
Instant restore after a media failure
Caetano Sauer

TU Kaiserslautern, Germany
csauer@cs.uni-kl.de

Goetz Graefe
Google, Madison, WI, USA

goetzg@google.com

Theo Härder
TU Kaiserslautern, Germany

haerder@cs.uni-kl.de

Abstract—Media failures usually leave database systems un-
available for several hours until recovery is complete, especially
in applications with large devices and high transaction volume.
Previous work introduced a technique called single-pass restore,
which increases restore bandwidth and thus substantially de-
creases time to repair. Instant restore goes further as it permits
read/write access to any data on a device undergoing restore—
even data not yet restored—by restoring individual data segments
on demand. Thus, the restore process is guided primarily by the
needs of applications, and the observed mean time to repair is
effectively reduced from several hours to a few seconds.

This paper presents an implementation and evaluation of
instant restore. The technique is incrementally implemented on
a system starting with the traditional ARIES design for logging
and recovery. Experiments show that the transaction latency
perceived after a media failure can be cut down to less than
a second and that the overhead imposed by the technique on
normal processing is minimal. The net effect is that a few “nines”
of availability are added to the system using simple and low-
overhead software techniques.

I. INTRODUCTION

Advancements in hardware technology have significantly
improved the performance of database systems over the last
decade, allowing for throughput in the order of thousands
of transactions per second and data volumes in the order of
petabytes. Availability, on the other hand, has not seen drastic
improvements, and the research goal postulated by Jim Gray
in his ACM Turing Award Lecture of a system “unavailable
for less than one second per hundred years” [1] remains
an open challenge. Improvements in reliable hardware and
data center technology have contributed significantly to the
availability goal, but proper software techniques are required
to not only avoid failures but also repair failed systems as
quickly as possible. This is especially relevant given that a
significant share of failures is caused by human errors and
unpredictable defects in software and firmware, which are
immune to hardware improvements [2], [3]. In the context
of database logging and recovery, the state of the art has
unfortunately not changed much since the early 90’s, and no
significant advancements were achieved in the software front
towards the availability goal.

Instant restore is a technique for media recovery that drasti-
cally reduces mean time to repair by means of simple software
techniques. It works by extending the write-ahead logging
mechanism of ARIES [4] and, as such, can be incrementally
implemented on the vast majority of existing database systems.
The key idea is to introduce a different organization of the log
archive to enable efficient on-demand, incremental recovery

0

4

8

12

16

0 5 10 15 20 25 30 35

T
h
ro
u
g
h
p
u
t
(k
tp

s)

Time (minutes)

pre-failure post-restore

↓Media failure

Single-pass restore
Instant restore (small buffer)
Instant restore (large buffer)

Fig. 1: Effect of instant restore

of individual data pages. This allows transactions to access
recovered data from a failed device orders of magnitude
faster than state-of-the-art techniques, all of which require
complete restoration of the entire device before access to the
application’s working set is allowed.

The problem of inefficient media recovery in state-of-the-
art techniques, including ARIES and its optimizations, can be
attributed to two major deficiencies. First, the media recovery
process has a very inefficient random access pattern, which in
practice encourages excessive redundancy and high-frequency
incremental backups—solutions that only alleviate the problem
instead of eliminating it. The second deficiency is that the
recovery process is not incremental and requires full recovery
before any data can be accessed—on-demand schedules are
not possible and there is no prioritization scheme to make
most needed data available earlier. Previous work addressed
the first problem with a technique called single-pass restore
[5], while the present paper focuses on the second one.

The effect of instant restore is illustrated in Figure 1,
where transaction throughput is plotted over time and a media
failure occurs after 10 minutes. In single-pass restore, as
in ARIES, transaction processing halts until the device is
fully restored (the red line in the chart), while instant restore
continues processing transactions, using them to guide the
restore process (blue and green lines). In a scenario where
the application working set fits in the buffer pool (blue line),
there is actually no visible effect on transaction throughput.
We emphasize that traditional ARIES media recovery would
take much longer than the scale used in the diagram; therefore,
the baseline used to measure our present work is single-pass
restore. More detailed and comprehensive experiments are
presented in Section IV.

In the remainder of this paper, Section II describes related
work, both previous work leading to the current design as
well as competing approaches. Then, Section III describes

ar
X

iv
:1

70
2.

08
04

2v
1 

 [
cs

.D
B

] 
 2

6 
Fe

b 
20

17



TABLE I: Failure classes, their causes, and effects

Failure class Loss Typical cause Response
Transaction Single-transaction

progress
Deadlock Rollback

System Server process (in-
memory state)

Software fault,
power loss

Restart

Media Stored data Hardware fault Restore

Single page Local integrity Partial writes,
wear-out

Repair

the instant restore technique. Finally, Section IV presents an
empirical evaluation, while Section V concludes this paper.

A high-level description of instant restore was previously
published in a book chapter [6] among related instant recovery
techniques. The additional contribution here is a much more
detailed discussion of the design—including practical imple-
mentation aspects—as well as the first empirical evaluation of
the technique with an open-source prototype.

II. RELATED WORK

This section starts by establishing the scope of our work
with respect to failure classes considered in transaction recov-
ery literature and defining basic assumptions. Afterwards, we
discuss existing media recovery techniques, focusing mainly
on the limitations that will be addressed later in Section III.

A. Failure classes and assumptions

Database literature traditionally considers three classes of
database failures [7], which are summarized in Table I (along
with single-page failures, a fourth class to be discussed in
Section II-E). In the scope of this paper, it is important
to distinguish between system and media failures, which
are conceptually quite different in their causes, effects, and
recovery measures. System failures are usually caused by a
software fault or power loss, and what is lost—hence what
must be recovered—is the state of the server process in main
memory; this typically entails recovering page images in the
buffer pool (i.e., “repeating history” [4]) as well as lists of
active transactions and their acquired locks, so that they can
be properly aborted. The process of recovering from system
failures is called restart.

Instant restart [6] is an orthogonal technique that provides
on-demand, incremental data access following a system fail-
ure. While the goals are similar, the design and implementation
of instant restore require quite different techniques.

In a media failure, which is the focus here, a persistent
storage device fails but the system might continue running,
serving transactions that only touch data in the buffer pool
or on other healthy devices. If the system and media failures
happen simultaneously, or perhaps one as a cause of the other,
their recovery processes are executed independently, and, by
recovering pages in the buffer pool, the processes coordinate
transparently. Readers are referred to the literature for further
details [8].

The present work makes the same assumptions as most prior
research on database recovery. The log and its archival copy

sequential log scan

A B

A B A

B

Full backup

Incr.
backups Buffer poolReplacement

drive

load
backups

random
reads &
writes

fix B, replay update, unfix B
fix A, replay update, unfix A
fix A, replay update, unfix A
fix B, replay update, unfix B

.
.
.

...

minLSN

Fig. 2: Random access pattern of ARIES restore

reside on “stable storage”, i.e., they are assumed to never fail.
We consider media failure on the database device only, i.e.,
the permanent storage location of data pages. Recovery from
such failures requires a backup copy (possibly days or weeks
old) of the lost device and all log records since the backup
was taken; such log records may reside either in the active
transaction log or in the log archive. The process of recovering
from media failures is called restore. The following sections
briefly describe previous restore methods.

B. ARIES restore

Techniques to recover databases from media failures were
initially presented in the seminal work of Gray [9] and later
incorporated into the ARIES family of recovery algorithms [4].
In ARIES, restore after a media failure first loads a backup
image and then applies a redo log scan, similar to the redo
scan of restart after a system failure. Fig. 2 illustrates the
process, which we now briefly describe. After loading full and
incremental backups into the replacement device, a sequential
scan is performed on the log archive and each update is
replayed on its corresponding page in the buffer pool. A global
minLSN value (called “media recovery redo point” by Mohan
et al. [4]) is maintained on backup devices to determine the
begin point of the log scan.

Because log records are ordered strictly by LSN, pages are
read into the buffer pool in random order, as illustrated in
the restoration of pages A and B in Fig. 2. Furthermore, as
the buffer pool fills up, they are also written in random order
into the replacement device, except perhaps for some minor
degree of clustering. As the log scan progresses, evicted pages
might be read multiple times, also randomly. This mechanism
is quite inefficient, especially for magnetic drives with high
access latencies. Thus, it is no surprise that multiple hours of
downtime are required in systems with high-capacity drives
and high transaction rates [5].

Another fundamental limitation of the ARIES restore al-
gorithm is that it is not incremental, i.e., pages cannot be
restored to their most up-to-date version one-by-one and made



available to running transactions incrementally. As shown in
the example of Fig. 2, the last update to page A may be at
the very end of the log; thus, page A will be out-of-date until
almost the end of the long log scan. Some optimizations may
alleviate this situation (e.g., reusing checkpoint information),
but there is no general mechanism for incremental restora-
tion. Furthermore, even if pages could somehow be released
incrementally when their last update is replayed, the hottest
pages of the application working set are most likely to be
released only at the very end of the log scan, and probably not
even then, because they might contain updates of uncommitted
transactions and thus require subsequent undo. This leads to
yet another limitation of this log-scan-based approach: even
if pages could be restored incrementally, there is no effective
way to provide on-demand restoration, i.e., to restore most
important pages first.

Despite a variety of optimizations proposed to the basic
ARIES algorithm [4], [10], [11], none of them solves these
problems in a general and effective manner. In summary, all
proposed techniques that enable earlier access to recovered
data items suffer from the same problem: early access is only
provided for data for which early access is not really needed—
hot data in the application working set is not prioritized and
most accesses must wait for complete recovery.

Finally, industrial database systems that implement ARIES
recovery suffer from the same problems. IBM’s DB2 speeds up
log replay by sorting log records after restoring the backup and
before applying the log records to the replacement database
[12]. While a sorted log enables a more efficient access pat-
tern, incremental and on-demand restoration is not provided.
Furthermore, the delay imposed by the offline sort may be as
high as the total downtime incurred by the traditional method.

Oracle attempts to eliminate the overhead of reading incre-
mental backups by incrementally maintaining a full backup
image [13]. While this makes the access pattern slightly more
efficient, it does not address the deficiencies discussed earlier.

C. Replication

Given the extremely high cost of media recovery in existing
systems, replication solutions such as disk mirroring or RAID
[14], [15] are usually employed in practice to increase mean
time to failure. However, it is important to emphasize that,
from the database system’s perspective, a failed disk in a
redundant array does not constitute a media failure as long
as it can be repaired automatically. Restore techniques aim to
improve mean time to repair whenever a failure that cannot
be masked by lower levels of the system occurs. Therefore,
replication techniques can be seen largely as orthogonal to
media restore techniques as implemented in database recovery
mechanisms.

However, a substantial reduction in mean time to repair,
especially if done solely with simple software techniques,
opens many opportunities to manage the trade-off between op-
erational costs and availability. One option can be to maintain
a highly-available infrastructure (with whatever costs it already
requires) while availability is increased by deploying software

A

B

Buffer pool

random
reads

random
writes

...

minLSN

Page recovery index

A B

Fig. 3: Single-page repair

with more efficient recovery. Alternatively, replication costs
can be reduced (e.g., downgrading RAID-10 into RAID-5)
while maintaining the same availability. Such level of flexibil-
ity, with solutions tackling both mean time to failure and mean
time to repair, are essential in the pursuit of Gray’s availability
goal [1], especially considering the impact of human errors and
unpredictable failures that occur in large deployments [2], [3],
[16].

Early work on in-memory databases focused mainly on
restart after a system failure, employing traditional backup
and log-replay techniques for media recovery [17], [18]. The
work of Levi and Silberschatz [19] was among the first to
consider the challenge of incremental restart after a system
failure. While an extension of their work for media recovery
is conceivable, it would not address the efficiency problem
discussed in Section I. Thus, it would, in the best case and
with a more complex algorithm, perform no better than the
related work discussed later in Section II-E.

D. In-memory databases

Recent proposals for recovery on both volatile and non-
volatile in-memory systems usually ignore the problem of
media failures, employing the unspecific term “recovery”
to describe system restart only [20], [21], [22], [23], [24].
Therefore, recovery from media failures in modern systems
either relies on the traditional techniques or is simply not
supported, employing replication as the only means to main-
tain service upon storage hardware faults. As discussed above,
while relying on replication is a valid solution to increase
mean time to failure, a highly available system must also
provide efficient repair facilities. In this aspect, traditional
database system designs—using ARIES physiological log-
ging and buffer management—provide more reliable behavior.
Therefore, we believe that improving traditional techniques
for more efficient recovery with low overhead on memory-
optimized workloads is an important open research challenge.

E. Single-page repair

Single-page failures are considered a fourth class of
database failures [25], along with the other classes summarized
in Table I. It covers failures restricted to a small set of indi-
vidual pages of a storage device and applies online localized
recovery to that individual page instead of invoking media re-
covery on the whole device. The single-page repair algorithm,
illustrated in Fig. 3 (with backup and replacement devices



omitted for simplification), has two basic requirements: first,
the LSN of the most recent update of each page is known
(i.e., the current PageLSN value) without having to access
the page; second, starting from the most recent log record,
the complete history of updates to a page can be retrieved.
The former requirement can be provided with a page recovery
index—a data structure mapping page identifiers to their most
recent PageLSN value. Alternatively, the current PageLSN can
be stored together with the parent-to-child node pointer in a
B-tree data structure [26]. The latter requirement is provided
by per-page log record chains, which are straight-forward to
maintain using the PageLSN fields in the buffer pool. For each
page update, the LSN of the last log record to affect the same
page (i.e., the pre-update PageLSN value) is recorded in the
log record; this allows the history of updates do be derived by
following the resulting chain of backward pointers. We refer
to the paper for further details [25].

In principle, single-page repair could be used to recover
from a media failure, by simply repairing each page of the
failed device individually. One advantage of this technique is
that it yields incremental and on-demand restore, addressing
the second deficiency of traditional media recovery algorithms
mentioned in Section I. To illustrate how this would work in
practice, consider the example of Fig. 3. If the first page to
be accessed after the failure is A, it would be the first to
be restored. Using information from the page recovery index
(which can be maintained in main memory or fetched directly
from backups), the last red log record on the right side of the
diagram would be fetched first. Then, following the per-page
chain, all red log records until minLSN would be retrieved and
replayed in the backup image of page A, thus yielding its most
recent version to running transactions.

While the benefit of on-demand and incremental restore
is a major advantage over traditional ARIES recovery, this
algorithm still suffers from the first deficiency discussed in
Section I—namely the inefficient access pattern. The authors
of the original publication even foresee the application to
media failures [25], arguing that while a page is the unit
of recovery, multiple pages can be repaired in bulk in a
coordinated fashion. However, the access pattern with larger
restoration granules would approach that of traditional ARIES
restore—i.e., random access during log replay. Thus, while
the technique introduces a very useful degree of flexibility, it
does not provide a unified solution for the two deficiencies
discussed.

F. Single-pass restore

Our previous work introduced a technique called single-pass
restore, which aims to perform media recovery in a single
sequential pass over both backup and log archive devices
[5]. Eliminating random access effectively addresses the first
deficiency discussed in Section I. This is achieved by partially
sorting the log on page identifiers, using a stable sort to
maintain LSN order within log records of the same page. The
access pattern is essentially the same as that of a sort-merge
join: external sort with run generation and merge followed by

A B

A B
A

B

Full backup

Incr.
backups

Buffer pool Replacement
drive

sequential
merge join sequential

writes

fix A, replay all updates, unfix
fix B, replay all updates, unfix

.
.
.

...

...

...

Log archive runs

R0

R1

R2

Fig. 4: Single-pass restore

another merge between the two inputs—log and backup in the
media recovery case.

The idea itself is as old as the first recovery algorithms (see
Section 5.8.5.1 of Gray’s paper [9]) and is even employed
in DB2’s “fast log apply” [12]. However, the key advantage
of single-pass restore is that the two phases of the sorting
process—run generation and merge—are performed indepen-
dently: sorted runs are generated during the log archiving
process (i.e., moving log records from the latency-optimized
transaction log device into high-capacity, bandwidth-optimized
secondary storage) with negligible overhead; the merge phase,
on the other hand, happens both asynchronously as a main-
tenance service and also during media recovery, in order to
obtain a single sorted log stream for recovery. Importantly,
merging runs of the log archive and applying the log records
to backed-up pages can be done in a single sequential pass,
similar to a merge join. The process is illustrated in Fig. 4.
We refer to the original publication for further details [5].

Having addressed the access pattern deficiency of media
recovery algorithms, single-pass restore still leaves open the
problem of incremental and on-demand restoration. Never-
theless, given its superiority over traditional ARIES restore
(see [5] and [6] for an in-depth discussion), it is a promising
approach to use as starting point in addressing the two defi-
ciencies in a unified way. Therefore, as mentioned in Section I,
single-pass restore is taken as the baseline for the present work.

G. Summary of related work

As the previous sections discussed, none of the state-of-the-
art media recovery schemes is able to effectively eliminate
the two main deficiencies of traditional ARIES: the inefficient
access pattern and the lack of early access to important data
before complete recovery. Ideally, a restore mechanism would
combine the incremental availability and on-demand schedule
provided by single-page repair with the efficient, bulk access
pattern of single-pass restore. Moreover, this combination
should allow for a continuous adjustment between these two
behaviors and a simple adaptive technique should make the
best decision dynamically based on system behavior. These
challenges are addressed by instant restore, which we describe
next.



III. INSTANT RESTORE

The main goal of instant restore is to preserve the effi-
ciency of single-pass restore while allowing more fine-granular
restoration units (i.e., smaller than the whole device) that can
be recovered incrementally and on demand. We propose a
generalized approach based on segments, which consist of
contiguous sets of data pages. If a segment is chosen to be
as large as a whole device, our algorithm behaves exactly
like single-pass restore; on the other extreme, if a segment
is chosen to be a single page, the algorithm behaves like
single-page repair. As discussed in this section and evaluated
empirically in Section IV, the optimal restore behavior lies
somewhere between these two extremes, and simple adaptive
techniques are proposed to robustly deliver good restore per-
formance without turning knobs manually.

This section is divided in four parts: first, we introduce
the log data structure employed to provide efficient access
to log records belonging to a given segment or page; after
that, we present the restore algorithm based on this data
structure; then, we discuss techniques to choose the best
segment size dynamically and thus optimize restore behavior;
finally, we discuss the issue of coordinating processes of
different recovery modes (e.g., restart and restore at the same
time) as well as concurrent threads of the same recovery mode
(e.g., multiple restore threads).

A. Indexed log archive

In order to restore a given segment incrementally, instant
restore requires efficient access to log records pertaining to
pages in that segment. In single-page repair, such access is
provided for individual pages, using the per-page chain among
log records [25]. As already discussed, this is not efficient for
restoration units much larger than a single page. Therefore,
we build upon the partially sorted log archive organization
introduced in single-pass restore [5].

In instant restore, the partially sorted log archive is extended
with an index. The log archiving process sorts log records
in an in-memory workspace and saves them into runs on
persistent storage. These runs must then be indexed, so that log
records of a given page or segment identifier can be fetched
directly. Sorting and indexing of log records is done online and
without any interference to transaction processing, in addition
to standard log archiving tasks such as compression.

Fig. 5 illustrates indexed log archive runs and a range
lookup for a segment containing pages G to K. As explained
in previous work [5], runs must are mapped to contiguous
LSN ranges to simplify log archiving restart and garbage
collection. In an index lookup for instant restore, the set of
runs to consider would be restricted by the given minLSN
(see Section II-B) of the backup image, since runs older than
that LSN are not needed. Furthermore, bloom filters can be
appended to each run to restrict this set even further. The
result of the lookup in each indexed run is then fed into a
merge process that delivers a single stream of log records
sorted primarily by page identifier and secondarily by LSN.

G K G K G KA Z A Z A Z

indexed
runs

merge

log replay
on G-K

Fig. 5: Indexed log archives and their use in instant restore

This stream can then be used by the restore algorithm to replay
updates on backed-up images of segments.

Multiple choices exist for the physical data structure of
the indexed log archive. Ideally, the B-tree component of the
indexing subsystem can be reused, but there is an important
caveat in terms of providing atomicity and durability to this
structure. A typical index relies on write-ahead logging, but
that is not an option for the indexed log archive because it
would introduce a kind of self-reference loop—updates to the
log data structure itself would have to be logged and used
later on for recovery. This self-reference loop could be dealt
with by introducing special logging and recovery modes (e.g.,
a separate “meta”-log for the indexed log archive), but the
resulting algorithm would be too cumbersome.

A more viable solution is to rely on an atomic data structure,
like the shadow-based B-tree proposed by Rodeh [27]. Since
the log archive is mostly a read-only data structure, where
the only writes are bulk appends or merges, such shadowing
approaches are perfectly suitable. In our prototype, we chose
a different approach, where each partition of the log archive
is maintained in its own read-only file; temporary shadow
files are then used for merges and appends. In this scheme,
atomicity is provided by the file rename operation, which is
atomic in standard filesystems [28].

B. Restore algorithm

When a media failure is detected, a restore manager compo-
nent is initialized and all page read and write requests from the
buffer pool are intercepted by this component. The diagram
in Fig. 6 illustrates the interaction of the restore manager
with the buffer pool and all persistent devices involved in the
restore process: failed and replacement devices, log archive,
and backup. For reasons discussed in previous work [5],
incremental backups are made obsolete by the partially sorted
log archive; thus, the algorithm performs just as well with full
backups only. Nevertheless, incremental backups can be easily
incorporated, and the description below considers a single full
backup without loss of generality.

In the following discussion, the numbers in parentheses
refer to the numbered steps in Fig. 6. The restore manager
keeps track of which segments were already restored using
a segment recovery bitmap, which is initialized with zeros.
When a page access occurs, the restore manager first looks up
its segment in the bitmap (1). If set to one, it indicates that
the segment was already restored and can be accessed directly



Failed device Replacement device

Segments

Buffer
pool

Bitmap

Scheduler

Restore

Backup

Log archive

1. Segment
request

2b. (Bit = 0)
Enqueue 

2a. (Bit = 1)
Read page

3. Next
segment

5. Probe

4. Fetch6. Write

7. Set bit

Restore manager

Fig. 6: Instant restore flow chart

on the replacement device (2a). If set to zero, a segment
restore request is enqueued into a restore scheduler (2b), which
coordinates the restoration of individual segments (3).

To restore a given segment, an older version is first fetched
from the backup directly (4). This is in contrast to ARIES
restore, which first loads entire backups into the replacement
device and then reads pages from there [4]. This has the
implication that backups must reside on random-access de-
vices (i.e., not on tape) and allow direct access to individual
segments, which might require an index if backup images are
compressed. These requirements, which are also present in
single-page repair [25], seem quite reasonable given the very
low cost per byte of current high-capacity hard disks. For
moderately-sized databases, it is even advisable to maintain
log archive and backups on flash storage.

While the backed-up image of a segment is loaded, the
indexed log archive data structure is probed for the log records
pertaining to that segment (5). This initializes the merge logic
illustrated in Fig. 5. Then, log replay is performed to bring the
segment to its most recent state, after which it can be written
back into a replacement device (6).

Finally, once a segment is restored, the bitmap is updated
(7) and all pending read and write requests can proceed.
Typically, a requested page will remain in the buffer pool after
its containing segment is restored, so that no additional I/O
access is required on the replacement device.

All read and write operations described above—log
archive index probe, segment fetch, and segment write after
restoration—happen asynchronously with minimal coordina-
tion. The read operations are essentially merged index scans—
a very common pattern in query processing [29]. The write of a
restored segment is also easily made asynchronous, whereby
the only requirement is that marking a segment as restored
on the bitmap, and consequently enabling access by waiting
threads, be done by a callback function after completion of
the write.

To illustrate the access pattern of instant restore, similarly
to the diagrams in Section II, Fig. 7 shows an example
scenario with three log archive runs and two pages, A and
B, belonging to the same segment. The main difference to
the previous diagrams is the segment-wise, incremental access

A B
A BA

B

(Indexed)
Full backup

Buffer pool Replacement
drive

segment-wise
merge join

segment-wise
writes

... ... ...

Indexed log archive runs

R0 R1 R2

Fig. 7: Instant restore

pattern, which delivers the efficiency of pure sequential access
with the responsiveness of on-demand random reads.

Using this mechanism, user transactions accessing data
either in the buffer pool or on segments already restored
can execute without any additional delay, whereby the media
failure goes completely unnoticed. Access to segments not yet
restored are used to guide the restore process, triggering the
restoration of individual segments on demand. As such, the
time to repair observed by transactions accessing data not yet
restored is multiple orders of magnitude lower than the time to
repair the whole device. Furthermore, time to repair observed
by an individual transaction is independent of the total capacity
of the failed device. This is in contrast to previous methods,
which require longer downtime for larger devices.

C. Latency vs. bandwidth trade-off

One major contribution of instant restore is that it gener-
alizes single-page repair and single-pass restore, providing a
continuum of choices between the two. In order to optimize
restore behavior, the restore manager must adaptively and
robustly choose the best option within this continuum. In
practice, this boils down to choosing the correct granularity
of access to both backup and log archive, in order to balance
restore latency and bandwidth.

Restore latency is defined as the additional delay imposed
on the page reads and writes of an individual transaction due
to restore operations. Hence, it follows that if a single page can
be read and restored in the same time it takes to just read it, the
restore latency is zero—this is the “gold standard” of restore
performance and availability. For a single transaction, restore
latency can be reduced by setting a small segment size—e.g.,
a single page. However, this is not the optimal behavior when
considering average restore latency across all transactions.
Therefore, restore bandwidth, i.e., the number of bytes restored
per second, must also be optimized. The optimized restore
behavior is illustrated in Fig. 8: in the beginning of the restore
process, pages which are needed more urgently should be
restored first, so that restore latency is decreased; towards the
end, less and less transactions must wait for restore, so the
system can effectively increase restore bandwidth while a low
restore latency is maintained.

It is also worth noting that devices with low latency and
inherent support for parallelism, e.g., solid-state drives, make
these trade-offs less pronounced. This does not mean, however,



that instant restore is any less significant for such devices—a
point which we would like to emphasize with the next two
paragraphs.

As discussed earlier, previous restore techniques suffered
from two deficiencies: inefficient access pattern and lack
of incremental and on-demand recovery. Solid-state devices
shorten the efficiency gap between restore algorithms with se-
quential and random access, but this gap will never be entirely
closed—if anything, thanks to the locality and predictability
of sequential access.

As for the second deficiency, low-latency devices directly
contribute to the reduction of restore latency, because the time
to recover a single segment is reduced with faster access to
backup and log archive runs. Therefore, with instant restore,
any improvement on I/O latency directly translates into lower
time to repair—as perceived by a single transaction—and
thus higher availability. Non-incremental techniques, where
the restore latency is basically the time for complete recovery,
do not benefit as much from low-latency storage hardware
when it comes to improving restore latency.

In terms of latency and bandwidth trade-off in the instant
restore algorithm, the first choice to be made is the segment
size. In order to simplify the tracking of restore progress with
a simple bitmap data structure, a fixed segment size must be
chosen when initializing the restore manager. We recommend
choosing a minimum size such that acceptable bandwidth is
delivered even for purely random access, but not too many
segments exist such that the bitmap would be too large; e.g.,
1 MB seems like a reasonable choice in practice.

In order to exploit opportunities for increasing bandwidth,
multiple contiguous segments should be restored in a single
step when applicable. One technique to achieve that dynami-
cally and adaptively is to simply run single-pass restore con-
currently with instant restore. Since the two processes rely on
the same algorithm, no additional code complexity is required.
Furthermore, the coordination between them is essentially the
same as that between concurrent instant restore processes—
they both rely on the buffer pool and the segment recovery
bitmap. Section III-D exposes details of that coordination.

Alternatively, the scheduler component of the restore man-
ager can employ a preemptive policy, where multiple con-
tiguous segments are restored as long as no requests arrive
in its incoming queue. As shown empirically in Section IV,
this simple technique automatically prioritizes latency in the
beginning of the restoration process, when the most important
pages are being requested; then, as less and less transactions
access data not yet restored, bandwidth is increased gradually
with larger restoration units. This technique essentially delivers
the behavior presented in Fig. 8.

In terms of log archive access, the size of initial runs
poses an important trade-off between minimizing merge effort
and minimizing the lag between generating a log record and
persisting it into the log archive. In order to generate larger
runs, log records must be kept longer in the in-memory sort
workspace. On the other hand, correct recovery requires that
all log records up to the time of device failure be properly

restore latency

restore bandwidth

time since media failure

Fig. 8: Restore behavior optimized for latency and bandwidth

archived before restore can begin; thus, smaller initial runs
imply lower restore latency for the first post-failure trans-
actions. While this choice is important, simple techniques
largely mitigate these concerns. One option is to enable
access to log records while they are still in the main-memory
sort workspace. This is possible because, as discussed in
Section II-A, a media failure does not incur loss of the server
process and its in-memory contents. Alternatively, single-page
repair could be used to replay log records that are not yet
archived when a segment is restored. As with concurrent
single-pass restore, these individual recovery techniques are
orthogonal and can thus be applied concurrently with minimal
coordination. Using the techniques sketched above, the lag
incurred by the archiving process would be minimized.

Besides these concerns specific to instant restore, estab-
lished techniques to choose initial run size and merge fan-
in based on device characteristics directly apply [29]. This is
mainly because the access pattern of instant restore basically
resembles that of an external sort followed by a merge join.

D. Coordination of recovery actions

As mentioned briefly above, the segment recovery bitmap
enables the coordination of concurrent restore processes, al-
lowing configurable scheduling policies. Another important
aspect to be considered is the coordination among restore and
the other recovery modes summarized in Table I. This section
discusses how to coordinate all such recovery actions without
violating transactional consistency.

The first failure class—transaction failure—is the easiest
to handle because its recovery is made transparent to the
other classes thanks to rollback by compensation actions, as
introduced in ARIES [4] and refined in the multi-level trans-
action model [8]. The implication is that recovery for the other
failure classes must distinguish only between uncommitted
and committed transactions. Transactions that abort are simply
considered committed—it just happens that they revert all
changes they made, i.e., they “commit nothing”. Therefore, for
the purposes of instant restore, transactions that issue an abort
behave exactly like any other in-flight transaction, including
those that started after the failure: they hold locks to protect
their reads and updates and access data through the buffer
pool, which possibly triggers segment restoration as described
in Section III.

As for the other three classes, recovery coordination using
the techniques presented in this work requires a distinction



between two general forms of recovery: using a transaction
log and using the indexed log archive. The former is assumed
to be a linear data structure ordered strictly by LSN and
containing embedded chains among log records of the same
transaction and of the same page—whether it resides on active
or archive devices does not matter for this discussion. Single-
page repair and restart after a system failure both use the
transaction log, and whether the old page image comes from
a backup or from the persistent database also does not matter
for this discussion. Since they perform log replay on a single
page at a time, they are coordinated using the fix and unfix
operations of the buffer pool. Because replaying updates on
a page requires an exclusive latch, the same page cannot be
recovered concurrently by different recovery processes of any
kind. Furthermore, tracking the page LSN of the fixed buffer
pool frame guarantees that updates are never replayed more
than once and that no updates are missed. This mechanism
ensures correctness of concurrent restart and single-page repair
processes.

The second form of recovery—using the indexed log
archive—is used solely for instant restore at the segment
granularity. Here, a segment, whose size is fixed when a failure
is detected, is the unit of recovery, and coordination relies
on the segment recovery bitmap. Using two states—restored
and not restored—avoids restoring a segment more than once
in sequence, but additional measures are required to prevent
that from happening concurrently. One option is to simply
employ a map with three states, the additional one being
simply “undergoing restore”. A thread encountering the “not
restored” state attempts to atomically change it to “undergoing
restore”: if it succeeds, it initiates the restore request for the
segment in question; otherwise, it simply waits until the state
changes to “restored”.

Alternatively, coordination of segment restore requests can
reuse the lock manager. A shared lock is acquired before
verifying the bitmap state, and, in order to restore a segment,
the shared lock must be upgraded to exclusive with an uncon-
ditional request. The thread that is granted the upgrade is then
in charge of restoration, while the others will automatically
wait and be awoken by the lock protocol, after which they see
the “restored” state.

While the segment recovery bitmap provides coordination
of concurrent restore processes, the buffer fix protocol is
again used to coordinate restore with the other recovery
modes. Concomitant restart and restore processes may occur
in practice because some failures tend to cause related failures.
A hardware fault, for instance, may not only corrupt persistent
data but also cause an operating system crash. In this case, the
recovery processes will be automatically coordinated with the
methods described above. Restart recovery will fix pages in
the buffer pool prior to performing any redo or undo action.
The fix call, in turn, will issue a read request on the device.
If the device has failed, the restore manager will intercept this
request and follow the restore protocol described above. Only
after the containing segment is restored, the fix call returns.
After that, the page may still require log replay in the redo

phase of restart, which is fine—the two recovery modes will
simply replay different ranges of the page’s history.

E. Summary of instant restore

Instant restore is enabled by an indexed log archive data
structure that can be generated online with very low overhead.
By partitioning data pages into segments, the recovery algo-
rithm provides incremental and on-demand access to restored
data. The algorithm requires a simple bitmap data structure to
keep track of progress and coordinate restoration of individual
segments under configurable scheduling policies.

The generalized nature of instant restore enables a wide
range of choices for trading restore latency and bandwidth.
These choices can be made adaptively and robustly by the
system using simple techniques. Moreover, while instant re-
store mitigates many of the issues with high-capacity hard
disks, making them a more attractive option, it still benefits
greatly from modern storage devices such as solid-state drives.
Therefore, the technique is equally relevant for improving
availability with any kind of storage hardware.

Lastly, the restore processes can be easily coordinated with
processes from other recovery modes—the independence of
these modes and the integrated coordination using the buffer
pool ensure transaction consistency in the presence of an
arbitrary mix of failure classes.

IV. EXPERIMENTS

Our experimental evaluation covers three main measures of
interest during recovery from a media failure: restore latency,
restore bandwidth, and transaction throughput. Moreover, we
evaluate the overhead of log archiving with sorting and index-
ing in order to assess the cost of instant restore during normal
processing. Before presenting the empirical analysis, a brief
summary of our experimental environment is provided.

A. Environment

We implemented instant restore in a fork of the Shore-MT
storage manager [30] called Zero. The code is available as
open source 1. The workload consists of the TPC-C benchmark
as implemented in Shore-MT, but adapted to use the Foster B-
tree [31] data structure for both table and index data.

All experiments were performed on dual six-core CPUs with
two thread contexts each, yielding support for 24 hardware
threads. The system has 100 GB of high-speed RAM and
several Samsung 840 Pro 250 GB SSDs connected to a
dedicated I/O controller. The operating system is Ubuntu
Linux 14.04 with Kernel 3.13.0-68 and all code is compiled
with gcc 4.8 and -O3 optimization.

The experiments all use the same workload, with media
failure and recovery set up as follows. Initial database size is
100 GB, with full backup and log archive of the same size—
i.e., recovery starts from a full backup of 100 GB and must
replay roughly the same amount of log records. Log archive
runs are a little over 1.5 GB in size, resulting in 64 inputs in
the restore merge logic. All persistent data is stored on SSDs

1http://github.com/caetanosauer/zero

http://github.com/caetanosauer/zero


1

2

4

8

16

32

64

128

0 5 10 15 20 25 30 35

L
a
te
n
cy

(m
s)

Time (min)

45 GB
40 GB
35 GB
30 GB

Fig. 9: Transaction latency observed during instant restore:
time series of average values.

and 24 hardware threads are used at all times. The benchmark
starts with a warmed-up buffer pool, whose total size we vary
in the experiments.

B. Restore latency

Our first experiment evaluates restore latency, as defined
in Section III, by analyzing the total latency of individual
transactions before and after a media failure. The hypothesis
under test is that average transaction latency immediately
following a media failure is in the order of a few seconds
or less, after which is gradually decreases to the pre-failure
latency. Furthermore, with larger memory, i.e., where a larger
portion of the working set fits in the buffer pool, average
latency should remain at the pre-failure level throughout the
recovery process.

The results are shown in Fig. 9. After ten minutes of normal
processing, during which the average latency is 1–2 ms, a
media failure occurs. The immediate effect is that average
transaction latency spikes up (to about 100 ms in the buffer
pool size of 30 GB) but then decreases linearly until pre-failure
latency is reestablished. For the largest buffer pool size of
45 GB, there is a small perturbation in the observed latency,
but the average value seems to remain between 1 and 2 ms.
From this, we can conclude that for any buffer pool size above
45 GB, a media failure goes completely unnoticed.

For this experiment, we also look at the distribution of in-
dividual latencies, in order to analyze the worst-case behavior.
As the plot on Fig. 10 shows, the largest latency observed by a
single transaction, with the smallest buffer pool, is 5.1 s. The
total recovery time, which is shown later in Fig. 12, is in the
range of 17–25 minutes—this is the restore latency incurred
by single-pass restore.

These results successfully confirm our hypothesis: restore
latency is reduced from 25 minutes to 5 seconds in the
worst case, which corresponds to two orders of magnitude
or two additional 9’s of availability. For the average case,
still considering the smallest buffer pool, another order of
magnitude is gained with latency dropping below 100 ms.

Note that the average restore latency is independent of total
device capacity, and thus of total recovery time. Therefore, the
availability improvement could be in the order of four or five
orders of magnitude in certain cases. This would be expected,

10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101

30 GB 35 GB 40 GB 45 GB

L
a
te

n
cy

(s
ec

)

Buffer size

5.102s 3.084s

0.008s 0.008s

Fig. 10: Transaction latency observed during instant restore:
distribution of individual values.

0

50

100

150

200

250

0 5 10 15 20

B
a
n
d
w
id
th

(M
B
/
s)

Time (min)

45 GB
40 GB
35 GB
30 GB

Fig. 11: Bandwidth observed through the restore process.

for instance, for very large databases (in the order of terabytes)
stored on relatively low-latency devices. In these cases, the gap
between a full sequential read and a single random read—
hence, between mean time to repair with single-pass restore
and with instant restore—is very pronounced.

C. Restore bandwidth

Next, we evaluate restore bandwidth for the same exper-
iment described earlier for restore latency. The hypothesis
here is that, in general, restore bandwidth gradually increases
throughout the recovery process until it reaches the bandwidth
of single-pass restore. From these two general behaviors, two
special cases are, again, the small and large buffer pools.
In the former, bandwidth may not reach single-pass speeds
due to prioritization of low latency for the many incoming
requests (recall that each buffer pool miss incurs a read on the
replacement device, which, in turn incurs a restore request). In
the latter case, restore bandwidth should be as large as single-
pass restore.

Fig. 11 shows the results of this experiment for four buffer
pool sizes. For the smallest buffer pool of 30 GB, restore
bandwidth remains roughly constant in the first 15 minutes.
This indicates that during this initial period, most segments
are restored individually in response to an on-demand request
resulting from a buffer pool miss. As the buffer size increases,
the rate of on-demand requests decreases as restore progresses,
resulting in more opportunities for multiple segments being
restored at once. In all cases, as predicted in the diagram of
Fig. 8, restore bandwidth gradually increases throughout the



T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s

(×
1
0
0
)

Time (min)

Buffer size = 20 GB

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50 55

1

2

3

4

5

6

7

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 25 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50
100

101

102

103

104

105

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 35 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45
100

101

102

103

104

105

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 50 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40
100

101

102

103

104

105

Throughput Page reads Pre-failure throughput

Fig. 12: Online restore and its impact on transaction throughput at different buffer pool sizes.

recovery process, reaching the maximum speed of 240 MB/s
towards the end in the larger buffer pool sizes.

D. Transaction throughput

The next experiments evaluate how media failure and
recovery impact transaction throughput with instant restore.
We take the same experiment performed in the previous
sections and look at transaction throughput for each buffer pool
size individually. As instant restore progresses, transactions
continue to access data in the buffer pool, triggering restore
requests for each page miss. Therefore, we expect that the
larger the buffer pool is (i.e., more of the working set fits
into main memory), the less impact a media failure has on
transaction throughput. This effect was already presented in
the diagram of Fig, 1—the present section analyzes that in
more detail.

Fig. 12 presents the results. In the four plots shown,
transaction throughput is measured with the red line on the
left y-axis. At minute 10, a media failure occurs, after which
a green straight line shows the pre-failure average throughput.
The number of page reads per second is shown with the blue
line on the right y-axis. Moreover, total recovery time, which
also varies depending on the buffer pool size, is also shown
as the shaded interval on the x-axis.

The goal of instant restore in this experiment is to re-
establish the pre-failure transaction throughput (i.e., the dotted

green line) as soon as possible. Similar to the evaluation on
previous experiments, our hypothesis is that this occurs sooner
the larger the buffer pool is.

The results show that for a small buffer pool of 20 GB,
transaction throughput drops substantially, and it only regains
the pre-failure level at the very end of the recovery process. As
the buffer size is increased to 25 and then 35 GB, pre-failure
throughput is re-established at around minute 7, i.e., 1/3 of
the total recovery time. Lastly, for the largest buffer pool of
50 GB, the media failure does not produce any noticeable
slowdown, as predicted in our hypothesis..

E. Log archiving overhead

The overhead imposed on running transactions by sorting
and indexing log records in the log archiving procedure is
measured in the experiment of Figure 13. The chart on the
left side shows average transaction throughput of a TPC-C
execution using two variants of log archiving: with sorting
and indexing, as required by instant restore, vs. simply copying
files. The chart on the right side measures CPU utilization. The
charts show distributions of values using a candlestick chart;
the box in the middle covers data points between the first and
third quartiles of the distribution (i.e., half of the observations),
while the extremities show the minimum a maximum values;
the line in the middle of the box shows the median value.



7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

12.5
13

Copy Sort

T
h
ro
u
g
h
p
u
t
(k
tp
s)

15
20
25
30
35
40
45
50
55
60
65
70

Copy Sort

C
P
U

u
ti
li
za
ti
o
n
(%

)
Fig. 13: Overhead of log archiving

As the chart on the left side shows, there is a small
difference between a simplified implementation of traditional
log archiving (i.e., plain filesystem copy) and log archiving
with sorting and indexing. The difference between the median
points is less than 3% (i.e., 11.2 vs. 10.9 ktps). The CPU
utilization measurement shows that it is proportional to trans-
action throughput, leading to the conclusion that the archiving
process does not consume too much CPU. Furthermore, note
that the “copy” variant is quite primitive, since an industrial-
strength implementation would incur additional overhead by
compressing log records. In that case, the overhead of our
technique could be even less than 3%.

F. Summary of experiments

We have shown that instant restore greatly improves upon
the baseline single-pass restore algorithm. Restore latency,
which is the additional latency incurred on transactions by
media recovery actions, is cut down by multiple orders of mag-
nitude, which directly translates into the same improvement
on availability. Restore bandwidth adaptively and gradually
approximates the maximum sequential speed as the recov-
ery process progresses. The same gradual improvement is
observed for transaction throughput during media recovery.
These measures are equally affected by an increase in buffer
pool size, up to a point where media failures cause no
disruption at all on running transactions. Lastly, we have
shown that the online archiving procedure required by instant
restore induces very little overhead (3% or less) on normal
processing—a small price to pay for the vast improvement in
availability.

V. CONCLUSIONS

Instant restore improves perceived mean time to repair and
thus database availability in the presence of media failures.
We identified two main deficiencies with traditional recovery
techniques, such as the ARIES design [4]: (i) media recovery
is very inefficient due to its random access pattern on database
pages, which means that time to repair is unacceptably long;
and (ii) data on a failed device cannot be accessed before
recovery is completed. The first deficiency was addressed in
our previous work on single-pass restore [5], which introduces
a partial sort order on the log archive, converting the random
access pattern of log replay into sequential.

The second deficiency is addressed with the instant restore
technique, which was first described in earlier work [32] and
discussed in more detail, implemented, and evaluated in this
paper. By generalizing single-pass restore and other recovery
methods such as single-page repair, instant restore is the
first media recovery method to effectively eliminate the two
deficiencies discussed. In comparison with traditional ARIES
media restore, instant restore delivers not only the benefits
of single-pass restore (i.e., substantially higher bandwidth and
therefore shorter recovery time), but also much quicker access
(e.g., seconds instead of hours) to the application working set
after a failure.

Instant restore introduces a new organization of the log
archive data structure, where log records are partially sorted
and indexed. Maintenance of this data structure incurs very
little overhead and is performed continuously and online.

Our empirical analysis shows that instant restore is able to
effectively deliver the efficiency of single-pass restore while
cutting down restore latency by multiple orders of magnitude.
The experiments also analyze the impact of a failure on
transaction throughput, which largely depends on the size
of the working set in relation to the buffer pool size. The
results confirm our expectation that the pre-failure transaction
throughput is re-established earlier as memory size increases—
up to a point where a media failure goes completely unnoticed.
The net effect is that availability is greatly improved and
the number of missed transactions due to media failures is
significantly reduced.

REFERENCES

[1] J. Gray, “What next?: A dozen information-technology research goals,”
J. ACM, vol. 50, no. 1, pp. 41–57, 2003.

[2] ——, “Why do computers stop and what can be done about it?” in
Symp. on reliability in distributed software and database systems, 1986,
pp. 3–12.

[3] D. Patterson et al., “Recovery-oriented computing (ROC): Motiva-
tion, definition, techniques, and case studies,” UCB//CSD-02-1175, UC
Berkeley, Tech. Rep., 2002.

[4] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” ACM Trans.
Database Syst., vol. 17, no. 1, pp. 94–162, 1992.

[5] C. Sauer, G. Graefe, and T. Härder, “Single-pass restore after a media
failure,” in Proc. BTW, LNI 241, 2015, pp. 217–236.

[6] G. Graefe, W. Guy, and C. Sauer, Instant Recovery with Write-Ahead
Logging: Page Repair, System Restart, Media Restore, and System
Failover, Second Edition, ser. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2016.

[7] T. Härder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Comput. Surv., vol. 15, no. 4, pp. 287–317, 1983.

[8] G. Weikum and G. Vossen, Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann, 2002.

[9] J. Gray, “Notes on data base operating systems,” in Operating Systems,
An Advanced Course, 1978, pp. 393–481.

[10] C. Mohan and I. Narang, “An Efficient and Flexible Method for
Archiving a Data Base,” SIGMOD Rec., vol. 22, no. 2, pp. 139–146,
Jun. 1993.

[11] C. Mohan, K. Treiber, and R. Obermarck, “Algorithms for the manage-
ment of remote backup data bases for disaster recovery,” in Proc. ICDE,
1993, pp. 511–518.

[12] D. J. Haderle and T. Majithia, “Fast log apply,” Sep. 11 2001, US Patent
6,289,355.



[13] Oracle Corporation, “RMAN Incremental Backups,” oracle Database
Documentation 10g, Sect. 4.4, 2015.

[14] D. Bitton and J. Gray, “Disk Shadowing,” in Proc. VLDB, 1988, pp.
331–338.

[15] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: high-performance, reliable secondary storage,” ACM Comput.
Surv., vol. 26, no. 2, pp. 145–185, 1994.

[16] M. Baker, M. A. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Ma-
niatis, T. J. Giuli, and P. P. Bungale, “A fresh look at the reliability of
long-term digital storage,” in Proc. EuroSys, 2006, pp. 221–234.

[17] M. H. Eich, “A classification and comparison of main memory database
recovery techniques,” in Proc. ICDE, 1987, pp. 332–339.

[18] T. J. Lehman and M. J. Carey, “A recovery algorithm for A high-
performance memory-resident database system,” in Proc. SIGMOD,
1987, pp. 104–117.

[19] E. Levy and A. Silberschatz, “Incremental recovery in main memory
database systems,” IEEE Trans. Knowl. Data Eng., vol. 4, no. 6, pp.
529–540, 1992.

[20] P. Larson, M. Zwilling, and K. Farlee, “The Hekaton Memory-Optimized
OLTP Engine,” IEEE Data Eng. Bull., vol. 36, no. 2, pp. 34–40, 2013.

[21] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker, “Rethinking
main memory OLTP recovery,” in Proc. ICDE, 2014, pp. 604–615.

[22] A. Kemper and T. Neumann, “Hyper: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots,” in Proc.
ICDE, 2011, pp. 195–206.

[23] J. Arulraj, A. Pavlo, and S. Dulloor, “Let’s talk about storage & recovery

methods for non-volatile memory database systems,” in Proc. SIGMOD,
2015, pp. 707–722.

[24] I. Oukid, D. Booss, W. Lehner, P. Bumbulis, and T. Willhalm, “SOFORT:
a hybrid SCM-DRAM storage engine for fast data recovery,” in Proc.
DaMoN, 2014, pp. 8:1–8:7.

[25] G. Graefe and H. A. Kuno, “Definition, Detection, and Recovery of
Single-Page Failures, a Fourth Class of Database Failures,” PVLDB,
vol. 5, no. 7, pp. 646–655, 2012.

[26] G. Graefe, H. A. Kuno, and B. Seeger, “Self-diagnosing and self-healing
indexes,” in Proc. DBTest, 2012, p. 8.

[27] O. Rodeh, “B-trees, shadowing, and clones,” ACM Trans. Storage, vol. 3,
no. 4, 2008.

[28] GLIBC, “The GNU C Library Reference Manual,” Available at:
http://www.gnu.org/software/libc/manual/html node/Renaming-Files.
html, 2014, accessed: 2014-10-06.

[29] G. Graefe, “Query Evaluation Techniques for Large Databases,” ACM
Comput. Surv., vol. 25, no. 2, pp. 73–170, 1993.

[30] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi,
“Shore-MT: a scalable storage manager for the multicore era,” in Proc.
EDBT, 2009, pp. 24–35.

[31] G. Graefe, H. Kimura, and H. A. Kuno, “Foster b-trees,” ACM Trans.
Database Syst., vol. 37, no. 3, p. 17, 2012.

[32] G. Graefe, W. Guy, and C. Sauer, Instant Recovery with Write-Ahead
Logging: Page Repair, System Restart, and Media Restore, ser. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2014.

http://www.gnu.org/software/libc/manual/html_node/Renaming-Files.html
http://www.gnu.org/software/libc/manual/html_node/Renaming-Files.html

