Skip to main content

Analyzing the Behavior of Aggregation and Pre-aggregation Functions in Fuzzy Rule-Based Classification Systems with Data Complexity Measures

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 642))

Abstract

In our previous works, we have generalized the Choquet integral by replacing the product by t-norms and copula functions. This generalization has led to new theoretical results in the field of aggregations functions and it has allowed to define a new concept named pre-aggregation function. We applied this generalization in the fuzzy reasoning method of fuzzy rule-based classification systems with the aim of aggregating the information given by the fired rules so that global information associated with the classes of the problem can be derived. In these works, we have shown that this application is successful since it has allowed to enhance the behavior of a classical averaging aggregation operator like the maximum, which is used in the fuzzy reasoning method of the winning rule. In this contribution, we aim at studying whether there are characteristics of the datasets that allow one to know whether an aggregation function will work better then others or not.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.keel.es.

  2. 2.

    In this paper, a increasing (decreasing) function does not need to be strictly increasing (decreasing).

  3. 3.

    For more information See http://sci2s.ugr.es/DC-automatic-method.

  4. 4.

    http://www.keel.es.

References

  1. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  2. Steinwart, I., Christmann, A.: Support Vector Machines, 1st edn. Springer, New York (2008)

    MATH  Google Scholar 

  3. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2008)

    Google Scholar 

  4. Quinlan, J.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  5. Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic Information Granules, Advanced Approaches to Linguistic Data Mining, Advanced Information Processing. Springer, Berlin (2005)

    MATH  Google Scholar 

  6. Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River (1994)

    MATH  Google Scholar 

  7. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 289–300 (2002)

    Article  Google Scholar 

  8. Basu, M., Ho, T.: Data Complexity in Pattern Recognition, Advanced Information and Knowledge Processing. Springer, London (2006)

    Book  Google Scholar 

  9. Luengo, J., Herrera, F.: An automatic extraction method of the domains of competence for learning classifiers using data complexity measures. Knowl. Inf. Syst. 42(1), 147–180 (2015)

    Article  Google Scholar 

  10. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sanz, J.A., Galar, M., Jurio, A., Brugos, A., Pagola, M., Bustince, H.: Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system. Appl. Soft Comput. 20, 103–111 (2014)

    Article  Google Scholar 

  12. Sanz, J., Bernardo, D., Herrera, F., Bustince, H., Hagras, H.: A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–990 (2015). http://dx.doi.org/10.1109/TFUZZ.2014.2336263

    Article  Google Scholar 

  13. Barrenechea, E., Bustince, H., Fernandez, J., Paternain, D., Sanz, J.A.: Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems. Axioms 2(2), 208–223 (2013)

    Article  MATH  Google Scholar 

  14. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953–1954)

    Google Scholar 

  15. Lucca, G., Sanz, J., Pereira Dimuro, G., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince Sola, H.: Pre-aggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016). doi:10.1109/TFUZZ.2015.2453020

    Article  MATH  Google Scholar 

  16. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Asiain, M.J., Elkano, M., Bustince, H.: CC-integrals: choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl. Based Syst. 119, 32–43 (2017)

    Article  Google Scholar 

  17. Alcalá-Fdez, J., Alcalá, R., Herrera, F.: A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 19(5), 857–872 (2011)

    Article  Google Scholar 

  18. Alcalá-Fdez, J., Sánchez, L., García, S., Jesus, M., Ventura, S., Garrell, J., Otero, J., Romero, C., Bacardit, J., Rivas, V., Fernández, J., Herrera, F.: Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009)

    Article  Google Scholar 

  19. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin (2007)

    MATH  Google Scholar 

  20. Mayor, G., Trillas, E.: On the representation of some aggregation functions. In: Proceedings of IEEE International Symposium on Multiple-Valued Logic. IEEE, Los Alamitos, pp. 111–114 (1986)

    Google Scholar 

  21. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244(1), 300–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Murofushi, T., Sugeno, M., Machida, M.: Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets Syst. 64(1), 73–86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bustince, H., Sanz, J.A., Lucca, G., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Ochoa, G.: Pre-aggregation functions: definition, properties and construction methods. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 294–300. IEEE (2016)

    Google Scholar 

  24. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince, H.: The notion of pre-aggregation function. In: Modeling Decisions for Artificial Intelligence. Springer, pp. 33–41 (2015)

    Google Scholar 

  25. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)

    Article  Google Scholar 

  26. Ho, T.K., Basu, M., Law, M.H.C.: Measures of geometrical complexity in classification problems. In: Data Complexity in Pattern Recognition, pp. 1–23. Springer (2006)

    Google Scholar 

  27. Smith, F.W.: Pattern classifier design by linear programming. IEEE Trans. Comput. 17(4), 367–372 (1968)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by Brazilian National Counsel of Technological and Scientific Development CNPq (Proc. 233950/2014-1, 306970/2013-9, 307781/2016-0), by the Spanish Ministry of Science and Technology (under project TIN2016-77356-P (AEI/FEDER, UE)), by Caixa and Fundación Caja Navarra of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Lucca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Lucca, G., Sanz, J., Dimuro, G.P., Bedregal, B., Bustince, H. (2018). Analyzing the Behavior of Aggregation and Pre-aggregation Functions in Fuzzy Rule-Based Classification Systems with Data Complexity Measures. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-319-66824-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66824-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66823-9

  • Online ISBN: 978-3-319-66824-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics