
This is a repository copy of Algebraic Compilation of Safety-Critical Java Bytecode.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/121650/

Version: Accepted Version

Proceedings Paper:
Baxter, J. and Cavalcanti, A. L. C. orcid.org/0000-0002-0831-1976 (2017) Algebraic 
Compilation of Safety-Critical Java Bytecode. In: Polikarpova, N. and Schneider, S., (eds.) 
Integrated Formal Methods. Springer , pp. 161-176. 

https://doi.org/10.1007/978-3-319-66845-1_11

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Algebraic Compilation of

Safety-Critical Java Bytecode

James Baxter and Ana Cavalcanti

Department of Computer Science, University of York, UK

Abstract. Safety-Critical Java (SCJ) is a version of Java that facilitates
the development of certifiable programs, and requires a specialised virtual
machine (SCJVM). In spite of the nature of the applications for which
SCJ is designed, none of the SCJVMs are verified. In this paper, we
contribute a formal specification of a bytecode interpreter for SCJ and
an algebraic compilation strategy from Java bytecode to C. For the target
C code, we adopt the compilation approach for icecap, the only SCJVM
that is open source and up-to-date with the SCJ standard. Our work
enables either prototyping of a verified compiler, or full verification of
icecap or any other SCJVM.

1 Introduction

Java is widely used and there is interest in using it for programming safety-
critical real-time systems. This has led to the creation of a variant of Java called
Safety-Critical Java (SCJ) [16]. It is being developed by the Open Group under
the Java Community Process as Java Specification Request 302. SCJ replaces
Java’s garbage collector with a system of scoped memory areas to allow deter-
mination of when objects are deallocated. It also introduces preemptive priority
scheduling of event handlers to ensure predictable scheduling.

Due to these new mechanisms, SCJ requires a specialised virtual machine, al-
though, since the syntax of Java is not modified, a standard Java compiler can be
used to generate bytecode. There exist some SCJ virtual machines (SCJVMs) [1,
22, 27]; they all allow for code to be compiled ahead-of-time to a native language,
usually C, since SCJ targets embedded systems with low resources. As far as we
know, the icecap HVM [27] is the only publicly-available SCJVM that is up-to-
date with the SCJ specification; it outputs production-quality code.

Neither icecap nor any of the other SCJVMs has been formally verified. In [3],
we present a formal account of the services of an SCJVM. Here, we focus on the
execution of Java bytecode and its compilation to native C code. We formalise
the requirements for an SCJVM bytecode interpreter and a compilation strategy,
using the algebraic approach [25] to verify compilation from bytecode to C, with
icecap as a source of requirements for our specification. We use C as our target,
following the scheme used by icecap that aims for portable native code that can
be easily integrated into existing systems. The decision to use bytecode rather
than SCJ itself as our source ensures that we can rely on existing Java compilers
and work ensuring their correctness. Our focus here is not the development of



an SCJVM or compiler, but a technique that can be used to develop and verify
an ahead-of-time compiling SCJVM implementation.

We use algebraic compilation, in which the semantics of the source and target
languages are defined using the same specification language, and a compilation
strategy is a procedure to apply compilation rules: refinement laws that address
the program constructs independently. Implementing the rules using a rewrite
engine can produce a prototype verified compiler. Algebraic compilation has been
studied for imperative [25] and object-oriented languages [9], and for hardware
compilation [21]. Here we use it, for the first time, to compile a low-level language,
Java bytecode, to a high-level language, C. While Java bytecode has some high-
level features, particularly its notion of objects, we view it as low-level since it
is unstructured, with control flow managed using a program counter.

In summary, our main contributions here are

– a formal model of an SCJVM interpreter,
– a set of provably correct compilation rules for transforming this model, and
– a specification of a strategy for applying these rules to transform Java byte-

code in the interpreter to a shallow embedding of C code.

All Circus models are mechanically checked by the CZT infrastructure, and some
domain checks using Z/Eves are available. In doing this we also provide insights
into the application of algebraic compilation to compile low-level source lan-
guages, and SCJ programs in particular, to high-level targets. While there is
existing work on compiling Java to C [23, 27, 30], none of these works include
verification of such a compilation.

In Section 2 we present SCJ and the Circus language that we use for refine-
ment. Section 3 is an overview of our approach, whose main components are
detailed in the subsequent sections: Section 4 describes our SCJVM model; Sec-
tion 5 discusses the shallow embedding of C in Circus; and Section 6 describes
our compilation strategy. Section 7 discusses some of our design decisions. We
conclude in Section 8, where we discuss related and future work.

2 Preliminaries

We present SCJ in Section 2.1 and Circus in Section 2.2.

2.1 Safety-Critical Java

An SCJ program is structured as a sequence of missions. An instance of a class
implementing an interface called Safelet defines the starting point of an SCJ
program, via an initialisation method, and the definition of a mission sequencer
that determines the sequence of missions of the program.

Each mission consists of a collection of schedulable objects, which include
asynchronous event handlers that can be released aperiodically, in response to a
release request, or periodically, at set intervals of time. Each of these schedulable
objects is executed on a separate thread. These threads continue executing until
the mission is signalled to terminate by one of its own schedulable objects.



Scheduling follows a preemptive priority policy. The threads eligible to run
are placed into queues, with one queue for each priority. The thread at the front of
the highest priority non-empty queue runs. A priority ceiling emulation system,
whereby a thread’s priority is raised when it takes a lock, avoids deadlock when
it is interrupted by a thread of higher priority.

SCJ replaces the Java garbage collector with a system of memory areas.
Different kinds of area are cleared at different times: the immortal memory is
never cleared; the mission memory is cleared between missions; a per-release
memory is local to an event handler and is cleared after each of its releases; and
a private memory can be created and entered as needed.

SCJ uses an API that includes components that provide real-time clocks,
support for raw memory accesses, and a lightweight input/output system. Some
of the classes from the standard Java API are removed or restricted to ensure
the classes required by SCJ are small enough for embedded systems.

2.2 Circus

We formalise the bytecode interpreter and our compilation strategy in Circus [20].
It is a refinement notation that combines the process-based style of CSP [24]
with the data-based style of the Z notation [31]. It also includes programming
constructs from Dijkstra’s guarded command language [8]. Circus is appropriate
for our work because it is a notation for refinement, which is a key part of
the algebraic approach to verifying compilation, and it permits reasoning about
parallelism. It also combines data and reactive behaviour, which enables us to
pass from a bytecode program represented as data in an interpreter to a C
program with the same control flow as the bytecode program.

Circus specifications define processes: basic or composed from other processes
using CSP operators, such as parallel composition, sequence, and internal and
external choice. Each process may have an internal state defined using Z and
communicates with its environment via channels like a CSP process.

To illustrate the structure of a Circus model, we present in Figure 1 a sketch
of a simplified model for an SCJVM interpreter. Typically, a specification begins
with type and channel declarations. The types are declared as in Z. Channels
carry data of the type specified in their declaration. In our example, there are
declarations for channels getInstruction and getInstructionRet , used to obtain
the instruction for each address, provided externally in this simplified model.

The state of a process is defined by a Z schema; in the case of the Interpreter
process, by the schema InterpreterState. The components of the state initially
have arbitrary values; specific initial values can be defined through Z schemas,
such as InterpreterInit , which specifies that the frameStack component is empty.

The Loop action is defined using a CSP guarded choice that offers different
actions depending on whether frameStack is empty. Loop then repeats via a se-
quential composition with a recursive call. The main action of a process specifies
its behaviour at the end, after a spot. The main action of Interpreter initialises
the state using InterpreterInit and then calls Loop.



channel getInstruction : ProgramAddress
channel getInstructionRet : Bytecode

.

.

.
process Interpreter =̂ begin

InterpreterState

frameStack : seqStackFrame
pc : ProgramAddress
currentClass : Class

frameStack 6= ∅ ⇒
currentClass =

(last frameStack).frameClass

state InterpreterState

InterpreterInit

InterpreterState ′

frameStack ′ = ∅

.

.

.

Loop =̂
(frameStack 6= ∅) N HandleInstruction
@ (frameStack = ∅) N StartInterpreter;
Loop

• InterpreterInit ; Loop

end

Fig. 1. A sketch of a simple interpreter process

For a full description of Circus, we refer to [20]. For a substantial example,
we refer to [2], where we present our specification of the SCJVM services.

3 Our Approach to Algebraic Compilation

In the algebraic approach to compilation the source and target language seman-
tics are embedded in the same specification language and compilation is proved
correct by establishing a refinement. A series of compilation rules are applied
according to a strategy to refine a source program into a representation of the
target machine containing the instructions of the target code.

Here, we adapt the approach to deal with a low-level source language. Our
approach can be viewed as the usual approach applied in reverse, starting with
an interpreter containing the bytecode source program, and proving that it is
refined by an embedding of the C code, as shown in Figure 2. The core services
of an SCJVM must be available for both the source and target codes.

For a low-level language, a deep embedding is the natural method for rep-
resenting its semantics, since it is defined in terms of how it is processed by
a (virtual) machine. For the C code we must choose whether to use a shallow
embedding, representing C constructs by corresponding Circus constructs, or a
deep embedding, creating a Circus model that interprets the C code.

We use a shallow embedding, since it allows existing algebraic laws for Circus
to be used directly for manipulation of the C code and proof of the compilation
rules. A deep embedding would require representing the syntax of C separately
in Circus and rules for transforming the C code would have to be proved.

The shallow embedding approach is much easier to extend or adapt. If a
larger subset of bytecodes needs to be considered or the target C code needs
to be modified, in the worst case, we need more or different Circus compilation
rules. There will be no need to extend the Circus model defining the C semantics.

In the next few sections, we describe Figure 2 in more detail. A complete
formal account of the components in Figure 2 can be found in [2].
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Fig. 2. Our algebraic approach

4 SCJVM and Interpreter Model

Our Circus model of the SCJVM has six components, each defined by a single
Circus process. The first three components are the SCJVM services: the memory
manager, the scheduler and the real-time clock. They support the execution of
an SCJ program by the core execution environment and are unaffected by the
compilation strategy, ensuring the memory management and scheduling models
of SCJ are preserved by the compilation strategy.

The remaining components form the core execution environment (CEE),
which manages the execution of an SCJ program. It is defined by a parallel
composition of three Circus processes as shown below. Note that the parallelism
here represents composition of requirements, not a requirement for a parallel
implementation. In an implementation, such as icecap, these processes would be
different parts of the program, which may be made up of C files or Java classes.

processCEE (bc, cs, sid , initOrder) =̂
ObjMan(cs) ‖ Interpreter(bc, cs) ‖ Launcher(sid , initOrder)

CEE uses global constants that characterise a particular program: bc, record-
ing the bytecode instructions, cs, recording information about the classes in
the program, sid , recording the identifier of the Safelet class, and initOrder ,
a sequence of class identifiers indicating in which order the classes should be
initialised. (For simplicity here, and in what follows, we write ‖ to indicate a
parallel composition, but omit the definition of the synchronisation sets.)

ObjMan manages the cooperation between the SCJ program and the SCJVM
memory manager, including the representation of objects. The SCJVM memory
manager is agnostic as to the structure of objects.

Interpreter and Launcher define the control flow and semantics of the SCJ
program. The interpreter is for a representative subset of Java bytecode that
covers stack manipulation, arithmetic, local variable manipulation, field manip-
ulation, object creation, method invocation and return, and branching. This
covers the main concepts of Java bytecode. A full list of the instructions can be
found in [2]. We do not include instructions for different types as that would
add duplication to the model while yielding no additional verification power. We
also do not include exception handling as SCJ programs can be statically ver-
ified to prove that exceptions are not thrown [11, 17]. Furthermore, reliance on
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Fig. 3. The overall control flow of Thr

exceptions to handle errors has been discouraged by an empirical study due to
the potential for errors in exception handling [26]. Errors caused in the SCJVM
by an incorrect input program are represented by abortion.

The Interpreter interacts closely with the Launcher , which defines the flow of
mission execution. The Launcher begins by creating an instance of the Safelet
class and then executes programmer supplied methods using Interpreter .

We describe Interpreter in more detail, since it is a central target of the
compilation. A simplified version of it is sketched in Section 2.2. In the full
model the Interpreter is defined as the parallel composition of Thr processes.

process Interpreter(bc, cs) =̂
f
t : TID \ {idle} • Thr(bc, cs, t)

There is one process Thr(bc, cs, t) for each thread identifier t in the set TID ,
of thread identifiers, except the identifier of the idle thread. Each Thr pro-
cess represents an interpreter for a separate thread, with thread switches co-
ordinated by communication between threads. The state of each Thr process
is defined by the InterpreterState schema in Figure 1. The control flow of the
main action of Thr is shown in Figure 3. It consists of state initialisation as de-
scribed by InterpreterInit , followed by a choice of two actions, MainThread and
NotStarted , with MainThread representing the control flow for the main thread,
and NotStarted for all other threads. The different behaviours are not described
as separate processes because they are similar.

MainThread offers a choice of executing a method in response to a signal
from the Launcher or switching to another thread. When it executes a method,
MainThread creates a new Java stack frame (on frameStack) for the method and
behaves as Running . It repeatedly handles bytecode instructions and polls the
scheduler until frameStack is empty. Polling occurs inbetween bytecode instruc-
tions. (This assumption does not necessarily rule out compiler implementations
that do not preserve atomicity, as discussed in Section 7.)

When a mission is initialised, the Launcher communicates with ObjMan to
set up the memory areas for the mission’s schedulable objects, and with the
scheduler to start their associated threads. This causes the scheduler to signal
that the threads are starting. With that, the instances of Thr associated with
the started threads, which behave as the NotStarted action, create a new stack
frame and behave as Blocked , each waiting for a request to switch to its thread.

After all the threads are started, the Launcher signals the scheduler to sus-
pend the main thread, following which the scheduler signals the Interpreter to



switch to a new thread. This causes the Thr process for the main thread to be-
have as Blocked and the Thr process for the new thread to behave as Running .

The compilation strategy refines the CEE process. Basically it transforms
the Thr processes, with little change to the other processes. A complete model
of the CEE, including the definition of Thr , can be found in [2].

5 Shallow Embedding of C in Circus

In our approach, compilation generates a C program represented by a Circus

process. The particular definition of this process depends on the Java bytecode
program, as defined by our constants bc and cs, that it implements. So, we
refer to the Circus process as CProgbc,cs , but note that it does not include any
reference to these constants, since this is the process that represents the compiled
program. For all values of bc and cs, CProgbc,cs has the structure defined below.

processCProgbc,cs =̂
f
t : TID \ {idle} • CThrbc,cs(t)

The parallelism of C threads is represented by a Circus parallelism, like the
parallelism of Java threads in the Interpreter . In CProgbc,cs there is a process
CThrbc,cs for each identifier t in the set TID , except for the idle thread identifier.

The CThrbc,cs process has a similar structure to the Thr process presented
in the previous section, except that the Running action is replaced with an
ExecuteMethod action that executes the C function corresponding to a given
method identifier. Within the body of CThrbc,cs , each function of the generated
C code is represented by a Circus action of the same name. The constructs within
the C function are represented using Circus constructs.

The constructs we allow within a C function are conditionals, while loops,
assignment statements, and function calls. These are comparable with those
allowed in MISRA-C [18] and present in the code generated by icecap. These
constructs can be represented by the corresponding constructs in Circus.

As each function in the C code is a Circus action, function calls are represented
as references to those actions. Function arguments in C are passed by value,
although those values may be pointers to other values. Accordingly, since our
SCJVM model represents pointers explicitly, we represent function arguments
using value parameters of the Circus action. Local variables of the function are
represented using Circus variable blocks.

If a function has a return value, it is represented with a result parameter of
the Circus action, with an assignment to that parameter at the end of the action
representing return statements. It is not necessary to cater for return statements
in the middle of a function as we have control over the structure of the functions.
We follow guidelines for safety-critical uses of C variants, such as MISRA-C [18],
and use a single return statement at the end of a function. A function with
both a return value and arguments has its value parameters (representing the
arguments) followed by the result parameter (representing the return value).



6 Compilation Strategy

Our compilation strategy refines the CEE (bc, cs, sid) process defined in Section 4
to obtain a process that includes a representation of C code as described in
Section 5. The overall theorem for the strategy is as follows.

Theorem 1 (Compilation Strategy). Given bc, cs, sid and initOrder , there

are processes StructMancs and CProgbc,cs such that,

CEE (bc, cs, sid , initOrder)
⊑ StructMancs ‖ CProgbc,cs ‖ Launcher(sid , initOrder).

StructMancs manages objects represented by C structs that incorporate the class
information from cs, refining the process ObjMan, which handles abstract ob-
jects. StructMancs has Z schemas representing struct types for objects of each
class. These schemas contain the identifier classid of the object’s class, so that
polymorphic method calls can be made by choice over the object’s class. There
are also components for each of the fields of the object.

The schema types for each type of object are combined into a single free
type ObjStruct . StructMancs contains a map from memory addresses managed
by the SCJVM to the ObjStruct type, representing the C structs in memory,
and provides access to the individual values in that map.

CProgbc,cs refines the Interpreter , with the Thr processes refined into the
CThrbc,cs processes described in the previous section. This means that the
threads from SCJ are mapped onto threads in C, since we do not dictate a
particular thread switch mechanism in either the source or target models.

In order to apply the compilation strategy, the bc and cs inputs must con-
form to a few restrictions. The most important of these are the restrictions on
the structure of control flow: each loop must have only a single exit and con-
ditionals must have a single common end point for all branches. Recursion is
also not allowed, directly or indirectly, since method calls cannot be handled
unless control flow constructs and method calls in the called method have been
introduced first. Finally, the program must be a valid program that could run
in the interpreter described in Section 4.

The compilation strategy is split into three stages, each with a theorem de-
scribing it, for which the strategy acts as a proof. The proof of Theorem 1 is
obtained by an application of the theorems for each stage. All the theorems and
their proofs, with a full description of the stages, can be found in [2].

Each stage of the compilation strategy handles a different part of the state
of the Interpreter : the pc, the frameStack , and objects. They operate over each
of the Thr processes, managed by the SCJVM services.

The first stage introduces the control constructs of the C code. This removes
the use of pc to determine the control flow of the program. The choice over pc

values is replaced with a choice over method identifiers pointing to sequences of
operations representing method bodies.

In the second stage, the information contained on the frameStack , which is
the local variable array and operand stack for each method, is introduced in



the C code. This is done by introducing variables and parameters to represent
each method’s local variables and operand stack slots. A data refinement is then
used to transform each operation over the frameStack to operate on the new
variables. The frameStack is then eliminated from the state.

In the final stage, the class information from cs is used to create a repre-
sentation of C structs. This means that ObjMan, which has a very abstract
representation of objects, is transformed into StructMan. The process for each
thread is then made to access the structs for the objects in a more concrete way
that represents the way struct fields are accessed in C code.

This yields final method actions of a form similar to that of the example
shown below, which is taken from the handleAsyncEvent() method of a simple
SCJ event handler class named InputHandler.

InputHandler HandleAsyncEvent =̂

val var0 • var var1, stack0, stack1 : Word •
stack0 := var0 ; Poll ; getObject !stack0−→ getObjectRet?struct
−→ stack0 := (castInputHandler struct).input ; . . .

The method is compiled to the action InputHandler HandleAsyncEvent , with
the implicit this parameter represented as a value parameter var0. The local
variable (var1) and stack slots (stack0 and stack1) are represented as Circus

variables. The operations of the C code are composed in sequence, with an ac-
tion named Poll that polls for thread switches between each operation. Stack
operations are represented as assignments. For instance, stack0 := var0 arises
from the compilation to load a local variable onto the stack. Access to objects
is performed by communicating with StructMancs to obtain the struct for the
object, casting it to the correct type, and accessing the required value. Above,
we obtain the value of the input field from an InputHandler object. The com-
munication with StructMancs is performed via the getObject channel and the
function castInputHandler is used to map the ObjectStruct returned from the
communication to a type representing an InputHandler object.

We illustrate our approach by giving further details about the first and most
challenging stage of the strategy, elimination of program counter. The theorem
describing this stage is shown below, where ThrCF is the result of transforming
Thr to eliminate pc as indicated above and detailed in the sequel.

Theorem 2. Thr(bc, cs, t) ⊑ ThrCFbc,cs(cs, t)

The strategy for this stage is defined by Algorithm 1. Each of its steps is defined
by its own algorithm, which details how the compilation rules are applied. The
correctness of Algorithm 1 (and the other algorithms in the strategy) relies on the
correctness proofs for the compilation rules, which are Circus laws. The algorithm
forms the basis of a proof for Theorem 2 since it provides a strategy to apply the
rules to refine Thr(bc, cs, t) into ThrCFbc,cs(cs, t). All that then need be proved
is that the algorithm does indeed yield Circus code of the correct form.

Algorithm 1 begins, on line 1, by expanding the semantics of each bytecode
instruction (using a copy rule). Afterwards, sequential composition is introduced



Algorithm 1 Elimination of Program Counter
1: ExpandBytecode

2: IntroduceSequentialComposition

3: while ¬ AllMethodsSeparated do

4: IntroduceLoopsAndConditionals

5: SeparateCompleteMethods

6: ResolveMethodCalls

7: end while

8: RefineMainActions

9: RemovePCFromState

between bytecode instructions on line 2. Dependencies between methods must be
considered in order to introduce the remaining control constructs, since method
calls are handled by placing the method invocation bytecode in sequence with a
call to a Circus action containing the body of the method being invoked. We say
a method call for which this transformation has been done is resolved. Resolution
is necessary to introduce a reference to the method action representing the C
function for the method at the appropriate place in the control flow, after the
value of pc has been set to the method’s entry point by the invocation instruction.

The action containing the body of the method can only be created after
loops and conditionals have been introduced and the method’s body has been
sequenced together into a single block of instructions. However, loops and con-
ditionals can only be introduced when all the method calls in their bodies have
been resolved (since method calls break up the body of a loop or conditional). For
this reason, we perform loop and conditional introduction and method resolution
iteratively, until all methods have had their control flow constructs introduced
and their bodies copied into separate Circus actions. This occurs in the loop
beginning at line 3 of Algorithm 1.

Within the loop (lines 4 to 6), loops and conditionals are first introduced to
methods that have already had method calls resolved, on line 4. Methods that
are in a form in which their control flow is described using C constructs are then
copied into separate actions, on line 5. Calls to the separated methods are then
resolved, introducing references to the newly created method actions, on line 6.

After all the methods have been copied into separate actions, theMainThread

and NotStarted actions are refined to replace the choice over pc with a choice
over method identifiers, on line 8. Finally, a data refinement is used to eliminate
the pc from the state, on line 9.

In our example, the InputHandler HandleAsyncEvent action is created in
this stage as shown below. The control flow, mainly sequential composition, has
been introduced, but the instructions are in the form of data operations over the
frameStack . A call to the InputStream Read method action can be seen here.

InputHandler HandleAsyncEvent =̂ HandleAloadEPC (0) ; Poll ;

HandleGetfieldEPC (15) ; Poll ; HandleInvokevirtualEPC (33);
Poll ; InputStream Read ; Poll ; HandleAstoreEPC (1) ; · · ·



The algorithms for all stages of the strategy can be found in [2]. For illus-
tration, we describe the IntroduceSequentialComposition procedure, ref-
erenced on line 2 of Algorithm 1. It begins with construction of a control flow
graph for the program, which is then examined for nodes with a single outgoing
edge leading to a node with a single incoming edge. Such nodes represent points
at which simple sequential composition occurs, rather than more complex control
flows such as loops and conditionals that are introduced later in the strategy. At
these nodes, the compilation rule given by Rule 1 is applied.

Rule 1 (Sequence introduction) If i 6= j and

{frameStack 6= ∅} ; A = {frameStack 6= ∅} ; A ; {frameStack 6= ∅}

then,

µX •
if frameStack = ∅−→ Skip
8 frameStack 6= ∅−→

if · · ·
8 pc = i−→

A ; pc := j

8 pc = j −→ B

· · ·
fi ; Poll ; X

fi

⊑A

µX •
if frameStack = ∅−→ Skip
8 frameStack 6= ∅−→

if · · ·
8 pc = i −→

A ; pc := j ; Poll ; B

8 pc = j −→ B

· · ·
fi ; Poll ; X

fi

This rule, like many of the compilation rules, acts upon Circus actions of a
generalised form. Where dots (· · ·) are shown on the left hand side the rule, it
indicates that any syntactically valid Circus at that point may match the rule, but
remains unaffected by the rule, as indicated by corresponding dots on the right
hand side of the rule. The left hand side of this rule is in the form of the Running
action, with a loop that continues until frameStack is empty and a choice over
the value of pc to select the instruction to execute. The rule unrolls the loop,
sequencing the instructions at pc = i with the instructions executed after them
at pc = j . An occurrence of Poll is placed inbetween to permit thread switches.
The preconditions for the application of this rule are that i and j not be the
same (since that would be a loop), and that the instructions at pc = i preserve
the nonemptiness of the frameStack (to fulfil the loop condition of Running).

We note that the pc assignment that causes the sequential composition re-
mains in the code after the application of this rule. It is removed in the data
refinement on line 9 of Algorithm 1, since removing it as part of the rule would
complicate the preconditions.

The other compilation rules have a similar form to Rule 1 but introduce other
constructs such as loops, conditionals, and method calls. An account of all the
laws used in the strategy can be found in [2].

7 Discussion

Our work is the first on verified compilation from Java bytecode to C. Our re-
sults may be of value in the compilation of standard Java programs, but they are



specific to SCJ. Although SCJ uses the same bytecode instructions as standard
Java, SCJ does not have dynamic class loading, which substantially changes
the semantics of the bytecode instructions. The class initialisers must also be
executed at the start of the program and the program execution must be coordi-
nated according to the SCJ mission paradigm, both performed by the Launcher
in our model. Finally, the instructions must rely on the SCJVM services, so,
for example, the new instruction must communicate with the SCJVM memory
manager to ensure SCJ’s memory model is followed.

We have also considered the introduction of control flow constructs to the
compiled C code. This differs from previous work, which translates branch in-
structions in the bytecode using goto statements in the C code. Avoiding the
use of goto statements permits more optimisation by the C compiler, makes
the control flow of the code more readable, and brings the code in line with the
restrictions of MISRA C. This has been one of the most challenging parts of our
work, since we require a strategy for identifying the control flow constructs of
the Java bytecode. In our strategy, we handle branches in the Java bytecode by
analysing the structure of the control flow graph for each method. Unconditional
jumps are handled in the same way as sequential composition, while conditional
branches are handled by introducing C conditionals. Where the jump introduces
a loop, we instead introduce looping constructs corresponding to C while loops.

We have also had to consider the difficulties raised by the features of Java
when compiling bytecode. Chief among these is the issue of how inheritance
and dynamic dispatch are handled. The class where a method is defined must
be identified when it is invoked, since a method’s bytecode instructions require
constant pool information about the class in order to be executed correctly. Since
SCJ requires that all classes be available before program execution, the possible
classes for a particular method call can be determined statically. When there is
a unique class (as will always be the case for invokestatic and invokespecial

instructions), we can replace the method call with a reference to the correct
method in the ResolveMethodCalls algorithm (line 6 of Algorithm 1). If
there is no unique class then we must determine the set of all possible classes
where it can be defined. In ResolveMethodCalls, we compute this set and
replace the method call with a choice over the class identifier of the object, the
branches of the choice corresponding to the possible methods.

In our strategy we do not handle recursion. This is not a strong restriction,
since it is in line with the constraints imposed by MISRA C. Detecting recursion
in object-oriented programs is complicated by dynamic dispatch, since mutual
recursion may or may not arise depending on dynamic dispatch. However, the
fact that SCJ does not allow dynamic class loading means that all the classes
are available during compilation, which means dynamic dispatch is constrained
by the classes available, making detection of potential recursion feasible.

SCJ also presents several issues of its own in terms of memory management
and scheduling. These are handled by the SCJVM services part of our model
However, there are many places where a program must interact directly with
the SCJ infrastructure, such as entering memory areas or registering an event
handler with its mission. To handle such interactions correctly we handle the



calls to methods that cause these interactions in a special way, allowing them to
interact with the Launcher and the SCJVM services.

In ResolveMethodCalls, we replace the calls to these special methods by
communications with other components of the SCJVM. Since the Launcher and
the SCJVM services remain unchanged throughout the strategy, these commu-
nications become calls to C functions in the SCJVM infrastructure. A similar
system could be applied to handle native method calls, though we view that as
future work since it is not a central part of the considerations for an SCJVM.
Native methods would be represented via a shallow embedding in Circus, in the
same way as the output of the compilation, but would be present before compi-
lation with special handling given to calls to them in the interpreter.

The real-time requirements on SCJ scheduling also impose predictability, so
that the bytecode instructions processed by the interpreter must appear to be
atomic. This is specified in our model by only permitting thread switches inbe-
tween bytecode instructions. This atomicity requirement is preserved throughout
our strategy, and the behaviour of polling for thread switches remains inbetween
the C code corresponding to each bytecode instruction.

However, an implementation is only required to have the same sequence
of externally visible events as our C code model. This means that the thread
switches will appear the same in a non-atomic implementation for most byte-
code instructions. The bytecode instructions which have effects visible outside
the Interpreter , which are the new instruction, the field access instructions, and
instructions that invoke the special methods mentioned above, interact with
shared memory and so do have an atomicity requirement. We can only verify
an implementation that ensures such operations are not interrupted, usually by
employing synchronisation. This is, of course, the case for icecap.

Our work can be used to verify an SCJVM that uses ahead-of-time compiling,
or as a specification to create such an implementation. Since the compiled C code
only uses core features of C and is compatible with MISRA C, it can be compiled
by most C compilers. So, existing work on verification of C compilers, such as
that of CompCert [13, 14], can be used to ensure correct execution of the SCJ
program. Since SCJ does not modify the syntax of Java, existing Java compilers
can be used to produce the bytecode handled by the strategy.

8 Conclusions

We have described our approach to algebraic compilation of SCJ bytecode. Com-
piler verification can be complex and, for some languages, compiler updates are
common. So, it can be easier to verify properties of the compiler output. In the
case of an SCJ compiler, however, SCJ is a controlled language and the core of
Java bytecode it uses is fairly stable, as is the only fully compliant SCJVM. In
addition, the algebraic approach allows for a modular compilation strategy com-
posed of individual compilation rules. Thus, extending or handling any changes
to SCJ would require only changing or adding some compilation rules. The parts
of the strategy not directly involved with any changes may be left unchanged.



This compilation strategy is the final component needed to create SCJ pro-
grams with assurance of correct execution. Other work that contributes to this
goal produces correct SCJ programs from Circus specifications [5, 6], and verifies
Java [9, 12, 15, 28, 29] and C [4, 13, 14] compilers. Together, these can ensure a
complete chain of verification from SCJ programs to executable code.

The mapping from bytecode to C code used in icecap can be used as a
basis for the construction of other compilers. A sound implementation can also
be obtained by a mechanisation of the strategy via tactics of refinement in a
rewriting engine such as Isabelle [19] or Maude [7].

The next stage of our work will be the formalisation and mechanisation of
correctness proofs for our strategy. The strategy must also be evaluated by ap-
plying it to some examples of SCJ programs to ensure it can handle a wide range
of SCJ programs. Further work in the future could include the extension of the
strategy to cover more Java bytecode instructions or additional transformations
such as code optimisations. Our work will eventually allow the formal verification
of a complete SCJVM implementation, an effort that has started in [10].
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