Skip to main content

Ruleset Optimization on Isomorphic Oritatami Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10467))

Abstract

RNA cotranscriptional folding refers to the phenomenon in which an RNA transcript folds upon itself while being synthesized out of a gene. The oritatami system (OS) is a computation model of this phenomenon, which lets its sequence of beads (abstract molecules) fold cotranscriptionally by the interactions between beads according to its ruleset. We study the problem of reducing the ruleset size while maintaining the terminal conformations geometrically same. We first prove the hardness of finding the smallest ruleset, and suggest two approaches that reduce the ruleset size efficiently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the original paper, the seed was defined by a single term \(\sigma \).

References

  1. Frieda, K.L., Block, S.M.: Direct observations of cotranscriptional folding in an adenine riboswitch. Science 338(6105), 397–400 (2012)

    Article  Google Scholar 

  2. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Efficient universal computation by greedy molecular folding. CoRR, abs/1508.00510 (2015)

    Google Scholar 

  3. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Programming biomolecules that fold greedily during transcription. In: Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science, pp. 43:1–43:14 (2016)

    Google Scholar 

  4. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014)

    Article  Google Scholar 

  5. Han, Y.-S., Kim, H., Ota, M., Seki, S.: Nondeterministic seedless oritatami systems and hardness of testing their equivalence. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 19–34. Springer, Cham (2016). doi:10.1007/978-3-319-43994-5_2

    Chapter  Google Scholar 

  6. Han, Y., Kim, H., Rogers, T.A., Seki, S.: Self-attraction removal from oritatami systems. In: Proceedings of the 19th International Conference on Descriptional Complexity of Formal Systems, pp. 164–176 (2017)

    Google Scholar 

  7. Lai, D., Proctor, J.R., Meyer, I.M.: On the importance of cotranscriptional RNA structure formation. RNA 19, 1461–1473 (2013)

    Article  Google Scholar 

  8. Ota, M., Seki, S.: Rule set design problems for oritatami system. Theor. Comput. Sci. 671, 16–35 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  10. Rogers, J., Joyce, G.F.: A ribozyme that lacks cytidine. Nature 402(6759), 323–325 (1999)

    Article  Google Scholar 

  11. Rosen, K.H.: Discrete Mathematics and Its Applications. McGraw-Hill Education, New York (2006)

    Google Scholar 

  12. Watters, K.E., Strobel, E.J., Yu, A.M., Lis, J.T., Lucks, J.B.: Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23(12), 1124–1131 (2016)

    Article  Google Scholar 

  13. Xayaphoummine, A., Bucher, T., Isambert, H.: Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605–W610 (2005)

    Article  Google Scholar 

  14. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003)

    Article  Google Scholar 

  15. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwee Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Han, YS., Kim, H. (2017). Ruleset Optimization on Isomorphic Oritatami Systems. In: Brijder, R., Qian, L. (eds) DNA Computing and Molecular Programming. DNA 2017. Lecture Notes in Computer Science(), vol 10467. Springer, Cham. https://doi.org/10.1007/978-3-319-66799-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66799-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66798-0

  • Online ISBN: 978-3-319-66799-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics