Skip to main content

A DNA Neural Network Constructed from Molecular Variable Gain Amplifiers

  • Conference paper
  • First Online:
Book cover DNA Computing and Molecular Programming (DNA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10467))

Included in the following conference series:

Abstract

Biological nucleic acids have important roles as diagnostic markers for disease. The detection of just one molecular marker, such as a DNA sequence carrying a single nucleotide variant (SNV), can sometimes be indicative of a disease state. However, a reliable diagnosis and treatment decision often requires interpreting a combination of markers via complex algorithms. Here, we describe a diagnostic technology based on DNA strand displacement that combines single nucleotide specificity with the ability to interpret the information encoded in panels of single-stranded nucleic acids through a molecular neural network computation. Our system is constructed around a single building block—a catalytic amplifier with a competitive inhibitor or “sink.” In previous work, we demonstrated that such a system can be used to reliably detect SNVs in single stranded nucleic acids. Here, we show that these same building blocks can be reconfigured to create an amplification system with adjustable gain \(\alpha \). That is, the concentration of an output signal produced is exactly \(\alpha \) times larger than the concentration of input added initially, and the value of \(\alpha \) can be adjusted experimentally. Finally, we demonstrate that variable gain amplification and mismatch discrimination elements can be combined into a two-input neural network classifier. Together, our results suggest a novel approach for engineering molecular classifier circuits with predictable behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine, E., Zhang, Z., Kuhlman, T., Hwa, T.: Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 5, e229 (2007)

    Article  Google Scholar 

  2. Sprinzak, D., Lakhanpal, A., LeBon, L., Santat, L.A., Fontes, M.E., Anderson, G.A., Garcia-Ojalvo, J., Elowitz, M.B.: Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90 (2010)

    Article  Google Scholar 

  3. Zhang, D.Y., Seelig, G.: DNA-based fixed gain amplifiers and linear classifier circuits. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 176–186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18305-8_16

    Chapter  Google Scholar 

  4. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011)

    Article  Google Scholar 

  5. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  6. Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Genet. Program Evolvable Mach. 4, 111–122 (2003)

    Article  Google Scholar 

  7. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  8. Seelig, G., Yurke, B., Winfree, E.: Catalyzed relaxation of a metastable DNA fuel. J. Am. Chem. Soc. 128, 12211–12220 (2006)

    Article  Google Scholar 

  9. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  10. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 101, 15275–15278 (2004)

    Article  Google Scholar 

  11. Turberfield, A.J., Mitchell, J., Yurke, B., Mills, A.P., Blakey, M., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)

    Article  Google Scholar 

  12. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  13. Li, Q., Luan, G., Guo, Q., Liang, J.: A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res. 30, e5–e5 (2002)

    Article  Google Scholar 

  14. Chen, S.X., Seelig, G.: An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes. J. Am. Chem. Soc. 138, 5076–5086 (2016)

    Article  Google Scholar 

  15. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  16. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)

    Article  Google Scholar 

  17. Lakin, M.R., Stefanovic, D.: Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5, 885–897 (2016)

    Article  MATH  Google Scholar 

  18. Roush, S., Slack, F.J.: The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008)

    Article  Google Scholar 

  19. Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., Benjamin, H., Shabes, N., Tabak, S., Levy, A., et al.: MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. 26, 462–469 (2008)

    Article  Google Scholar 

  20. Price, N.D., Trent, J., El-Naggar, A.K., Cogdell, D., Taylor, E., Hunt, K.K., Pollock, R.E., Hood, L., Shmulevich, I., Zhang, W.: Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc. Natl. Acad. Sci. USA 104, 3414–3419 (2007)

    Article  Google Scholar 

  21. Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported through the NSF grant CCF-1317653 to GS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Seelig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, S.X., Seelig, G. (2017). A DNA Neural Network Constructed from Molecular Variable Gain Amplifiers. In: Brijder, R., Qian, L. (eds) DNA Computing and Molecular Programming. DNA 2017. Lecture Notes in Computer Science(), vol 10467. Springer, Cham. https://doi.org/10.1007/978-3-319-66799-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66799-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66798-0

  • Online ISBN: 978-3-319-66799-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics