3 and finding a valid solution.

generalize the update equation as follows:

EvN (xvN ) := min

(
θ̃vN−1vN (xvN−1 ,xvN ) + EvN−1(xvN−1)

+∞ · δ[PredvN−1(xvN−1) == (vN−2,xvN−2)],

θ̃vN (xvN ) + min
A∈AvN

min
xa

∑
a∈A

θ̃avN (xa,xvN ) + Ea(xa)

)
(S7)

AnN =

{(
ul11 , u

l2
2 , ..., u

l|←−N (v)|

|
←−
N (v)|

) ∣∣∣∣ulii ∈ ←−N (v),

li ∈ {1, ..., N},
|
←−
N (v)|∑
i=1

(li − 1) ≥ N − 1

}
(S8)

To prevent two successive jumps at the same variable (a), one must incorporate a check
whether a node was reached by a jump. We thus include a dependence on the previous
step. We denote by Predv(xv) the predecessor node of v and its state on the best path to
reach v’s state xv . To model that the cumulative number of jumps to reach layerN must
be N − 1 (b) at each junction on layer N > 1, (S8) defines A as the set of admissible
combinations of selecting incoming nodes ui ∈

←−
N (v) from layers li. Some admissible

sets are visualized in Figure S1a.

3 Applications and Experiments

Disparity Map Estimation from Stereo Images: To generate different disparity maps
from stereo images, we build a minimal spanning tree of the pixel grid graph, using the
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(a) (b) (c)

Fig. S2. Exploring diverse solutions for disparity map estimation, on an image from the Mid-
dlebury benchmark [30] resized to 741 × 500. (a) Left view of the motorbike image pair, and
corresponding (b) best solution found by [31] which struggles inside the front wheel, probably
because the patch size is too large and always contains background and spokes. (c) Enforcing
a large Hamming distance (here 13000) reveals that the area around the front wheel could have
been matched differently, exposing ambiguities in the estimation process.

intensity gradient as edge weight as in [31]. Neighboring pixels are connected by an
edge whenever they have similar intensities. Those that are not similar are not linked
and hence are not penalized when generating depth discontinuities. We allow disparities
of up to 40 pixels in either direction while computing matching costs on patches of
11 × 5 pixels, and use a (non-truncated) quadratic attractive potential on the edges.
While this setup is far from state-of-the-art in stereo, it demonstrates that our approach
scales to large trees with many labels. We used the proposed diversity accumulation
method where one unit of diversity is collected at every state that is at least a distance
of 5 away from the previous solution in label space, and requested a large amount of
diversity to obtain visually different depth maps.
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We have observed that the method presented in section 4 of our paper [32] rested
on an assumption that is not always fulfilled.

Specifically, when looking for the M th best solution in a tree shaped graphical
model, when M > 2 the solution found by our method can depend on the order of
jumps in previous solutions, and hence does not always represent the optimal M th best
configuration. This is due to the layer ordering from first to (M − 1)th best solution.
In Figure C1, we provide a counterexample indicating that our algorithm sometimes
erroneously blocks jumping to the next layer for the next best solution.

A possible way to circumvent this blocking would be to consider every possible
ordering of the layers responsible for the M − 1 previous solutions, find the next best
solution in that ordering, and at the end choose the solution that has the minimal cost.
This is illustrated in Figure C1 (e). Unfortunately, this approach increases the runtime
complexity by a factor of (M − 1)!.

The above shows that our method is not optimal for the M th best solution with
M > 2. For M = 2, the scheme we presented in [32] section 3 remains optimal as a
single jump is required to reach the second layer, which can only be blocked by the first
best solution. The approximation schemes from section 5 were presented for a second
best diverse solution and are hence not affected.

Acknowledgement: We would like to thank Alexander Richards from Bonn University
and the unknown person at GCPR 2017 for their interest and questions that helped us
find this error.
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Fig. C1. (a) Chain model with per-state costs. Assume the edge potentials are uniform. (b) First
(red) and second best solution (green) found with 2 layers. (c) Third best solution in blue. (d)
If first and second solution are represented by layers in the order they were found, there is no
possibility to jump to the top layer that would give the fourth best solution (purple). Remember
that jumps are only allowed at states not used in the solution represented by the layer from which
one jumps up. (e) When representing the second best solution in the third layer and the third best
solution in the second layer, we can find the optimal fourth best solution.
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