Skip to main content

Modeling Trends in the Hierarchical Fuzzy System for Multi-criteria Evaluation of Medical Data

  • Conference paper
  • First Online:
Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

The paper presents the analysis and application of hierarchical fuzzy system to the problem of evaluation/measurement of the rehabilitation effects in post-stroke patients. Healthy people constitute reference group. Prevalence and impact of the stroke-related disorders on Health-Related Quality of Life (HRQoL) as a recognized and important outcome after stroke is huge. Quick, valid and reliable assessment of HRQoL in people after stroke constitutes a worldwide significant problem for scientists and clinicians - there are many tools, but no one fulfills all requirements or has prevailing advantages. Evaluation model presented here is improved version of earlier attempts and applies the potential of fuzzy systems for linguistic modeling of rules. It provides a great advantage as there are experienced clinicians working on the improvement of the rehabilitation methods but there is no intuitive formal model to measure their effects. The innovative element here is the use of Ordered Fuzzy Number model. It is a good tool for modeling the trends in information used to create the fuzzy rules of small fuzzy systems which together form a hierarchical fuzzy evaluation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckley, J.J., Eslami, E.: Advances in Soft Computing: An Introduction to Fuzzy Logic and Fuzzy Sets. Physica-Verlag GmbH, Heidelberg (2002)

    Book  MATH  Google Scholar 

  2. Czerniak, J.M., Dobrosielski, W.T., Iwona, F.: Some cases of comparing fuzzy numbers using defuzzificators on the catalog of ofn shapes. In: Prokopowicz, P., et al. (eds.) Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosński. Studies in Fuzziness and Soft Computing, vol. 356. Springer (2017, in print)

    Google Scholar 

  3. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubois, D., Prade, H.: Gradual inference rules in approximate reasoning. Inf. Sci. 61(1), 103–122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hüllermeier, E.: Association rules for expressing gradual dependencies. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) Principles of Data Mining and Knowledge Discovery. PKDD 2002, pp. 200–211. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Klimkiewicz, P., Kubsik, A., Woldańska-Okońska, M.: NDT-Bobath method used in the rehabilitation of patients with a history of ischemic stroke. Wiad. Lek. 65(2), 102–107 (2012)

    Google Scholar 

  7. Kollen, B.J., Lennon, S., Lyons, B., Wheatley-Smith, L., Scheper, M., Buurke, J.H., Halfens, J., Geurts, A.C., Kwakkel, G.: The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke 40(4), 89–97 (2009)

    Article  Google Scholar 

  8. Kosiński, W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers. IEEE Trans. Fuzzy Syst. 21(6), 1163–1169 (2013)

    Article  Google Scholar 

  9. Kosiński, W., Prokopowicz, P., Kacprzak, D.: Fuzziness - representation of dynamic changes by ordered fuzzy numbers. In: Seising, R. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives: Philosophy and Logic, Criticisms and Applications, pp. 485–508. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Kosiński, W., Prokopowicz, P., Ślȩzak, D.: Ordered fuzzy numbers. Bull. Polish Acad. Sci. Math. 51(3), 327–338 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Kosiński, W., Prokopowicz, P., Ślȩzak, D.: On algebraic operations on fuzzy numbers. In: Kłopotek, M.A., et al. (eds.) Intelligent Information Processing and Web Mining: Proceedings of the International IIS: IIPWM 2003 Conference Held in Zakopane, Poland, 2–5 June 2003, pp. 353–362. Springer, Heidelberg (2003)

    Google Scholar 

  12. Lee, M.L., Chung, H.Y., Yu, F.M.: Modeling of hierarchical fuzzy systems. Fuzzy Sets Syst. 138(2), 343–361 (2003)

    Article  MathSciNet  Google Scholar 

  13. Mikołajewska, E.: NDT-Bobath method in normalization of muscle tone in post-stroke patients. Adv. Clin. Exp. Med. 21(4), 513–517 (2012)

    Google Scholar 

  14. Mikołajewska, E.: Associations between results of post-stroke NDT-Bobath rehabilitation in gait parameters, ADL and hand functions. Adv. Clin. Exp. Med. 22(5), 731–738 (2013)

    Google Scholar 

  15. Mikołajewska, E., Prokopowicz, P., Mikołajewski, D.: Computational gait analysis using fuzzy logic for everyday clinical purposes - preliminary findings. Bio-Algorithms Med-Syst. 13(1), 37–42 (2017)

    Google Scholar 

  16. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. With a Foreword by Lotfi A. Zadeh. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Pickard, A.S., Johnson, J.A., Feeny, D.H.: Responsiveness of generic health-related quality of life measures in stroke. Qual. Life Res. 14(1), 207–219 (2005)

    Article  Google Scholar 

  18. Prokopowicz, P.: Adaptation of rules in the fuzzy control system using the arithmetic of ordered fuzzy numbers. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing - ICAISC 2008. LNCS, vol. 5097, pp. 306–316. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Prokopowicz, P.: Analysis of the changes in processes using the Kosinski’s fuzzy numbers. Ann. Comput. Sci. Inf. Syst. 8, 121–128 (2016). IEEE

    Article  Google Scholar 

  20. Prokopowicz, P.: The directed inference for the Kosinski’s fuzzy number model. In: Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, pp. 493–503. Springer International (2016)

    Google Scholar 

  21. Prokopowicz, P.: Processing the direction with ordered fuzzy numbers. In: Prokopowicz, P., et al. (eds.) Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński. Studies in Fuzziness and Soft Computing, vol. 356. Springer (2017, in print)

    Google Scholar 

  22. Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D.: Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński. Studies in Fuzziness and Soft Computing, vol. 356. Springer (2017) (in print)

    Google Scholar 

  23. Prokopowicz, P., Golsefid, S.: Aggregation operator for ordered fuzzy numbers concerning the direction. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 8467, pp. 267–278. Springer International, Cham (2014)

    Chapter  Google Scholar 

  24. Prokopowicz, P., Mikolajewska, E., Mikolajewski, D., Kotlarz, P.: Fuzzy system as an assessment tool for analysis of the health-related quality of life for the people after stroke. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing. LNAI, vol. 10245, pp. 710–721. Springer, Cham (2017)

    Chapter  Google Scholar 

  25. Prokopowicz, P., Mikolajewska, E., Mikolajewski, D., Kotlarz, P.: Traditional vs ofn-based analysis of temporo-spatial gait parameters. In: Prokopowicz, P., et al. (eds.) Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosński. Studies in Fuzziness and Soft Computing, vol. 356. Springer (2017) (in print)

    Google Scholar 

  26. Prokopowicz, P., Pedrycz, W.: The directed compatibility between ordered fuzzy numbers - a base tool for a direction sensitive fuzzy information processing. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 249–259. Springer International, Cham (2015)

    Chapter  Google Scholar 

  27. Raju, G.V.S., Zhou, J., Kisner, R.A.: Hierarchical fuzzy control. Int. J. Control 54(5), 1201–1216 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Torra, V.: A review of the construction of hierarchical fuzzy systems. Int. J. Intell. Syst. 17(5), 531–543 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Prokopowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Prokopowicz, P., Mikołajewski, D., Mikołajewska, E., Tyburek, K. (2018). Modeling Trends in the Hierarchical Fuzzy System for Multi-criteria Evaluation of Medical Data. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 643. Springer, Cham. https://doi.org/10.1007/978-3-319-66827-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66827-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66826-0

  • Online ISBN: 978-3-319-66827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics