Skip to main content

A New Edge Detection Approach Based on Fuzzy Segments Clustering

  • Conference paper
  • First Online:
Book cover Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

Edge detection comprises different stages that go from adaptation of the original image -conditioning- to the selection of the definitive edges. This last step, known as scaling, requires the application of a thresholding process over the gradients of luminosity values of the pixels. Traditionally, this is made through a local evaluation process that works pixel by pixel. As the edge candidate pixels are not independent, a wider strategy suggests the use of a more global evaluation. In this sense, this approach resembles more the human vision. This paper further develops ideas related to edge lists, first proposed in 1995 [1]. This paper will refer to edge lists as edge segments. These segments contain visual features similar to the ones that humans use, which might lead to better comparative results. In this paper we propose using clustering techniques to differentiate the appropriate segments or true segments from the false ones, and we introduce an algorithm that uses fuzzy clustering techniques. Finally, this paper shows that this fuzzy clustering over the segments performs at least as well as other standard algorithms used for edge detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venkatesh, S., Rosin, P.L.: Dynamic threshold determination by local and global edge evaluation. Graph. Models Image Process. 57(2), 146–160 (1995)

    Article  Google Scholar 

  2. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. London - Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  3. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. The MIT Press, Cambridge (1982)

    Google Scholar 

  4. Goldstein, E.B.: Sensación y percepción, Sexta edn. Thomson Editores, Spain (2009)

    Google Scholar 

  5. Sobel,I.: History and definition of the Sobel Operator (2014)

    Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  7. López-Molina, C.: The breakdown structure of edge detection-analysis of individual components and revisit of the overall structure. Ph.D. thesis, Universidad Pública de Navarra (2012)

    Google Scholar 

  8. McAndrew, A.: An Introduction of Image Processing with Matlab. Course Technology Press, Boston (2004)

    Google Scholar 

  9. del Amo, A., Gómez, D., Montero, J., Biging, G.: Relevance and redundancy in fuzzy classification systems. Mathware Soft Comput. 8, 203–216 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  11. Estrada, F.J., Jepson, A.D.: Benchmarking image segmentation algorithms. Int. J. Comput. Vis. 85–2, 167–181 (2009)

    Article  Google Scholar 

  12. Guada, C., Gómez, D., Rodríguez, J.T., Yánez, J., Montero, J.: Classifying images analysis techniques from their output. Int. J. Comput. Intell. Syst. 9(1), 43–68 (2016)

    Article  Google Scholar 

  13. Basu, M.: Gaussian-based edge-detection methods- a survey. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 32(3), 252–260 (2002)

    Article  Google Scholar 

  14. Morillas, S., Gregori, V., Hervas, A.: Fuzzy peer groups for reducing mixed Gaussianimpulse noise from color images. IEEE Trans. Image Process. 18(7), 1452–1466 (2009)

    Article  MathSciNet  Google Scholar 

  15. Bezdek, J., Chandrasekhar, R., Attikouzel, Y.: A geometric approach to edge detection. IEEE Trans. Fuzzy Syst. 6(1), 52–75 (1998)

    Article  Google Scholar 

  16. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Sets Syst. 160(13), 1819–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, D.S., Lee, W.H., Kweon, I.S.: Automatic edge detection using \(3\times 3\) ideal binary pixel patterns and fuzzy-based edge thresholding. Pattern Recogn. Lett. 25(1), 101–106 (2004)

    Article  Google Scholar 

  18. Russo, F.: FIRE operators for image processing. Fuzzy Sets Syst. 103(2), 265–275 (1999)

    Article  MathSciNet  Google Scholar 

  19. Russo, F., Ramponi, G.: Edge extraction by FIRE operators. In: Proceedings of the IEEE Conference on Fuzzy Systems, vol. 1, pp. 249–253 (1994)

    Google Scholar 

  20. Monga, O., Deriche, R., Malandain, G., Cocquerez, J.P.: Recursive filtering and edge tracking: two primary tools for 3D edge detection. Image Vis. Comput. 9(4), 203–214 (1991)

    Article  Google Scholar 

  21. Fathy, M., Siyal, M.Y.: An image detection technique based on morphological edge detection and background differencing for real-time traffic analysis. Pattern Recogn. Lett. 16(12), 1321–1330 (1995)

    Article  Google Scholar 

  22. Zielke, T., Brauckmann, M., Vonseelen, W.: Intensity and edge-based symmetry detection with an application to car-following. CVGIP: Image Underst. 58(2), 177–190 (1993)

    Article  Google Scholar 

  23. Pal, S., King, R.: On edge detection of X-ray images using fuzzy sets. IEEE Trans. Pattern Anal. Mach. Intell. 5(1), 69–77 (1983)

    Article  Google Scholar 

  24. Sonka, M.: IEEE transactions on medical imaging statement of editorial policy. IEEE Trans. Med. Imaging 33(4) (2014)

    Google Scholar 

  25. Rojas, K., Gómez, D., Montero, J., Rodríguez, J.T., Valdivia, A., Paiva, F.: Development of child’s home environment indexes based on consistent families of aggregation operators with prioritized hierarchical information. Fuzzy sets Syst. 241, 41–60 (2014). Elsevier

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

It has been strongly helpfull for the conducting of this research the code of KERMIT Research Unit (Ghent University), The Kermit Image Toolkit (KITT), B. De Baets, C. Lopez-Molina (Eds.), Available online at www.kermitimagetoolkit.net.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Flores-Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Flores-Vidal, P.A., Gómez, D., Olaso, P., Guada, C. (2018). A New Edge Detection Approach Based on Fuzzy Segments Clustering. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-319-66824-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66824-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66823-9

  • Online ISBN: 978-3-319-66824-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics