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Abstract. Photographing scenes with high dynamic range (HDR) poses
great challenges to consumer cameras with their limited sensor bit depth.
To address this, Zhao et al. recently proposed a novel sensor concept – the
modulo camera – which captures the least significant bits of the recorded
scene instead of going into saturation. Similar to conventional pipelines,
HDR images can be reconstructed from multiple exposures, but signif-
icantly fewer images are needed than with a typical saturating sensor.
While the concept is appealing, we show that the original reconstruction
approach assumes noise-free measurements and quickly breaks down oth-
erwise. To address this, we propose a novel reconstruction algorithm that
is robust to image noise and produces significantly fewer artifacts. We
theoretically analyze correctness as well as limitations, and show that
our approach significantly outperforms the baseline on real data.

1 Introduction

Real world scenes often exhibit a significant dynamic range [17]. The intricate
interplay between brightness and darkness, shadowy and sunny areas is often
highly desirable from a photographer’s standpoint. However, consumer cameras
with image sensors that saturate when certain brightness levels are exceeded can
only measure a significantly smaller dynamic range, e.g . 12 bit. When taking only
a single image, the photographer faces the dilemma of losing detail either in the
bright or in the dark parts of the scene; the whole scene cannot be captured in
full detail. While various special sensors for HDR imaging have been developed,
these are expensive [1], or sacrifice spatial [18] or intensity resolution [14].

Hence, various approaches aim to retain detail in the entire scene by recon-
structing an HDR image from multiple captures, each with a different exposure
time [4, 9, 10, 17]. As conventional image sensors saturate at some brightness
level, the bit depth in bright parts of the scene is necessarily limited and the
reconstruction may lead to artifacts. The modulo camera concept of Zhao et
al . [22] aims to mitigate this using a novel, practical sensor that, instead of satu-
rating, resets pixels to zero as soon as their maximal value is reached during the
exposure. Hence, the least significant bits of the signal can be measured inde-
pendently of its overall magnitude. This is in contrast to conventional cameras,
which measure the signal correctly only up to the saturation level. To recover
an HDR image from just a single modulo camera exposure, phase unwrapping
techniques well-known in radar interferometry [8] or MRI [2] can be applied.
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(a) 16-bit ground truth (b) Modulo camera reconstruction using [22]

(c) Proposed modulo camera reconstruction (d) Conventional HDR reconstruction (saturating
sensor)

Fig. 1. Reconstruction of a 16-bit image from the Cityscapes dataset [3]. Multiple noisy
12-bit exposures of a modulo camera are simulated based on the ground truth in (a).
The approach of [22] produces visible outliers (b). Our robust method (c) reconstructs
the (noise-free) ground truth well. Reconstructing from the same number of exposures
of a simulated conventional camera with saturation leads to much more noise (d).

However, this requires the true image to be sufficiently smooth. For more
complex and realistic scenes, [22] presents an approach for HDR reconstruction
from multiple images. As in a conventional HDR pipeline, the exposure times
of the captured images are chosen such that they measure different parts of the
radiance range. The observed modulo values of each captured image are scaled
by the exposure time and then iteratively combined into an estimate of the true
HDR image. The benefit is that significantly fewer exposures are needed than
with saturating sensors, making HDR imaging much more practical.

In this paper, we first consider the correctness of the reconstruction. As we
will discuss, the original approach of Zhao et al . [22] provably works correctly,
but only as long as there is no noise and exposure times can be set with perfect
accuracy. Since the no-noise assumption is unrealistic, large areas of wrongly
estimated pixels are produced when applied to images with typical noise lev-
els. This is a significant impediment to the practical application of the modulo
camera. To address this, we next introduce a novel, robust HDR reconstruction
algorithm for modulo camera images. Analogous to the original approach, we
calculate a simulated long exposure image and use its most significant bits. The
crucial difference is that we additionally use the remainder of the simulated im-
age and compare it to the actual values in the modulo capture. This way we
can identify pixels for which the original algorithm would produce an incorrect
reconstruction and correct these. Moreover, we make a number of theoretical
contributions: First, we provide an analysis of correctness, showing that for a
known noise distribution with certain properties, our algorithm reconstructs the
true image even in the presence of noise. Moreover, we contribute explicit bounds
on the optimal exposure times of the individual input images, which allow to
assess the maximal measurable bit depth that can be recovered correctly with
a chosen probability. Qualitative and quantitative experiments using realistic
scenes show that our algorithm is robust against noise and consistently outper-
forms the original algorithm of [22]. Figure 1 shows a visual example.
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2 Related Work

Capturing scenes with both bright and dark areas is challenging for consumer
cameras, while the human visual system copes with such scenarios quite effort-
lessly. To address this gap, high dynamic range imaging aims to enable pho-
tographers to capture such scenes without loosing details. Significant research
efforts have been dedicated to HDR imaging [17], resulting in techniques whose
captured dynamic range even exceeds the capabilities of the human eye [12].

Multiple exposures. The perhaps most widely used family of HDR techniques is
based on capturing several images with different exposure times (some under-,
some overexposed) and combining these. Multishot methods can even be used
with photographic film [4]. In general, they proceed by estimating the inverse of
the camera response function and weighted averaging of the different images [19].
Since conventional cameras saturate at a certain level, long exposures do not add
details to saturated regions. Consequently, many images with different exposure
times are needed [9] to avoid quantization effects and artifacts [22]. Stumpfel
et al . [20] report that seven conventional images are needed to capture the dy-
namic range of real life scenes, even with an elaborate selection of exposure
times [10] and calibration. On the other hand, the modulo camera allows for
an HDR reconstruction that exceeds the dynamic range of typical scenes from
three modulo images alone [22] (assuming noise-free images). Other multishot
HDR approaches avoid having to recover the response function [16]. All multi-
shot methods are challenged by dynamic scenes as well as noise. Moving objects
or camera ego-motion lead to ghosting artifacts in the reconstruction. Multiple
approaches for ghost-free reconstruction have been proposed [7, 11, 13]. Here we
focus on static scenes without camera movement, and leave the dynamic setting
for future work.

HDR sensors. To increase the dynamic range without requiring multiple expo-
sures, advanced sensors have been designed. They, for example, sacrifice spatial
resolution for increased dynamic range using pixels of different size, effectively re-
sulting in different exposures [18]. These have been realized in consumer cameras,
e.g . the Fujifilm SuperCCD [6]. Using a high precision analog-digital converter
can increase the dynamic range as well, while keeping the resolution. Another
approach is to use thin-film on ASIC (TFA) sensors [1], which yield even more
dynamic range. Adoption has been hindered by expensive production, and the
sequential read-out for color images, requiring a three times longer exposure.

Special sensors. In contrast to conventional saturating sensors with increased
bit depth, it is also possible to change the camera response function. Loose
et al . [14] propose a sensor with a logarithmic response, which increases the
dynamic range and allows for longer exposures without saturation. While the
dynamic range increases, intensity resolution is reduced, especially for bright
pixels. Another possibility is a sensor that measures gradients [21], which enables
fine quantization and allows correcting saturated pixels. In contrast to these
approaches, the modulo camera does not sacrifice spatial or intensity resolution.
While the leading bits of the intensity values are lost, the details are preserved.
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3 The Modulo Camera

Before introducing our approach, we formalize the properties of a conventional
saturating sensor and review the modulo camera following [22]. For an ideal
sensor with unbounded capacity, the observed image I arises from the scene
radiance R ∈ R+

0 and the exposure time τ > 0 as

I(τR) =
⌊
λ
(
τR+ ε(τR)

)⌋
, (1)

where b·c denotes the floor operation and λ subsumes all multiplicative fac-
tors involved in the photon-to-digit conversion, e.g . the quantum efficiency, the
analog amplification, and the analog-to-digital conversion factor. Inevitably, the
observed image will be corrupted by noise ε, which arises from the Poisson ar-
rival process of photons and from the electronics involved in the imaging process.
Following the literature [5], we model ε as intensity-dependent Gaussian noise

ε(τR) ∼ N
(
0, σ2(τR)

)
with σ2(τR) = β1τR+ β2. (2)

For simplicity, we assume w. l. o. g. that 0 ≤ R < 2K and λ = 1. Hence, an
exposure time τ = 1 will result in a digital image with bit depth K. In practice,
pixel elements have limited capacity. Hence, a saturating camera S(·) with bit
depth L < K will clip the recorded signal at a maximal value of 2L − 1:

S(τR) = min(I(τR), 2L − 1). (3)

Due to the clipping all image structure in high-intensity areas will be lost. In
contrast, a modulo camera M(·) [22] with bit depth L always retains the L least
significant bits, as the sensing element is reset once it hits the maximal value:

M(τR) = I(τR) mod 2L = I(τR)− k · 2L. (4)

The true intensities can be reconstructed from the modulo image by estimating
the number of rollovers k, i.e. how many times each pixel has been reset.

Multi-image reconstruction. Given a series of exposure times 0<τ1<. . .<τn=1,
we observe the corresponding modulo images Mi = M(τiR) with unknown
rollover maps ki. We iteratively reconstruct radiance maps R̃i, i = 1, . . . , n ap-
proximating R, as well as rollover maps k̃i approximating ki. We assume that
k1 = 0 for all pixels in M1, i.e. the first image has no rollovers. This is equivalent
to requiring that the first exposure time is sufficiently short with τ1 ≤ 2L−K .
Hence, R̃1 is obtained as the first modulo image M1 divided by its exposure time

R̃1 =
M1

τ1
. (5)

The original reconstruction algorithm of [22] now proceeds by recursively esti-
mating the rollover map k̃i for the next exposure time and afterwards updating
R̃i. The rollover map for Mi can be estimated from R̃i−1 by scaling with the
new exposure time τi

k̃i =

⌊
τiR̃i−1

2L

⌋
. (6)
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Now we combine modulo image Mi and rollover map k̃i into a refined estimate

R̃i =
k̃i2

L +Mi

τi
. (7)

Recalling that τn = 1, a K-bit high dynamic range image is finally obtained as

Ĩ = bτnR̃nc = R̃n. (8)

Correctness. We show in the supplemental material that this reconstruction is
provably exact, i.e. Ĩ = I(τnR), if the fraction 2L τi−1

τi
is a positive integer and

if the recorded images are not corrupted by noise, i.e. I(τiR) = bτiRc, for all
i = 1, . . . , n. However, even miniscule amounts of noise can already cause the
estimation of the rollovers k̃i from Eq. (6) to be incorrect, leading to visible
artifacts, see Fig. 1b. A simple numerical example showing the limitations of the
original approach is R = 256, L = 8 and τ1 = 0.4, τ2 = 1, for which it is easy to
see that Ĩ = 0 6= I(τ2R) even without noise.

Moreover, we note that image noise cannot be removed beforehand, since the
modulo operation does not commute with image filtering in general. This is true
even for linear filters with rational weights ωi ∈ Q, i.e. there exist xi ∈ Z such
that (∑

i

ωixi

)
mod n 6=

(∑

i

ωi(xi mod n)
)

mod n. (9)

4 Robust HDR Reconstruction

Estimating the rollover image with the original reconstruction algorithm in
Eq. (6) is susceptible to noise as k̃i may not match the true rollover map ki
that underlies the modulo observations Mi. We now present our algorithm that
accounts for noise while reconstructing the scene radiance. In particular, we
detect and correct for possible estimation errors ∆i in k̃i such that

k̂i = k̃i +∆i, ∆i ∈ Z. (10)

Then we use k̂i instead of k̃i for updating the radiance map as

R̃i =
k̂i2

L +Mi

τi
=

(k̃i +∆i)2
L +Mi

τi
. (11)

To find an optimal value for ∆i, we want the simulated image Ĩi = bτiR̃ic given
the current radiance to be close to the simulated image Īi = bτiR̃i−1c based
on the previous radiance estimate. Since the noise governing the non-rounded
image intensities is assumed Gaussian, we formulate the following least-squares
problem:

min
∆i

L(∆i)
.
= min

∆i

‖bτiR̃ic − bτiR̃i−1c‖2 (12)

= min
∆i

‖τiR̃i − bτiR̃i−1c‖2 (13)

= min
∆i

‖(k̃i +∆i)2
L +Mi − bτiR̃i−1c‖2, (14)
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which holds as τiR̃i ∈ Z and we plugged in Eq. (11). Using Eq. (6), we have

L(∆i) =
∥∥∥∆i2

L +Mi −
(
bτiR̃i−1c −

⌊τiR̃i−1

2L

⌋
2L
)

︸ ︷︷ ︸
.
=Di

∥∥∥
2

. (15)

Since Mi and Di are modulo values, it holds that

−2L < Mi −Di < 2L, (16)

which implies that L(∆i) > L(0) for |∆i| ≥ 2. Thus, the cost L is minimized for
∆i ∈ {−1, 0, 1}. We can now read off the optimal value as

∆i = arg min
∆

‖∆2L +Mi −Di‖2 =





+1, Mi −Di < −2L−1

−1, Mi −Di > +2L−1

0, else.
(17)

This ensures that the reconstructed Ĩi lies in the interval [Īi − 2L−1, Īi + 2L−1].

Optimality. We now establish optimality conditions and show that our novel
algorithm is indeed more robust than the original approach of [22]. To simplify
notation, we write Ii = I(τiR) for the ideal image taken with an unbounded
sensor. We then consider the compound noise between two images

ei
.
=Ii −

τi
τi−1

Ii−1 (18)

=ε(τiR)− r
(
τiR+ ε(τiR)

)
− τi
τi−1

ε(τi−1R) +
τi
τi−1

r
(
τi−1R+ ε(τi−1R)

)
, (19)

where r(x)
.
= x− bxc is the rounding error with 0 ≤ r(x) < 1.

Theorem 1. If |ei| ≤ 2L−1−1 for i = 2, . . . , n, the robust algorithm reconstructs
Ii in every iteration correctly, i.e. Ĩi

.
= τiR̃i = Ii. Especially it holds that Ĩn =

R̃n = In and hence the true radiance map is reconstructed as well as possible.

Proof sketch. We proceed by induction. By assumption, the first modulo image
has no rollovers, i.e. I1 = M1, and hence I1 = τ1R̃1. The induction step proceeds
by contradiction and relies on a case distinction on the possible values of ∆i and
whether the true ki is over- or underestimated. In particular, we show that

τiR̃i 6= Ii =⇒ |ei| > 2L−1 − 1. (20)

We refer to the supplemental material for details, but note that it is somewhat
intuitive that Eq. (17) leads to a correct reconstruction of the rollover maps.
Consequently, the robust algorithm leads to the radiance being reconstructed as
well as possible even for substantial amounts of noise.

This is in contrast to the original reconstruction approach of [22], for which
the robustness depends on the image values itself. For some image values, it
tolerates |ei| = 2L − 1, while for others |ei| = 1 already produces wrong results.
As we have seen in the simple example above, even rounding errors can already
cause the original approach to fail. Even if rounding errors could be eliminated
by carefully choosing exposure times, a small amount of noise leads to similar
failures.
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5 Robust Capture Protocol

Theorem 1 shows that our reconstruction algorithm recovers the true intensities
as long as the compound noise of imaging τiR and τi−1R is small enough. Since
the noise and rounding error of τi−1R enter the definition of ei with a factor
of τi/τi−1 > 1 (Eq. 19), we can control the distribution of ei by choosing the
ratio of exposure times τi/τi−1. For practical applications it is highly desirable
to find an explicit exposure time schedule such that the number of exposures is
minimized while guaranteeing correctness with high probability. Let us consider
that in iteration i we want to reconstruct a pixel correctly with some probability
p. Then we aim to find the maximal τi given τi−1 such that

P
[
|ei| ≤ 2L−1 − 1

]
≥ p. (21)

We can bound the probability on the left-hand side by the CDF of the absolute
value of a Gaussian (for details see supplemental material)

P
[
|ei| ≤ 2L−1 − 1

]
≥ P

[∣∣N (0, σ2
i )
∣∣ ≤ 2L−1 − 1− τi

τi−1

]
(22)

with

σ2
i = β1τiR

(
1 +

τi
τi−1

)
+ β2

(
1 +

τ2
i

τ2
i−1

)
. (23)

This can be used to derive an upper bound on τi such that Eq. (21) is satisfied:

τi ≤ τi−1
−b+

√
b2 − 4ac

2a
(24)

with

a = β1τi−1R+ β2 −
(
Φ−1

(
1
2 + 1

2p
))−2

(25)

b = β1τi−1R+
(
Φ−1

(
1
2 + 1

2p
))−2

(2L − 2) (26)

c = β2 −
(
Φ−1

(
1
2 + 1

2p
))−2

(2L−1 − 1)2, (27)

where Φ−1 is the inverse CDF of a standard normal distribution. We again refer
to the supplemental material for details. The noise parameters β1, β2 can be
estimated for a specific camera, e.g . with the technique of Foi et al . [5]. However,
the scene radiance R is needed in the calculation of τi. We make a conservative
guess and use the maximal value, i.e. 2K . That way every pixel is reconstructed
correctly with probability at least p, while pixels with a lower intensity will be
reconstructed with higher probability.

In general, if we always take the upper bound in Eq. (24) the resulting series
will converge to a limiting exposure time τ∗. We state an explicit formula for
τ∗ in the supplementary. Note, that the limiting exposure time can be greater
than 1 and that it effectively allows us to characterize the maximum bit depth
that can be resolved using a modulo camera with bit depth L that, in contrast
to [22], assumes realistic noise with parameters β1, β2. If β2 is too large, τ∗ will
become complex-valued. In contrast, if β1 is too large, we get τ∗ < 1, i.e. we
cannot reconstruct R with the required certainty.
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6 Evaluation

We now analyze our robust reconstruction algorithm on real HDR data. We use
the Cityscapes dataset [3], which provides 16-bit linear HDR images of road
scenes. Since the images have already been debayered, we apply a color filter
array to remove the interpolated pixels. Given the 16-bit images, we simulate
the imaging process of an L-bit modulo camera as well as a conventional L-bit
camera that goes into saturation. Note that we need to rely on simulation here, as
modulo sensors have not been manufactured yet apart from early prototypes [22].
We choose the base parameters of the noise distribution as 10−8 ≤ β1 ≤ 10−2 and
β2 = 0.01β1, which are reasonable for consumer grade cameras [15]. In practice
a certain camera has a fixed bit depth. In order to nevertheless compare the
results across different bit depths for the same camera, we normalize the noise

parameters such that an L-bit camera has β
(L)
1 = αβ1 and β

(L)
2 = α2β2, where

α = 2L−1. This implies that an L-bit camera collects 2K−L times more photons
to increment the intensity by one than the K-bit ground truth camera, thus
improving the signal-to-noise ratio. This assumption is reasonable since cameras
with a smaller bit depth can afford to integrate bigger capacitors instead.

Maximal bit depth. We first analyze the maximum bit depth that can be recon-
structed and compare the proposed approach against the original reconstruction
from [22]. We choose the exposure times according to Eq. (24) such that a pixel
is reconstructed correctly with p > 0.99 in each iteration. While the effect of
having a maximum of 1% of pixels potentially incorrect could be drastic when
many iterations need to be made, this is a worst case estimate. In practice,
many fewer errors occur, since the image is not bright everywhere. Moreover,
we observe that choosing p > 0.999 or 0.9999 did not yield significantly better
results in practice, but required more images. Figure 2 shows how many bits can
be reconstructed accurately from 2 and 5 exposures, respectively, as well as in
the hypothetical case of infinitely many exposures, where the last exposure time
is given by τ∗. Depending on the bit depth of the camera and the noise char-
acteristics, we achieve very high maximal exposure times and therefore a large
dynamic range that can be recovered. For example, roughly 18 bits can be recon-
structed with only 2 images, if β1 = 10−5, β2 = 10−7 and L = 12. Moreover, with
just 5 exposures we already achieve a bit depth that is close to the theoretical
maximum, meaning that the exposure time schedule given by Eq. (24) quickly
converges to its limit. It is important to note that in the presence of realistic
amounts of sensor noise, and even with our robust reconstruction algorithm, the
modulo camera does not enable HDR images with an unbounded dynamic range,
unlike what is claimed in [22]. Nevertheless, our derivation shows that even with
realistic camera noise, significant gains in dynamic range can be achieved. Fur-
ther improvements could potentially be made by considering the modulo images
jointly, c.f . [8], instead of sequentially. We leave that for future work.

HDR reconstruction. We now compare the results from the original algorithm,
our robust approach, and a simple HDR reconstruction method based on images
from a saturating sensor, all with the same number of exposures. For the latter,
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Fig. 2. Maximal bit depth that can be reconstructed from modulo images under real-
istic image noise using 2 (dot-dashed), 5 (dotted) and infinitely many (solid) images
for varying bit depth and noise parameters. We set β2 = 0.01β1.

we average over all images in which a pixel is neither under- nor oversaturated.
We measure the quality of the reconstruction using the peak signal-to-noise ratio

between the debayered and tone-mapped images: PSNR
.
= 10 log10

(
MAX2

I

MSE

)
,

where MAXI = 216 − 1 is the maximum intensity of the reconstructed image
and MSE is the mean squared error. We determined the number of required
exposures using the bound from Section 5. In the case of τ∗ < 1 we padded the
first two exposure times to reach τn = 1, for τ∗ � 1, i.e. extreme noise, we used
6 predefined exposures. Other schedules did not significantly affect the findings.

As we can see in Fig. 3 for low and moderate noise, the result of our robust
algorithm is very close to the noisy ground truth. For strong noise the results
become slightly suboptimal, since the calculated exposure times are too small,
i.e. τ∗ < 1. The original modulo reconstruction approach of [22] and a simple
HDR pipeline with a saturating sensor do much worse, since we are using as few
exposures as possible. Especially for weak noise we often only need 2 images for
our approach. Note, that the HDR pipeline with a saturating sensor combines a
long-exposure image with a short-exposure image by appropriately upscaling the
short-exposure image and subsequently averaging both images. In the upscaled
image this effectively leads to an amplification of the noise parameter β2 that
is otherwise independent of the exposure time. This does not occur when recon-
struction an HDR image using our approach as in every step only information
from a single image is used to add detail to the reconstruction. Figure 4 shows
an image from another dataset. We experience the same effects as in Fig. 1.

7 Conclusion

Modulo cameras have promised to be an interesting, practical alternative to
conventional sensors that enable HDR reconstruction from a small number of
exposures. However, as we have shown in this paper, the original reconstruction
algorithm fails even in the noise-free case. Realistic image noise severely limits
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Fig. 3. PSNR of HDR reconstruction on the Cityscapes dataset with various methods
for different noise levels (β2 = 0.01β1). (from left to right) 10, 12, 14 bit cameras. The
overall noise increases with the bit depth since fewer photons are needed to increment
the intensity value in a pixel site.

Fig. 4. HDR reconstruction of a scene in the Stanford Memorial Church. We use the
HDR reconstruction of [4] from 18 exposures as ground truth for simulation. (from
left to right) ground truth, conventional reconstruction using simulated saturating im-
ages, reconstruction from modulo images using the original algorithm, and using the
proposed robust reconstruction approach. We simulated 12-bit cameras and added
moderate amounts of noise (β1 = 10−3, β2 = 10−5).

the attainable image quality. We proposed a novel, robust HDR reconstruction
algorithm for images from a modulo camera and established clear criteria for its
correctness. It can deal with significant amounts of noise and allows to assert
stringent bounds on the probability of a successful reconstruction. We derived an
optimal exposure time schedule for images with realistic noise and empirically
showed that our robust algorithm performs very close to the ground truth, clearly
outperforming the original modulo camera algorithm as well as standard HDR
pipelines. Future work should consider extending the multi-image approach to
dynamic scenes. Furthermore, an evaluation of a physical modulo camera in
terms of the attainable noise level as well as production costs would be useful to
determine the practicality of modulo sensors in consumer cameras.
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Preface. This supplementary material provides additional mathematical deriva-
tions. Specifically, we derive the explicit expression of the image differences ei
(Eqs. 18 and 19), we prove Theorem 1 on the correctness of our robust algo-
rithm, and prove that the original reconstruction algorithm from [22] is correct
only for the case of no noise and carefully set exposure times. Moreover, we give
a derivation of the exposure time schedule (Eq. 24) as well as the theoretical
upper bound τ∗ on the maximal achievable exposure time in the presence of
image noise.

Notation. We quickly recap some of the notation used in the main paper. The
image taken with a hypothetical, conventional K-bit camera and exposure time
τi is defined as

Ii = bτiR+ ε(τiR)c = ki2
L +Mi. (28)

The reconstructed image from our robust algorithm at time step i is given by

Ĩi = bτiR̃ic = τiR̃i = (k̃i +∆i)2
L +Mi. (29)

Note that the lower L bits of Eqs. (28) and (29) agree, because a L-bit mod-
ulo camera captures the L least significant bits. For the following analysis it is
convenient to define a simulated reconstruction Īi that uses the approximated
radiance map R̃i−1 from the previous time step instead of the updated radiance
map R̃i

Īi = bτiR̃i−1c .= k̃i2
L +Di. (30)

Please note that Di is a proper modulo image, i.e. 0 ≤ Di < 2L. This follows
from the definition of k̃i (Eq. 6):

k̃i =

⌊
τiR̃i−1

2L

⌋
. (31)
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A Derivation of ei (Eq. 19)

We now derive the explicit form of ei given by Eq. (19):

ei =Ii −
τi
τi−1

Ii−1 (32)

=bτiR+ ε(τiR)c − τi
τi−1
bτi−1R+ ε(τi−1R)c (33)

=τiR+ ε(τiR)− r
(
τiR+ ε(τiR)

)
(34)

− τi
τi−1

(
τi−1R+ ε(τi−1R)− r

(
τi−1R+ ε(τi−1R)

))

=ε(τiR)− τi
τi−1

ε(τi−1R)−
(
r
(
τiR+ ε(τiR)

)
︸ ︷︷ ︸

.
=ri

− τi
τi−1

r
(
τi−1R+ ε(τi−1R)

)
︸ ︷︷ ︸

.
=ri−1

)

(35)

=ε(τiR)− τi
τi−1

ε(τi−1R)−
(
ri −

τi
τi−1

ri−1
)
. (36)

Here, we model the effect of rounding as explicit rounding errors ri, ri−1 with
r(x) = x−bxc and 0 ≤ r(x) < 1. This allows us to work without floor functions
in the following. As we can see, ei is given by the difference of both image noise
terms as well as the difference of both rounding error terms.

B Proof of Theorem 1

We now prove the correctness of our robust reconstruction algorithm under the
assumption that |ei| ≤ 2L−1 − 1. We use induction to show that Ĩi = Ii for
all i = 1, . . . , n. The induction basis holds, since Ĩ1 = M1 = I1 due to the
initialization of our algorithm and the assumption that the exposure time τ1 is
short enough such that the first image has no rollovers. For i > 1 we note that

Ĩi = Ii (37)

⇔ (k̃i +∆i)2
L +Mi = ki2

L +Mi (38)

⇔ (k̃i +∆i) = ki. (39)

The least significant bits are equal by construction and it suffices to show that
the leading bits, defined by the number of rollovers, are equal. To do that, we
will proceed in two steps. First, we show that ei can be expressed in terms of ki
and k̃i as

ei =(ki − k̃i)2L + (Mi −Di)− r′, (40)

where r′ is a rounding error term. Then, we show that assuming (k̃i +∆i) 6= ki
implies that |ei| > 2L−1 − 1, which contradicts our assumption that |ei| ≤
2L−1 − 1. Hence, Eq. (39) must hold, which in turn implies Eq. (37).
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Step 1

We derive ei in another way by looking at the difference between Īi and Ii, which
we define as ēi:

ēi
.
=Ii − Īi (41)

=(ki − k̃i)2L + (Mi −Di) (42)

where we used the definitions of I (Eq. 28) and Ī (Eq. 30). We now show that
ēi and ei are equal up to a rounding error, i.e. ēi = ei + r′, which concludes the
first step (Eq. 40). By using the definitions of Ii and Īi we have

ēi = Ii − Īi =bτiR+ ε(τiR)c − bτiR̃i−1c (43)

=τiR+ ε(τiR)− ri −
⌊
τi
τi−1

τi−1R̃i−1

⌋
. (44)

Now, we replace Ĩi−1 = τi−1R̃i−1 with Ii−1 = bτi−1R+ ε(τi−1R)c by using the
induction assumption

ēi =τiR+ ε(τiR)− ri −
⌊
τi
τi−1
bτi−1R+ ε(τi−1R)c

⌋
(45)

=τiR+ ε(τiR)− ri −
⌊
τiR+

τi
τi−1

ε(τi−1R)− τi
τi−1

ri−1

⌋
(46)

=τiR+ ε(τiR)− ri − τiR−
τi
τi−1

ε(τi−1R) +
τi
τi−1

ri−1 (47)

+ r(τiR+
τi
τi−1

ε(τi−1R)− τi
τi−1

ri−1)

︸ ︷︷ ︸
=:r′

(48)

=ei + r′. (49)

Step 2

We want to show the equality of rollovers (Eq. 39) by contradiction. Since
ki, k̃i, ∆i ∈ Z it holds

(k̃i +∆i) 6= ki (50)

⇔
(
ki − k̃i ≥ ∆i + 1 or ki − k̃i ≤ ∆i − 1

)
. (51)

We will show that

ki − k̃i ≥ ∆i + 1 =⇒ ei > 2L−1 − 1 (52)

and

ki − k̃i ≤ ∆i − 1 =⇒ ei < −(2L−1 − 1) (53)

leading to a contradiction since we assumed that |ei| ≤ 2L−1 − 1. To show
Eqs. (52) and (53) we make a case distinction on ∆i ∈ {−1, 0, 1}.
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Case 1: ∆i = 0. For ∆i = 0 we know from Eq. (17) that −2L−1 ≤ (Mi−Di) ≤
2L−1. Now, for ki − k̃i ≥ ∆i + 1 = 1 we have

ei = (ki − k̃i)2L + (Mi −Di)− r′ (54)

> 2L − 2L−1 − 1 (55)

= 2L−1 − 1. (56)

Analogously, for ki − k̃i ≤ ∆i − 1 = −1 we have

ei = (ki − k̃i)2L + (Mi −Di)− r′ (57)

≤ −2L + 2L−1 − 0 (58)

= −2L−1. (59)

Case 2: ∆i = 1. For ∆i = 1 we know that −2L + 1 ≤ (Mi−Di) ≤ −2L−1− 1,
with the left inequality following from Mi and Di being modulo values and the
right inequality following from Eq. (17). Now, for ki − k̃i ≥ ∆i + 1 = 2 we have

ei = (ki − k̃i)2L + (Mi −Di)− r′ (60)

> 2 · 2L − 2L + 1− 1 (61)

= 2L. (62)

For the other case ki − k̃i ≤ ∆i − 1 = 0 we have

ei = (ki − k̃i)2L + (Mi −Di)− r′ (63)

≤ 0− 2L−1 − 1− 0 (64)

= −2L−1 − 1. (65)

Case 3: ∆i = −1. Similar to the last case, we can derive the two conditions

ei > 2L−1 for ki − k̃i ≥ ∆i + 1 = 0 (66)

ei ≤ −2L − 1 for ki − k̃i ≤ ∆i − 1 = −2. (67)

Combination of cases. Since we do not know a priori which of these three
cases will occur, we need to pick the loosest condition. For ki − k̃i ≥ ∆i + 1 we
have

ei > min(2L−1 − 1, 2L, 2L−1) = 2L−1 − 1. (68)

Similarly, for ki − k̃i ≤ ∆i − 1 we have

ei ≤ max(−2L−1,−2L−1 − 1,−2L − 1) = −2L−1. (69)

Hence, we see that in both cases even the loosest condition on ei violates our
assumption that |ei| ≤ 2L−1 − 1. ut
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C Correctness of the Original Algorithm

Let us first present a simple yet not so obvious inequality concerning rounding
errors.

Lemma 1. For any x ∈ R and c ∈ N we have r
(
x
c

)
≥ 1

c r(x).

Proof. We first apply simple transformations to the inequality:

r
(x
c

)
≥ 1

c
r(x) (70)

⇔ x

c
−
⌊x
c

⌋
≥ 1

c
(x− bxc) (71)

⇔ bxc ≥ c
⌊x
c

⌋
. (72)

The last inequality is true as for any x, y ∈ R it holds that bxc+ byc ≤ bx+ yc.
Since c ∈ N we can apply this inequality c times to obtain

c
⌊x
c

⌋
≤
⌊
c
x

c

⌋
= bxc. (73)

ut

Now, we can prove the correctness of the original multishot reconstruction algo-
rithm given noise-free observations and certain constraints on the exposure time
schedule.

Theorem 2. The reconstruction of the original algorithm of [22] is provably
exact, i.e. Ĩi = Ii, if the fraction 2L τi−1

τi
is a positive integer, i.e. there exists

c ∈ N with c = 2L τi−1

τi
, and if the recorded images are not corrupted by noise,

i.e. Ii = bτiRc, for all i = 1, . . . , n.

Proof. We proceed by induction. For i = 1 we have Ĩ1 = I1 by construction
when assuming that the first image has no rollovers. For i > 1 we again show
that k̃i = ki, which implies that Ĩi = Ii, c.f . Appendix B. We can now rewrite
k̃i as

k̃i =

⌊
τiR̃i−1

2L

⌋
=

⌊
τi
τi−1

τi−1R̃i−1
2L

⌋
=

⌊
τi

2Lτi−1
bτi−1Rc

⌋
, (74)

where we used the induction hypothesis in the last step. Let us now further
rewrite Eq. (74) by introducing explicit terms for the rounding error.

k̃i =

⌊
τiR

2L
− 1

c
r(τi−1R)

⌋
=

⌊⌊τiR
2L

⌋
+ r
(τiR

2L

)
− 1

c
r(τi−1R)

⌋
(75)

=

⌊⌊τiR
2L

⌋
+ r
(τi−1R

c

)
− 1

c
r(τi−1R)

⌋
. (76)
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From the first equality it becomes clear that k̃i ≤ ki, since

k̃i =

⌊
τiR

2L
− 1

c
r(τi−1R)

⌋
≤
⌊
τiR

2L

⌋
= ki. (77)

For the other direction, i.e. k̃i ≥ ki, it suffices to show that

r

(
τi−1R
c

)
≥ 1

c
r(τi−1R). (78)

This is true by invoking Lemma 1. Plugging the last inequality into Eq. (76) we
see that

k̃i =

⌊⌊τiR
2L

⌋
+ r
(τi−1R

c

)
− 1

c
r(τi−1R)

⌋
≥
⌊⌊τiR

2L

⌋⌋
= ki. (79)

From Eqs. (77) and (79) we conclude that k̃i = ki. ut

Failure case. We now give an example (assuming L = 8) to show that the original
algorithm might fail even when the assumption on the τi is violated only slightly.
Let R = 256, τ1 = 0.4 and τ2 = 1. Then, the true images are I1 = b0.4Rc = 102
and I2 = bRc = 256. The modulo images are M1 = 102 and M2 = 0. Executing
the original algorithm yields

R̃1 =
M1

τ1
= 255 (80)

k̃2 =

⌊
255

256

⌋
= 0 (81)

R̃2 = k̃228 +M2 = 0 + 0 = 0. (82)

Therefore, the final reconstruction Ĩ2 = 0 6= 256 = I2 deviates from the true
image by a wide margin.

D Derivation of Robust Exposure Time Schedule (Eq. 24)

We first simplify the distribution of image differences ei. By inserting the intensity-
dependent noise distributions Eq. (2) for ε in Eq. (36), we get

ei ∼ N (0, β1τiR+ β2)− τi
τi−1
N (0, β1τi−1R+ β2)− ri +

τi
τi−1

ri−1 (83)

∼ N
(

0, β1τiR
(
1 +

τi

τi−1

)
+ β2

(
1 +

τ2
i

τ2
i−1

)

︸ ︷︷ ︸
=σ2

i

)
− ri +

τi
τi−1

ri−1. (84)

According to Eq. (21) of the main paper, we want to find the maximal τi such
that the reconstruction is correct with probability of at least p, i.e.

P
[
|ei| ≤ 2L−1 − 1

]
≥ p. (85)
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We can now further bound the left-hand side of above equation by using the
triangle inequality and exploiting that 0 ≤ ri < 1 and 0 ≤ ri−1 < 1:

P
[
|ei| ≤ 2L−1 − 1

]
= P

[∣∣N (0, σ2
i )− ri +

τi

τi−1

ri−1
∣∣ ≤ 2L−1 − 1

]
(86)

≥ P

[∣∣N (0, σ2
i )
∣∣+
∣∣ τi

τi−1

ri−1 − ri
∣∣ ≤ 2L−1 − 1

]
(87)

≥ P

[∣∣N (0, σ2
i )
∣∣ ≤ 2L−1 − 1− τi

τi−1

]
. (88)

In the last line we used the fact that τi/τi−1 > 1 to bound ri and ri−1 with 0
and 1, respectively. We now use the last expression to derive a slightly stricter
criterion on the τi than Eq. (21):

P

[∣∣N (0, σ2
i )
∣∣ ≤ 2L−1 − 1− τi

τi−1

]
≥ p (89)

⇔ P

[
N (0, σ2

i ) ≤ 2L−1 − 1− τi

τi−1

]
≥ 1

2 + 1
2p (90)

⇔ 2L−1 − 1− τi

τi−1

≥ σiΦ−1
(
1
2 + 1

2p
)
, (91)

where we used the symmetry of N (0, σ2
i ) and the fact that the inverse CDF of

N (0, σ2) is monotonically increasing and given by σΦ−1(p) with Φ−1(p) being
the inverse CDF ofN (0, 1). By denoting l = 1/Φ−1

(
1
2+

1
2p

)
we obtain the following

condition on σ2
i such that the inequality (Eq. 91) is exact:

σ2
i = l2(2L−1 − 1)2 + l2

(
τi
τi−1

)2

− 2l2
τi
τi−1

(2L−1 − 1). (92)

After plugging in the definition of σ2
i (Eq. 84) we can reorder terms in numerous

simple steps that we omit for brevity. We finally arrive at a quadratic equation
for the ratio of τi and τi−1

a

(
τi
τi−1

)2

+ b
τi
τi−1

+ c = 0 (93)

with

a =β1τi−1R+ β2 − l2 (94)

b =β1τi−1R+ l2(2L − 2) (95)

c =β2 − l2(2L−1 − 1)2. (96)

Solving this quadratic equation yields

(
τi
τi−1

)

1,2

=
−b±

√
b2 − 4ac

2a
. (97)



8 Florian Lang, Tobias Plötz, Stefan Roth

Keeping only the positive exposure time yields the final recursion formula

τi ≤ τi−1
−b+

√
b2 − 4ac

2a
. (98)

E Explicit Formula for τ ∗

To obtain a theoretical upper bound on the exposure time τ∗ we set τi = τi−1 =
τ∗, i.e. τ∗ is the fixed point of the recursion formula (Eq. 98). This yields

τ∗ = τ∗
−b+

√
b2 − 4ac

2a
(99)

⇔ 1 =
−b+

√
b2 − 4ac

2a
(100)

⇔ a(a+ b+ c) = 0 (101)

⇔
(
(β1τ

∗R) + β2 − l2
)[(

(β1τ
∗R) + β2 − l2

)
(102)

+
(
(β1τ

∗R) + l2(2L − 2)
)

+
(
β2 − l2(2L−1 − 1)2

)]
= 0, (103)

where we inserted Eqs. (94) to (96) at the last step. Again, a simple but tedious
rearrangement of terms yields a quadratic equation in τ∗:

(τ∗)2A+ τ∗B + C = 0, (104)

with

A = 2β2
1R

2 (105)

B = 4β1β2R+ (2L+1 − 6− 22L−2)β1Rl
2 (106)

C = 2β2
2 + l4(22L−2 − 2L−1 + 4) + β2l

2(2L+1 − 22L−2 − 2). (107)

Now, we can solve Eq. (104) for τ∗ yielding

τ∗1,2 =
−B ±

√
B2 − 4AC

2A
. (108)

Again we are only interested in a positive τ∗ and therefore

τ∗ =
−B +

√
B2 − 4AC

2A
. (109)


