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Abstract. Exponential trends in data generation are presenting today’s
organizations, economies and governments with challenges never encoun-
tered before, especially in the field of privacy and data security. One
crucial trade-off regulators are facing regards the simultaneous need for
publishing personal information for the sake of statistical analysis and
Machine Learning in order to increase quality levels in areas like medical
services, while at the same time protecting the identity of individuals.
A key European measure will be the introduction of the General Data
Protection Regulation (GDPR) in 2018, giving customers the ’right to
be forgotten’, i.e. having their data deleted on request. As this could
lead to a competitive disadvantage for European companies, it is im-
portant to understand which effects deletion of significant data points
has on the performance of ML techniques. In a previous paper we intro-
duced a series of experiments applying different algorithms to a binary
classification problem under anonymization as well as perturbation. In
this paper we extend those experiments by multi-class classification and
introduce outlier-removal as an additional scenario. While the results of
our previous work were mostly in-line with our expectations, our current
experiments revealed unexpected behavior over a range of different sce-
narios. A surprising conclusion of those experiments is the fact that clas-
sification on an anonymized dataset with outliers removed in beforehand
can almost compete with classification on the original, un-anonymized
dataset. This could soon lead to competitive Machine Learning pipelines
on anonymized datasets for real-world usage in the marketplace.

Keywords: Machine learning, knowledge bases, right to be forgotten,
perturbation, k-anonymity, SaNGreeA, information loss, cost weighing
vector, multi-class classification, outlier analysis, variance-sensitive anal-
ysis

1 Introduction and Related Work

In today’s data-driven industries which increasingly form the backbone of the
21st century’s economy, personal information is no longer only stored by private



companies, public service organizations or health providers. They also constitute
a vital building-block for business intelligence and as a decision-making basis for
improving services or public investments in measures for disease or natural dis-
aster prevention. Therefore lies a crucial advantage in the publication, linkage,
and systematic analysis of data sets from heterogeneous sources via statistics
as well as Machine Learning. Any kind of institution which fails or is forbid-
den to engage in such activities, will in time face serious disadvantages on the
marketplace or a lack in service quality compared to entities able to do so.

One specific challenge for data processing entities is increasingly imposed on
them by the law. Under the new European General Data Protection Regula-
tions (GDPR) taking effect on June 1st, 2018, customers are given a right-to-
be-forgotten, meaning that an organization is obligated to remove a customer’s
personal data upon request. For many organizations, this would incur serious
additional investments and costs from their IT infrastructure, as even backup-
or statistical systems must be connected, lest no ’forgotten’ data will reappear.
Nevertheless, the law will allow data analysis on anonymized datasets (for which
a right-to-be-forgotten makes no sense from a technical point of view), so that
organizations will soon be faced with the question: Do we learn on original data
& bear all costs of the impeding bureaucracy, or shall we analyze anonymized
datasets and risk significantly lower insights.

This brings us to the field of Privacy aware machine learning (PAML) [6],
enabled and fostered by concepts like k-anonymity [20], in which a record is
released only if it is indistinguishable from at least k − 1 other entities in the
dataset. However, due to many personal records being high-dimensional in nature
and k-anonymity being highly dependent on spatial locality (density) in order
to effectively implement the technique in a statistically robust way, it might be
difficult to anonymize data without suffering an intolerable amount of informa-
tion loss [1]. Moreover, automatic dimensionality reduction might be helpful to
preserve variance, but extracting the meaning, and therefore relevance, of arbi-
trary features would assist in making sense of the data with respect to a specific
application domain [10].

Moreover, the original privacy requirement of k-anonymity [22] has over time
been refined by concepts like l-diversity [16] (in which every equivalence group
must contain at least l diverse sensitive values from the original dataset), t-
closeness [15] (which prescribes that the local distribution over sensitive values
within an equivalence group must not differ from it’s global distribution by
more than a threshold t) as well as delta-presence [19] (which links the quality
of anonymization to the risk posed by inadequate anonymization). Addition-
ally, there is a whole discipline of measures summarized as differential privacy
[7], which deals with methods of securely releasing sensitive information upon
database queries by injecting controlled noise into responses.

As far as PAML is concerned, a comparison of different Machine Learning al-
gorithms on anonymized datasets was already conducted in 2014 [24] by applying
6 different algorithms on 3 datasets, with very diverse results per algorithm. The
main weakness of this paper is its usage of extremely differently-sized datasets



which does not easily allow comparison; moreover they only used one very low
privacy setting of k = 2, preventing the authors from examining more interest-
ing behavior as information content degrades further; this is a main point of our
work.

The authors of [17] propose a scheme for controlling over-generalization of less
identity-vulnerable QIs in diverse classes by determining the importance of QIs
via Random Forest pre-computations as well as computing sensitive attribute
diversity via the Simpson index [21]. Their resulting adaptive anonymization
algorithm was compared to Mondrian [13] as well as IACk [14] and shows im-
provements w.r.t information loss as well as coverage (the number of descendant
leaf nodes of generalized values in the taxonomy). Accuracy measured on classi-
fication tree, random forest and SVM shows equal or better performance when
applied to a dataset anonymized by their proposed solution; it is interesting to
note that their performance on large factors of k not only remains stable, but in
some cases increases with k, the same behavior we also observed in some of our
experiments.

A recent paper [12] proposes the introduction of an additional requirement
for anonymization on top of k-anonymity called h-ceiling, which simply restricts
generalizations within an equivalence class to a certain level below suppression.
In the case on an equivalence class being able to satisfy h-ceiling but not k-
anonymity (their method applies full-domain generalization), counterfeit records
are inserted into the respective group; each insertion is also collected in a journal
which is eventually published with the anonymized data. Their approach unsur-
prisingly yields lower reconstruction error and information loss as well as more
fine-grained query results due to less generalization. However, their experiments
mostly fix k = 5 and therefore simply try to reduce information loss due to
anonymization, but do not try to examine ML performance over a wider range
of k factors; moreover, there seems to be some inconsistency in their predictions.

Finally, we should also reference our previous work on this topic [18], in
which we conducted a comparison study of binary classification performance
on perturbed (selective deletion) vs. wholesale anonymized data. Our experi-
ments showed that perturbation was still significantly less damaging to Machine
Learning performance than even slight anonymization; that state of our previous
research marks the connecting point to this paper.

2 K-Anonymity and Information loss

While there are several data-structures which can contain and convey personal
information we might want to protect (free text, audio, images, graph struc-
tures etc.) we are focusing our work on tabular data, since most unstructured
documents of sensitive nature today can be mapped to tabular data and since
delicate information is most easily extracted from those. Figure 1 illustrates the
original tabular concept of three different categories of data we will encounter
in such tables:



– Identifiers directly reveal the identity of a person without having further
analysis of the data. Examples are first and last names, email address or
social security number (SSN). As personal identifiers are hard to general-
ized (see Figure 3) in a meaningful way (truncating an email address to
’host’ would not yield much usable information), those columns are usually
removed. The figure displays this column in a red background color.

– Sensitive data, or ’payload’, is crucial information for statisticians or re-
searchers and can therefore not be erased or perturbed; such data usually
remains untarnished within the released dataset. The table shows one col-
umn in green background color representing such data.

– Quasi identifiers (QI’s), colored in the table with an orange background,
do not directly identify a person (age=35), but can be used in combination to
restrict possibilities to such a degree that a specific identity follows logically.
For instance, [23] mentioned that 87% of U.S. citizens in 2002 could be re-
identified by just using the 3 attributes zip code, gender and date of birth.
On the other hand, this information might hold significant information for
the purpose of research (e.g. zip code could be of high value in a study
on disease spread). Therefore we generalize this kind of information, which
means to lower its level of granularity. As an example, one could generalize
grades from A+ to B- into A’s and B’s and then further up to encompass
’all’ (also denoted as ’*’), as shown in Figure 3.

Fig. 1. The three types of data considered in (k-)anonymization

As described in [5], k-anonymization requires a data release to contain at least
k − 1 duplicate entries for every occurring combination of attributes. One can
imagine this as a clustering problem with each cluster’s (also called equivalence
class) quasi-identifier state being identical for every data point it contains. One
can achieve this via suppression and generalization, where by suppression we
mean simple deletion, whereas generalization refers to a decrease in a value’s
granularity. As an example, in Figure 2, an input dataset has been transformed
through k-anonymization into a clustered set with each cluster being at least of
size = 3; thus the data is said to be 3− anonymized.

Generalization works through a concept called generalization hierarchies /
taxonomies, which run from leaf nodes denoting particular values (’France’) via
internal nodes (’Western Europe’) to their most general root (’all countries’ or
’*’). Such a hierarchy is depicted in Figure 3. In generalizing the original input



Fig. 2. Tabular anonymization: input table and anonymization result

value, one traverses the tree from a leaf node upwards until a certain condition is
met. In the case of k-anonymity, we satisfy this condition when we can construct
an equivalence group with all quasi-identifiers being duplicates of one another.

Fig. 3. Example of a typical generalization hierarchy
taken from [2]

As each level of generalization invokes an increasing loss of specificity, we do
not want to construct our clusters inefficiently, but minimize a dataset’s overall
information loss [2]. This makes k-anonymization an NP-hard problem due to
an exponential number of possible data-row combinations one can examine.

3 Experiments

The following sections will describe our series of experiments in detail, encom-
passing the dataset used, the algorithms chosen for classification as well as a
description of the overall process employed to obtain our results.



3.1 Data

As input data we chose the training set of the adults dataset from the UCI Ma-
chine Learning repository which was generated from US census data and contains
approximately 32,000 entries (30162 after deleting rows with incomplete infor-
mation). All but one columns were considered for experimentation, the remain-
ing representing duplicate information (education => education num). Figure 4
shows the attribute value distribution of 6 arbitrarily selected columns of the
original (un-anonymized) dataset.

Fig. 4. Initial distribution of six selected data columns of the adult dataset.

Amongst these distribution, two clearly stand out: native-country as well as
hours-per-week, which are both dominated by a single attribute value (United-
States and 40, respectively). In order to demonstrate the effect of anonymization
on attribute value distributions, Figure 5 shows the same attribute distributions
under anonymization by a factor of k = 19. Although the dominance of the



United-States was successfully ”broken” by this method, in several instances the
generalized-to-all -value (*) now skews the data set even more. In addition to the
incurred information loss this might be another reason for degraded classifier
performance on such data.

Fig. 5. Anonymized distribution of six selected data columns of the adult dataset,
anonymization factor k = 19, with equal weight for each attribute.

3.2 Anonymization Algorithm

We implemented our own version of a greedy clustering algorithm called SaN-
GreeA (Social network greedy clustering, [4]) in JavaScript mainly for three rea-
sons: 1) apart from ’normal’ tabular anonymization tt has a network anonymiza-
tion component based on stochastic reconstruction error, so it is possible for us
to use this algorithm in later works regarding the impact of anonymization on
graph algorithms; 2) we wanted a simple conceptual model so we could interact



with the algorithm and thus conduct interactive Machine Learning experiments
in the future (those experiments are well under way at the time of this writing);
3) we wanted an algorithm capable of running in the browser so we could run
our experiments online especially w.r.t. 2). The main downside of this choice is
the reduced algorithmic performance of O(n2) as well as a further slow-down
for JS vs native code of a factor of about 3 − 4. In the future, we will strive
to implement faster algorithms which nevertheless retain properties suitable for
our needs, narrowing down the simplicity - performance trade-off.

As mentioned, SaNGreeA consists of two strategies for tabular as well as
network anonymization, with two respective metrics for information loss. The
Generalization Information Loss or GIL consists of a categorical as well as a con-
tinuous part, with the former measuring the distance of a level-of-generalization
from it’s original leaf node in the generalization hierarchy (taxonomy), while
the latter measures the range of a continuous-valued generalization (e.g. age co-
hort [35-40]) divided by the whole range of the respective attribute (e.g. overall
age-range [17-90]).

GIL(cl) = |cl| · (
s∑
j=1

size(gen(cl)[Nj ])

size(minxεN (X[Nj ]),maxxεN (X[Nj ]))

+

t∑
j=1

height(Λ(gen(cl)[Cj ]))

height(HCj )
)

where:
- |cl| denotes the cluster cl’s cardinality;
- size([i1, i2]) is the size of the interval [i1, i2], i.e., (i2− i1);
- Λ(w), wεHCj

is the sub-hierarchy of HCj
rooted in w;

- height(HCj ) denotes the height of the tree hierarchy HCj ;

The total generalization information loss is then given by:

GIL(G,S) =

v∑
j=1

GIL(clj)

And the normalized generalization information loss by:

NGIL(G,S) =
GIL(G,S)

n · (s+ t)

As for the networking-part of this algorithm, it introduces a measure called
structural information loss (SIL). The SIL is composed of two different compo-
nents, which represent statistical errors of 1) intra-cluster as well as 2) inter-
cluster reconstruction.

For the exact mathematical definitions of SIL & NSIL the reader is kindly
referred to the original paper. Because the structural information loss cannot
be computed exactly before the assembly of all clusters is completed, the exact



computations were replaced by the following distance measures:

Distance between two nodes:

dist(Xi, Xj) =
|{l|l = 1..n ∧ l 6= i, j; bil 6= bjl |

n− 2

Distance between a node and a cluster:

dist(X, cl) =

∑
Xjεcl dist(X,Xj)

|cl|

Since SaNGreeA follows the greedy-clustering paradigm, it runs in quadratic
time w.r.t. the input size in number of nodes. This worked well within millisec-
onds for a problem size of a few hundred nodes, but took up to 60 minutes on the
whole adult training dataset. Finally, as stated above, we chose SaNGreeA for
its intuitive simplicity and graph anonymization capabilities, the latter of which
are serving us well in a different branch of our ongoing research efforts; for the
experiments in this paper, we restricted ourselves to the tabular anonymization
capabilities of the algorithm.

3.3 Dataset creation

To examine the effect of perturbation, anonymization, outlier-removal as well
as outlier-removal+anonymization on classifier performance, we designed the
following processing pipeline:

1. Taking the original (preprocessed) dataset as input, we transformed its at-
tributes to boolean values, so instead of native-country − > United-States
we considered United-States − > yes / no.

2. We ran 4 different classifiers on the resulting data and computed their re-
spective F1 score. The 4 classifiers used were gradient boosting representing
the boosting paradigm, random forest representing the bagging technique,
logistic regression as a representative of categorical prediction via optimiza-
tion of a coefficient vector, as well as linear SVC representing Support Vector
Machines constructing hyperplanes in sufficiently high-dimensional spaces.

3. For our perturbation experiments, we extracted the most / least significant
attribute values according to the logit coefficients as depicted in Figure 6. For
each of these attribute values, we subsequently deleted a specific percentage
p ∈ {0.2, 0.4, 0.6, 0.8, 1.0}] of data rows containing that value, resulting in a
series of new datasets of reduced size.

4. In order to measure the effects of k-anonymization on classifier performance,
we applied SaNGreeA’s GIL component to generate datasets with a k-factor
of k ∈ {3, 7, 11, 15, 19, 23, 27, 31, 35, 100}. Furthermore, we used each of these
settings with 3 different weight vectors: 1) equal weights for all attributes, 2)
age information preferred (ω(age) = 0.88, ω(other attributes) = 0.01) and
3) race information preferred (ω(race) = 0.88, ω(other attributes) = 0.01).



5. The outlier-removal datasets were created by executing scikit-learn’s Isolation-
Forest in order to identify and remove outliers in a range of 5%−95% (step-
size: 5%) from the original dataset. This resulted in 18 new datasets for
analysis.

6. Finally, in order to analyze classifier performance on an outlier/anonymization
combination, we repeated the procedure described for anonymization on a
surrogate dataset that had 30% of its outliers removed in beforehand.

Fig. 6. Attribute values within the adult dataset which contribute highest / lowest
certainty to the classification of income (truncated at 1.0). The rightmost columns
represent information which enable a classifier to discern most clearly between classes,
while the leftmost columns (depending on their actual score) could even confuse the
algorithm. We chose this example because income is a binary decision, so the values
don’t change per category to predict.



4 Results & Discussion

4.1 Perturbed Datasets - Selective Deletion

In order to be able to compare the impact of selectively deleting the most /
least important attribute values (in fact, the whole data points containing those
values) on different classifiers, we chose to select these values via examining the
logit coefficients produced during logistic regression. Although this possibly en-
tails non-erasure of the values specifically significant for each classifier, we chose
algorithmic comparison as the more insightful criterion; the implicit assump-
tion that the same attribute values would influence all classifiers approximately
equally was largely confirmed by our results.

In contrast to binary classification, determining the ’right’ values to delete for
a multi-class problem is not always possible: Values contributing highly to the
decision boundary for one class might be less significant in the case of another
- accordingly one would expect inconclusive behavior in the case of a target for
which the highest / lowest log coefficients do not line up over class boundaries.

For each of the targets ’marital-status’ and ’education-num’ we measured
those interesting coefficients in the hope of improving / degrading algorithmic
performance; that means deletion of highest logit’s is supposed to remove cer-
tainty from an algorithm and decreasing performance, while deletion of lowest
logit’s is supposed to remove uncertainty, thus improving performance. Our anal-
ysis showed that while ’marital-status’ had mainly the same most / least sig-
nificant logit’s across all classes, the attribute values for ’education-num’ were
rather diverse in this area.

In the latter case this lead to erratic behavior of the resulting performance
curves, as can be seen in (Figure 7). It is interesting to note that ’income >50k’
obviously held much larger significance for Logistic Regression than for the other
classifiers, as their results showed f1 score improvement with this particular value
eviscerating.

In the case of ’marital-status’ almost the same attribute values were rated
as most / least significant across all classes - this results in very clear outputs
with the erasure of highly important values decreasing performance drastically
while deletion of confusing values leading to a significant increase in classifier
performance (Figure 8). While it is not surprising that relationship information
shows high correlation with marital status, the opposite effects of sex Female
and sex Male stand out as a slight curiosity - being a woman in this dataset
seems to point less distinctly to a specific marital status than being a man.

4.2 Anonymized Datasets

Analogous to our previous work [18] we performed anonymization on the adult
dataset for a range of values of k, but this time extending the range to k ∈
{3, 7, 11, 15, 19, 23, 27, 31, 35, 100} for a broader observational basis of algorith-
mic behavior, especially towards higher values of k, as already conducted by
other researchers [17], [12]. As we set out to examine multi-class classification



Fig. 7. Multi-class classification on target education-num under perturbation by selec-
tive deletion of the most / least contributing attribute values. Since different values
are significant for deciding on different classes of education level, progressive deletion
of this data results in indeterminate behavior.

performance, we chose the ’marital-status’ and ’education-num’ columns of the
adult dataset as targets, treating income as an independent input feature. For
’marital-status’ we left the 7 categorical values in the original dataset unchanged,
whereas we clustered the 16 continuous ’education-num’ levels into the 4 groups
’elementary school’, ’high school including graduate’, ’college up to Bachelors’
as well as ’advanced studies’.

Our observation generally show the same type of behavior than in our pre-
vious experiments on target income, with one notable exception: The Random
Forest classifier shows a sharp drop in algorithmic performance when operating
on the very skewed ’age’ and ’race’ feature vectors, only to recover its discrimina-
tive power and increase in performance up to a k of 100. We also note a somewhat
similar behavior for Logistic Regression, albeit not as distinctly. A possible ex-
planation for this behavior could lie in the bagging-nature of Random Forest,
meaning that the algorithm bootstraps by randomly sampling data-points from
the overall population into possibly overlapping bags of ’local’ data. As larger
swaths of the input data become more and more equal with increasing levels
of k, this would lead to less local over-fitting, thus making the job easier for a



Fig. 8. Multi-class classification on target marital-status under perturbation by selec-
tive deletion of the most / least contributing attribute values. Since the same values
are significant for deciding different classes of marital status, progressive deletion leads
to orderly increase / decrease of ML performance.

global averaging-strategy to filter out variance and improve generalization abil-
ity. However, if this was true, the maximum performance should not be recorded
on the original (un-anonymized) dataset, thus we are currently at a loss of an
adequate explanation for this specific case.

Classifier performance on target marital-status displayed the same basic be-
havior as above, including the mysterious conduct of the Random Forest in case
of our age- and race-vectors. Moreover, the classification results are generally
better than for education-num, which is probably caused by our somewhat ar-
bitrary clustering of education levels during pre-processing. All in all, the pure
anonymization-related results were almost in line with our expectations; in addi-
tion, our previous assessment that implementation of the ’right-to-be-forgotten’
for individual users is preferable to wholesale anonymization, has not changed
for the multi-class case.

4.3 ”Outliers” removed

One question we didn’t tackle in our previous work was the one of outlier removal;
this is relevant due to the fact that e.g. people showing abnormal behavior could



Fig. 9. Multi-class classification on target education-num on the adult dataset under
several degrees of k-anonymization.

be supposed to exercise their ’right-to-be-forgotten’ more frequently, especially
in a social network scenario. For our experiments we chose the original adult
dataset’s income target, especially since we could thus directly compare the
results with those of our previous work [18]. We used scikit-learn’s Isolation-
Forest classifier to identify outliers according to a given contamination level
and performed an initial round of removing outliers in a range of 0.5% − 5%.
Since ML performance decreased only marginally under those settings and we
thus assumed that the dataset had been curated in such a way as to exclude
significant outliers, we pivoted to a much broader investigation of examining
classifier performance on a dataset with increasingly eviscerating variance. Thus
we repeated the same procedure for ”outlier” levels of 5% − 95%, gradually
diminishing the dataset’s size from over 30k to about 1.5k data points. In order
to account for that dramatic reduction, we compared classifier behavior with
a control instance of the adult dataset with the same levels of truncation, but
under random deletion of data points, thus not targeting variance in the control
set.

The results are shown in Figure 11 and exhibit similar behavior to the removal
of most-significant attribute values in our previous work: While performance only
decreases slightly for deletion levels under 55%, we see a dramatic drop over the



Fig. 10. Multi-class classification on target marital-status on the adult dataset under
several degrees of k-anonymization.

second half of the range. The obvious explanation for this behavior lie in the
fact that more homogeneous clusters of data make it harder for any algorithm
to construct a decision boundary - though it is noteworthy that this applies to all
4 classifiers the same despite their fundamentally different approaches. Lastly,
the comparison set shows no significant increase / decrease of performance over
the whole range of data deletion, supporting our conclusion that decreasing data
set size was not the dominating influence for the observed algorithmic behavior.

4.4 Anonymization on Outliers removed

One problem with outliers during anonymization is that it forces the algorithm to
over-generalize attribute values; this can either happen towards the end-stages of
a greedy-clustering procedure like SaNGreeA (in which case the damage might
be limited to the outliers themselves), but could also influence a full-domain
generalizing algorithm during determination of a whole column’s suitable gener-
alization level (in which case the whole dataset would suffer significantly higher
information loss). This fact in combination with our previously described re-
sults based on outlier removal gave rise to an interesting possibility: what if we
combined outlier removal with anonymization? On the one hand classifier perfor-



Fig. 11. Binary classification on target income based on a dataset with different degrees
of outliers removed (= variance loss) vs. the same degree of data randomly deleted.

mance degrades with loss of variance, but for the very same reason information
loss during anonymization might be limited to much more sufferable levels.

This led to our last round of experiments in which we took the adult dataset
with 30% outliers removed and conducted k-anonymization as described in the
respective earlier section (for time- and comparison reasons only on marital-
status), the results of which can be seen in Figure 12. We were astonished to
observe that - for the most part - classifiers performed better under this setting
than under anonymization alone. For logistic regression, although age & race
vectors performed worse then their anonymized-only counterparts, performance
for equal weights was better for k < 11. With Random Forest, all vectors per-
formed better than their anonymization-only counterparts, with k = 3 only 2%
below original performance. With Linear SVC, age & race performed worse at
the beginning only to recover with increasing performance towards k = 100,
whereas the equal vector behaved about equal to it’s non-outlier-removed oppo-
site. Finally, Gradient Boosting in this setting outperforms it’s anonymization-
only competitor in all settings with it’s k = 3 equal weight vector performance
lying within only half a percentage point of the performance on the original,
un-anonymized dataset.

As a side-note, we observe that under these settings, SVC starts to mimic
Random Forest’s behavior of an initial collapse in performance for the age- and
range-vectors with a subsequent recovery towards higher levels of k. We do not
yet have an adequate explanation for this and will investigate deeper in our
future efforts.

Those amazing results raise a few burning questions: 1) Can we repeat that
performance on real-world data? 2) Could we combine this technique with in-
teractive Machine Learning / Anonymization which yield better weight vectors?
3) Do those advantages only hold for a toy algorithm or will they persist under
more sophisticated Anonymization pipelines? 4) Can we further enhance those



Fig. 12. Multi-class classification on target marital status based on a dataset with 30%
outliers removed AND under different degrees of k-anonymization.

results by mixing synthetic data into the dataset? 5) Will better feature en-
gineering compensate for our original drop in performance and thus moot our
insight? and 6) can we apply this conclusion to other data structures like so-
cial networks? These points shall now briefly be discussed before concluding the
paper.

5 Open problems / Future challenges

1. Real world data. Despite the convenient availability of well-curated datasets
with many thousands of data rows, actual industry datasets are usually or-
ders of magnitudes larger. This has consequences for their internal data
topology and thus the performance of ML algorithms; e.g. [3] observe that
variance error can be expected to decrease as training set size increases
(though this might have nothing to do with variance in the dataset itself).

2. Interactive machine learning. We have demonstrated experiments with
different weight vectors in our approach regarding anonymization. However,
data utility is highly subjective w.r.t. the specific area of application; there-
fore choosing the importance of attributes with regard to the particular en-
vironment is best done by a human. The problem of (k-)anonymization thus



lends itself to interactive Machine Learning (iML) with a human-in-the-loop
approach [9], [11], [8]. We have implemented software for iML Anonymiza-
tion and are currently collecting test results which will soon be ready for
publication.

3. Real world algorithms. While we only anonymizing our datasets via sim-
ple k-anonymization through greedy clustering, there are much more sophis-
ticated algorithms available, capable of fine-tuning generalization levels to
the specific data topology of an input set in order to minimize information
loss. It remains to be seen if such algorithms can still profit from removal of
outliers as a pre-processing step.

4. Synthetic datasets. In recent years it has become common to augment
(small) datasets via synthetically generated, additional data-points [25]. By
controlling the data generation process, one would be able to also con-
trol variance-injection into a dataset. Therefore, instead of outlier-removal,
one could enrich a dataset by introducing lower-variance data points before
anonymization.

5. Better feature engineering. For our experiments, we considered practi-
cally all columns of the adult dataset, although some exhibited much higher
variance than others. It is therefore conceivable that by careful feature engi-
neering the basis for anonymization could be sufficiently improved, rendering
outlier-removal unnecessary.

6. Graph structure anonymization. This includes questions of measuring
structural outliers in a graph (maybe via centrality- or component-based
analysis?) as well as outlier removal (do they have to be deleted or will ran-
domly adding edges to such nodes suffice?). Our team is currently devising
experiments in this direction, but our efforts are still in the early stages.

6 Conclusion

In this paper we continued our initial experiments on the effects of anonymiza-
tion and perturbation of knowledge bases on classifier performance and expanded
our efforts to multi-class classification, outlier-removal as well as a combined out-
lier/anonymization approach. Our results show that selective deletion of signifi-
cant attribute values is preferable to general anonymization, insofar a dataset’s
topology allows for such conduct. We have furthermore seen that reducing vari-
ance in a dataset prevents algorithms of different breeds alike from finding ef-
ficient discriminators between classes, leading to a significant degradation of
machine learning performance. Finally, we were astonished to observe that com-
bining outlier-removal with anonymization can - under circumstances - yield
almost as good a performance as classification on the original, un-anonymized
dataset itself. We believe that this insight, in combination with work on interac-
tive Anonymization we are currently conducting, state-of-the art anonymization
techniques (we were using a rather simple algorithm for this paper), as well as the
introduction of synthetic data, will enable us to soon propose competitive Ma-
chine Learning pipelines for real-world usage to counterbalance any regulatory
disadvantage European companies are currently facing on the marketplace.
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