
ar
X

iv
:1

70
9.

03
18

7v
1 

 [
cs

.N
E

] 
 1

0 
Se

p 
20

17

Applying ACO To Large Scale TSP Instances

Darren M. Chitty

Department of Computer Science,
University of Bristol, Merchant Venturers Bldg,

Woodland Road, BRISTOL BS8 1UB
darrenchitty@googlemail.com

Abstract. Ant Colony Optimisation (ACO) is a well known metaheuris-
tic that has proven successful at solving Travelling Salesman Problems
(TSP). However, ACO suffers from two issues; the first is that the tech-
nique has significant memory requirements for storing pheromone levels
on edges between cities and second, the iterative probabilistic nature
of choosing which city to visit next at every step is computationally
expensive. This restricts ACO from solving larger TSP instances. This
paper will present a methodology for deploying ACO on larger TSP in-
stances by removing the high memory requirements, exploiting parallel
CPU hardware and introducing a significant efficiency saving measure.
The approach results in greater accuracy and speed. This enables the
proposed ACO approach to tackle TSP instances of up to 200K cities
within reasonable timescales using a single CPU. Speedups of as much
as 1200 fold are achieved by the technique.

Keywords: Ant Colony Optimisation, Travelling Salesman Problem,
High Performance Computing

1 Introduction

Ant Colony Optimisation (ACO) [8] is a metaheuristic which has demonstrated
significant success in solving Travelling Salesman Problems (TSP) [7]. The tech-
nique simulates ants moving through a fully connected network using pheromone
levels to guide their choices of which cities to visit next to build a complete tour.
However, ACO has two drawbacks the first being significant memory require-
ments to store the pheromone levels on every edge. Secondly, simulating ants by
making probabilistic decisions at each city to determine the next city to visit
makes ACO computationally intensive. Therefore, ACO will struggle when ap-
plied to larger TSP instances. Consider, the pheromone matrix which requires
an n by n matrix whereby n is the number of cities. As the number of cities
increases linearly, a quadratic increase in memory requirements is observed. The
same is true for probabilistically simulating ants to construct a tour. This paper
will address these issues enabling ACO to be applied to larger TSP instances.

The paper is laid out as follows; Section 2 will describe ACO, Section 3 will
present a scalable version of ACO to apply to large scale TSP instances whilst
Section 4 will demonstrate its effectiveness on well known TSP instances. Finally
Section 5 demonstrates the approach on TSP instances of up to 200,000 cities.

http://arxiv.org/abs/1709.03187v1


2 Darren M. Chitty

2 ACO Applied to the TSP

The Travelling Salesman Problem (TSP) is a task where the objective is to
visit every city in the problem once minimising the total distance travelled. The
symmetric TSP can be represented as a complete weighted graph G = (V,E, d)
where V = {1, 2, .., n} is a set of vertices defining each city and E = {(i, j)|(i, j) ∈
V × V } the edges consisting of the distance d between pairs of cities such that
dij = dji. The objective is to find a Hamiltonian cycle in G of minimal length.

Ant Colony Optimisation (ACO) applied to the TSP involves simulated ants
moving through the graph G visiting each city once and depositing pheromone
as they go. The level of pheromone deposited is defined by the quality of the
tour the given ant finds. Ants probabilistically decide which city to visit next
using this pheromone level on the edges of graph G and heuristic information
based upon the distance between an ant’s current city and unvisited cities. An
evaporation effect is used to prevent pheromone levels reaching a state of local
optima. Therefore, ACO consists of two stages, the first tour construction and
the second stage pheromone update. The tour construction stage involves m ants
constructing complete tours. Ants start at a random city and iteratively make
probabilistic choices as to which city to visit next using the random proportional

rule whereby the probability of ant k at city i visiting city j ∈ Nk is defined as:

pkij =
[τij ]

α[ηij ]
β

∑

l∈Nk [τil]α[ηil]β
(1)

where [τil] is the pheromone level deposited on the edge leading from city i
to city l; [ηil] is the heuristic information consisting of the distance between city
i and city l set at 1/dil; α and β are tuning parameters controlling the relative
influence of the pheromone deposit [τil] and the heuristic information [ηil].

Once all ants have completed the tour construction stage, pheromone levels
on the edges of graph G are updated. First, evaporation of pheromone levels
upon every edge of graph G occurs whereby the level is reduced by a value ρ
relative to the pheromone upon that edge:

τij ← (1− ρ)τij (2)

where p is the evaporation rate typically set between 0 and 1. Once this
evaporation is completed each ant k will then deposit pheromone on the edges
it has traversed based on the quality of the tour it found:

τij ← τij +
m
∑

k=1

∆τkij (3)

where the amount of pheromone ant k deposits, ∆τkij is defined by:

∆τkij =

{

1/Ck, if edge (i, j) belongs to T k

0, otherwise
(4)

where 1/Ck is the length of ant k’s tour T k. This methodology ensures that
shorter tours found by an ant result in greater levels of pheromone being de-
posited on the edge of the given tour.



Applying ACO To Large Scale TSP Instances 3

3 Addressing the Scalability of ACO

A key issue with ACO is its memory requirements in the form of the pheromone
matrix which stores the the level of pheromone on every edge between each city.
Thus an n by n size matrix is required in memory to store this information so
for a 100,000 city problem, a 100,000 by 100,000 matrix is required. Using a float
datatype requiring four bytes of memory, this matrix will need approximately
37 GB of memory, much more than typically available on CPUs. However, a
variant of ACO exists which dispenses with the need for a pheromone matrix,
Population-based ACO (P-ACO) [10]. With this approach, a population of tours
are maintained (klong(t)) whereby the best tour at each iteration t is added. Since
klong(t) is of a fixed size tours are added in a First In First Out (FIFO) manner.
Pheromone levels are calculated by using the klong(t) information. An ant at
a given city calculates the pheromone levels by examining the edges that were
traversed in klong(t) from the given city. Thus there is no pheromone matrix and
no pheromone evaporation. If klong(t) is significantly less than the number of
cities then this is a considerable saving in memory requirements.

In this paper, some modifications to P-ACO are implemented. Firstly, in-
stead of using a store of best found tours updated in a FIFO manner, each ant
has a local memory (lbest) containing the best tour that the ant has found, a
steady-state mechanism. These lbest tours are used to provide pheromone level
information to ants when probabilistically deciding which city to next visit. This
is similar in effect to Particle Swarm Optimisation (PSO) [9] whereby particles
use both their local best solution and a global best to update their position. Sec-
ondly, the amount of pheromone an edge from an lbest tour contributes equates
to the quality of the global best (gbest) tour divided by that of the lbest hence a
value between 0.0 and 1.0. These measures are taken to increase diversity.

Moreover, to gain the maximum available performance of the P-ACO ap-
proach from a CPU, an asynchronous parallel approach is used with multiple
threads of execution and each thread simulates a number of ants. Moreover,
the choosing of the next city to visit is decided by multiplying the heuristic in-
formation, the pheromone level and a random probabilistic value between 0.0
and 1.0 and the city with the greatest combined value is selected as the next
to visit. This approach is known as the Independent Roulette approach [3]. This
allows the utilisation of the extended Single Instruction Multiple Data (SIMD)
registers available in a CPU through AVX for the probabilistic decision making
process. These extra wide registers enable up to eight edge comparisons to be
made in parallel. Using a parallel methodology with AVX registers improves the
computational speed by approximately 30-40x when using a quad core processor.

3.1 Introducing PartialACO

The most computationally expensive aspect of the ACO algorithm is the tour

construction phase. This aspect of ACO has an exponential increase in compu-
tation time cost as the number of cities increases. Moreover, as an ant repeatedly
probabilistically decides at each city which to visit next it could be considered



4 Darren M. Chitty

that the greater number of cities in a tour that requires constructing, the greater
the probability an ant will eventually make a poor choice of city to visit next
resulting in a low quality tour. Hence, it is hypothesised that perhaps it would be
advantageous for ants to only change part of a known good tour. To do so would
firstly reduce the computational complexity and secondly reduce the probability
of an ant making a poor decision at some point of the tour construction. For the
P-ACO approach detailed previously, the part of the tour that is not changed
by an ant could be based upon its lbest tour. Essentially, at each iteration an
ant randomly chooses a city to start its tour from and then a random number
of cities to preserve from its lbest tour. The remaining part of the tour will be
constructed as normal. This methodology is similar to crossover in Genetic Algo-
rithms (GA) [11] for the TSP whereby a large section of a tour is preserved and
the remaining aspect constructed from another tour whilst avoiding repetition.
Figure 1 visualises the concept whereby the dark part of the lbest tour is pre-
served and the rest discarded and then this partial tour is completed using ACO.
Henceforth, this implementation of ACO will be referred to as PartialACO. A
high level overview of the technique is shown in Algorithm 1.

Fig. 1. Illustration of PartialACO whereby the lbest tour of an ant is partially modi-
fied by the ant. The dark part of the tour is retained and the lighter part discarded.
PartialACO then completes the tour as normal creating a new tour (dashed line).

Algorithm 1 PartialACO

1: for each ant do
2: Generate initial tour using P-ACO approach
3: end for

4: for number of iterations do

5: for each ant do
6: Select random starting city from current lbest tour
7: Select random number of cities in lbest tour to preserve
8: Copy lbest tour from starting city for the specified random number of cities
9: Complete remaining aspect of tour using P-ACO approach
10: If new tour better than lbest tour then update lbest tour
11: end for

12: end for

13: Output best lbest tour (the gbest tour)



Applying ACO To Large Scale TSP Instances 5

4 Experiments With PartialACO

To test the effectiveness of the PartialACO approach experiments will be con-
ducted using five standard TSP problems of increasing size from the TSPLIB
library. Sixteen ants, two per parallel thread of execution, will be simulated
for 100,000 iterations with the α and β parameters both set to a value of 5.0
to reduce the influence of heuristic information and increase the influence of
pheromone from good tours. Results are averaged over 100 random runs and ex-
periments are conducted using an Intel i7 processor using eight parallel threads
of execution and the AVX registers. Table 1 shows the results from the standard
P-ACO approach whereby full length tours are constructed by each ant at every
iteration. The average accuracy ranges from between 4 and 13% of the known
optimum. Table 2 demonstrates the results from the PartialACO approach de-
scribed in this paper whereby only a portion of each ant’s best found tour is
exposed to modification. From these results it can be observed that accuracy
has been improved for all TSP instances by several percent. More importantly,
the computational speed of the approach has been increased significantly. A
speedup of up to 2.8x is observed with speedups increasing with the size of
the TSP instance. Thus, PartialACO is demonstratively both faster and more
accurate.

Table 1. Results from using standard P-ACO approach with accuracy expressed as
percentage difference from known optimum. Results averaged over 100 random runs.

TSP
Instance

Accuracy (% Error) Execution Time
(in seconds)

Average Best Worst

pcb442 4.16± 1.37 1.58 8.78 40.53 ± 0.42
d657 8.02± 2.41 3.43 12.44 72.87 ± 0.53
rat783 4.08± 1.13 2.27 7.82 96.23 ± 0.81
pr1002 7.88± 1.49 5.18 12.47 145.59 ± 0.91
pr2392 13.47 ± 1.13 10.91 15.98 688.13 ± 2.86

Table 2. Results from using PartialACO approach with accuracy expressed as per-
centage difference from known optimum and relative speedup to using standard P-ACO
approach. Results averaged over 100 random runs.

TSP
Instance

Accuracy (% Error) Execution Time
(in seconds)

Relative
Speedup

Average Best Worst

pcb442 2.72± 0.67 1.14 4.75 17.94 ± 0.26 2.26x
d657 4.33± 0.73 2.88 7.17 31.68 ± 0.31 2.30x
rat783 3.64± 0.60 2.18 5.99 40.01 ± 0.40 2.41x
pr1002 4.06± 0.57 2.61 5.24 58.27 ± 0.33 2.50x
pr2392 9.47± 2.09 5.01 12.84 245.96 ± 0.88 2.80x



6 Darren M. Chitty

Table 3. Results from using PartialACO approach with restrictions on the maximum
permissable modification. Accuracy expressed as percentage difference from known
optimum with relative speedup to using standard P-ACO approach reported. Results
are averaged over 100 random runs.

TSP
Instance

Max.
Modification

Accuracy (% Error) Execution Time
(in seconds)

Relative
Speedup

Average Best Worst

50% 4.90± 1.31 2.31 9.48 9.01± 0.22 4.50x
40% 6.79± 1.57 3.64 10.11 7.44± 0.18 5.45x

pcb442 30% 8.95± 1.71 5.05 13.13 6.05± 0.12 6.70x
20% 11.91 ± 2.09 6.36 15.52 4.91± 0.10 8.26x
10% 16.59 ± 2.16 9.70 21.71 3.97± 0.05 10.22x

50% 7.29± 1.00 5.14 9.66 14.48 ± 0.22 5.03x
40% 8.40± 1.34 5.34 11.30 11.62 ± 0.15 6.27x

d657 30% 10.23 ± 1.46 6.84 13.87 9.27± 0.16 7.86x
20% 13.12 ± 1.97 6.99 17.87 7.16± 0.11 10.17x
10% 17.12 ± 1.69 12.21 22.37 5.53± 0.06 13.17x

50% 7.67± 1.38 3.52 11.03 17.66 ± 0.16 5.45x
40% 9.62± 1.20 4.73 12.41 14.08 ± 0.15 6.83x

rat783 30% 11.34 ± 1.43 7.46 15.95 10.91 ± 0.18 8.82x
20% 13.46 ± 1.68 9.45 16.77 8.27± 0.13 11.64x
10% 17.09 ± 1.53 11.78 20.97 5.98± 0.08 16.10x

50% 7.10± 1.32 4.24 11.54 24.36 ± 0.35 5.98x
40% 9.24± 1.47 5.73 13.03 19.34 ± 0.27 7.53x

pr1002 30% 10.52 ± 1.70 6.12 13.41 14.70 ± 0.19 9.91x
20% 12.75 ± 1.84 7.96 16.98 10.93 ± 0.16 13.33x
10% 16.32 ± 1.57 11.43 20.44 7.83± 0.12 18.61x

50% 13.98 ± 1.45 11.41 16.61 82.76 ± 0.37 8.31x
40% 16.37 ± 1.18 13.32 18.97 61.25 ± 0.30 11.23x

pr2392 30% 18.01 ± 1.54 14.15 21.14 43.45 ± 0.17 15.84x
20% 20.01 ± 1.56 15.33 22.22 29.84 ± 0.17 23.06x
10% 21.92 ± 1.02 19.87 24.56 20.74 ± 0.18 33.18x

Although the initial results from PartialACO have demonstrated a speed
advantage with improved accuracy, it is possible to increase the speed of the
approach further. Currently, a random part of the local best tour of an ant is
preserved and the rest exposed to ACO to modify it. However, the part that
is modified could be restricted to a maximum percentage of the lbest tour. For
instance, a maximum percentage modification of 50% could be used thus for
a 100 city problem at least part of the lbest tour consisting of 50 cities will
be preserved. Reducing the degree to which the lbest tour of an ant can be
changed could also improve tour quality by increased tour exploitation whilst
also increasing the speed advantage of PartialACO. Table 3 demonstrates the
results from restricting the maximum amount that an ant’s lbest tour can be
modified whereby it can be observed that by reducing the part of the lbest tour



Applying ACO To Large Scale TSP Instances 7

that can be modified, the average accuracy deteriorates with respect to the
known optimum. A potential reason for this is that the ants become trapped
in local optima, unable to improve their lbest tour without a greater degree of
flexibility in tour construction. However, as expected, reducing the degree to
which a lbest tour can be modified increases the speed of the approach with up
to a 33 fold increase in speed observed when only allowing a maximum 10% of
lbest tours to be modified at each iteration.

Table 4. Results from using PartialACO approach with 0.95 probability and restric-
tions on the maximum permissable modification. Accuracy expressed as percentage
difference from known optimum with relative speedup to using standard P-ACO ap-
proach reported. Results are averaged over 100 random runs.

TSP
Instance

Max.
Modification

Accuracy (% Error) Execution Time
(in seconds)

Relative
Speedup

Average Best Worst

50% 2.55± 0.94 1.19 5.25 10.47 ± 0.21 3.87x
40% 2.61± 0.94 1.01 5.22 9.00± 0.22 4.50x

pcb442 30% 3.26± 1.41 1.26 7.15 7.63± 0.16 5.31x
20% 3.35± 1.34 1.43 7.95 6.37± 0.13 6.36x
10% 3.96± 1.67 1.55 8.98 5.28± 0.11 7.67x

50% 4.79± 1.25 2.61 7.71 17.08 ± 0.21 4.27x
40% 5.28± 1.26 2.83 8.99 14.26 ± 0.22 5.11x

d657 30% 5.65± 1.33 2.95 9.03 12.05 ± 0.20 6.05x
20% 6.34± 1.39 3.19 9.30 9.95± 0.17 7.32x
10% 7.27± 1.64 3.38 11.39 8.15± 0.13 8.94x

50% 4.46± 1.45 1.81 8.60 21.23 ± 0.29 4.53x
40% 5.04± 1.30 2.37 7.53 17.92 ± 0.22 5.37x

rat783 30% 5.89± 1.48 2.25 9.40 14.91 ± 0.20 6.45x
20% 6.99± 1.30 3.10 10.26 12.27 ± 0.14 7.84x
10% 8.14± 1.83 3.30 10.90 9.95± 0.16 9.67x

50% 4.75± 1.33 2.28 8.43 30.05 ± 0.30 4.84x
40% 5.28± 1.16 2.91 7.97 24.96 ± 0.28 5.83x

pr1002 30% 6.02± 1.23 3.27 9.41 20.66 ± 0.22 7.05x
20% 6.58± 1.17 3.69 9.04 16.95 ± 0.21 8.59x
10% 8.11± 1.46 2.76 10.55 13.88 ± 0.15 10.49x

50% 10.58 ± 1.07 8.31 12.54 111.98 ± 0.49 6.15x
40% 10.86 ± 1.11 7.69 13.10 90.58 ± 0.36 7.60x

pr2392 30% 11.11 ± 0.96 9.48 13.17 73.76 ± 0.38 9.33x
20% 11.32 ± 1.12 8.50 13.65 60.03 ± 0.35 11.46x
10% 11.80 ± 1.02 9.81 13.84 49.79 ± 0.29 13.82x

Clearly, restricting the maximum aspect of lbest tours that can be modified
results in much faster speed but tour quality suffers considerably as a result of
being trapped in local optima. A methodology is required to enable an ant to
jump out of local optima. In GAs, crossover is used with a given probability so



8 Darren M. Chitty

perhaps the same approach will benefit PartialACO. Therefore, it is proposed
that an additional parameter is introduced defining the probability that an ant
will only partially modify its lbest tour. In the case an ant does not partially
modify its lbest tour then it will construct a full tour as standard P-ACO would.
Table 4 shows the results from using a probability of an ant only partially mod-
ifying its lbest tour of 0.95. Comparing to Table 3, improvements in the average
tour accuracy to the known optimum of each TSP instance are observed. How-
ever, aside from the pcb442 problem, accuracy remains worse than the results
shown in Table 2 with no restriction on the degree by which lbest tours can be
modified. More importantly, a significant reduction in the relative speedups is
observed even when using such a small probability of constructing full tours.

4.1 Incorporating Local Search

Given that enabling ants to occasionally construct a full length tour to break
out of local optima has some beneficial effect, a better alternative could be
considered. Instead of using occasional full length tour construction, a local
search heuristic such as 2-opt could be applied to tours with a given probability.
Using 2-opt will improve tours and by the swapping of edges between cities at
any point of the tour, ants could break out of local optima. To test this theory,
standard P-ACO is tested once again this time using a probability of using 2-opt
search of 0.001 with the other parameters remaining the same. These results are
shown in Table 5 whereby significant improvements in accuracy are observed
over not using 2-opt. However, there is an increase in execution time by as much
as 33% as 2-opt is a computationally intensive algorithm of O(n2) complexity.

Table 5. Results from using standard P-ACO approach with a probability of 0.001 of
using 2-opt local search with accuracy expressed as percentage difference from known
optimum. Results are averaged over 100 random runs.

TSP
Instance

Accuracy (% Error) Execution Time
(in seconds)

Average Best Worst

pcb442 3.87± 0.39 2.87 4.52 44.67 ± 0.41
d657 4.45± 0.30 3.42 5.05 83.97 ± 0.49
rat783 5.20± 0.29 4.24 5.83 110.43 ± 0.63
pr1002 5.56± 0.32 4.65 6.18 170.48 ± 0.95
pr2392 7.47± 0.27 6.50 7.90 834.08 ± 5.71

Table 6 shows the results of the proposed PartialACO approach with the
same probability of using 2-opt and no restriction to the portion of an ant’s
lbest tour that can be modified. Improvements in accuracy are observed for all
the TSP instances over standard P-ACO. A speedup of a little over two fold
is also achieved, slightly less than that when not using 2-opt. This is because a
significant amount of computational time is now spent within the 2-opt heuristic
reducing the advantage of PartialACO.



Applying ACO To Large Scale TSP Instances 9

Table 6. Results from using PartialACO approach with a probability of 0.001 of using
2-opt local search. Results are averaged over 100 random runs.

TSP
Instance

Accuracy (% Error) Execution Time
(in seconds)

Relative
Speedup

Average Best Worst

pcb442 1.64± 0.30 0.74 2.32 21.26 ± 0.31 2.10x
d657 2.32± 0.31 1.20 3.10 39.65 ± 0.40 2.12x
rat783 3.35± 0.36 2.30 4.15 51.82 ± 0.62 2.13x
pr1002 3.40± 0.31 2.53 4.04 79.09 ± 0.64 2.16x
pr2393 5.90± 0.30 5.01 6.58 377.61 ± 4.76 2.21x

Table 7. Results from PartialACO approach using 0.001 probability of 2-opt and a
range of maximum modifications. Accuracy expressed as percentage difference from
known optimum with relative speedup. Results averaged over 100 random runs.

TSP
Instance

Max.
Modification

Accuracy (% Error) Execution Time
(in seconds)

Relative
Speedup

Average Best Worst

50% 1.46± 0.28 0.80 2.21 11.49 ± 0.21 3.89x
40% 1.48± 0.29 0.75 2.24 9.74± 0.17 4.58x

pcb442 30% 1.49± 0.33 0.76 2.42 8.15± 0.19 5.48x
20% 1.47± 0.32 0.65 2.25 6.63± 0.11 6.74x
10% 1.80± 0.37 0.87 2.86 5.12± 0.09 8.73x

50% 1.97± 0.28 1.13 2.60 21.11 ± 0.27 3.98x
40% 1.90± 0.27 1.24 2.65 18.10 ± 0.30 4.64x

d657 30% 1.80± 0.28 1.22 2.39 15.15 ± 0.29 5.54x
20% 1.71± 0.28 0.94 2.38 12.28 ± 0.22 6.84x
10% 1.86± 0.26 0.86 2.41 9.32± 0.22 9.01x

50% 3.07± 0.29 2.16 3.76 27.37 ± 0.42 4.04x
40% 3.01± 0.31 2.00 3.78 23.56 ± 0.35 4.69x

rat783 30% 2.95± 0.28 1.99 3.51 19.73 ± 0.36 5.60x
20% 2.81± 0.26 1.90 3.29 16.10 ± 0.34 6.86x
10% 2.86± 0.26 2.06 3.47 12.25 ± 0.28 9.01x

50% 2.93± 0.31 1.77 3.44 42.47 ± 0.59 4.01x
40% 2.81± 0.32 2.06 3.54 36.40 ± 0.55 4.68x

pr1002 30% 2.65± 0.27 2.07 3.37 30.86 ± 0.57 5.52x
20% 2.58± 0.29 1.71 3.16 25.42 ± 0.51 6.71x
10% 2.55± 0.28 1.92 3.13 19.62 ± 0.43 8.69x

50% 5.46± 0.27 4.86 5.99 204.69 ± 3.67 4.07x
40% 5.38± 0.28 4.73 6.06 179.68 ± 3.79 4.64x

pr2392 30% 5.13± 0.27 4.51 5.84 157.07 ± 3.48 5.31x
20% 4.86± 0.23 4.25 5.28 135.54 ± 3.42 6.15x
10% 4.45± 0.28 3.67 5.06 110.85 ± 2.82 7.52x



10 Darren M. Chitty

Given the success of using 2-opt local search with PartialACO, the exper-
iments restricting the degree to which an ant can modify its lbest tour can be
repeated, the results of which are shown in Table 7. Now with 2-opt local search,
the accuracies from Table 6 are all improved upon by restricting the degree to
which ants can modify their lbest tours. The point at which the best accuracy is
achieved favours smaller maximum modifications as the problem size increases
with only 10% for the pr2392 problem although this still enables partial tour
modification of up to 239 cities. A potential reason for the success of restric-
tive PartialACO when using 2-opt local search is that 2-opt derives high quality
tours whereby the subsequent iterations by ants are effectively performing a lo-
calised search on these tours. The exploitation aspect of PartialACO stems from
exploiting high quality tours which 2-opt local search assists but it should be
noted that the speedups are significantly reduced when using 2-opt.

5 Applying PartialACO to Larger TSP Instances

Now that the suitability of PartialACO has been demonstrated against regular
size TSP instances, it will now be tested against four much larger TSP instances
with hundreds of thousands of cities. These four large TSP instances are based
on famous works of art such as the Mona Lisa and the Girl with a Pearl Earring.
With these TSP instances, the optimal tour when drawn in two dimensions as
a continual line will resemble the given famous art work (see Figure 2).

(a) (b)

(c) (d)

Fig. 2. Four classical art based TSP instances (downloadable from
http://www.math.uwaterloo.ca/tsp/data/art/), (a) da Vinci’s Mona Lisa (100K
cities), (b) Van Gogh’s Self Portrait 1889 (120K cities), (c) Botticelli’s The Birth of

Venus (140K cities) and (d) Vermeer’s Girl with a Pearl Earring (200K cities)

http://www.math.uwaterloo.ca/tsp/data/art/


Applying ACO To Large Scale TSP Instances 11

As previously, PartialACO will be run for 100,00 iterations with 16 ants and
results averaged over 10 random runs. Moreover, given the large scale of the
problems under consideration, the maximum aspect of the lbest tour that can
be modified by an ant is now reduced to just 1% of the number of cities which
for the Mona Lisa TSP is still 1,000 cities. 2-opt search will be performed with
a probability of 0.001. However, 2-opt is a computationally expensive algorithm
of O(n2) complexity. Consequently, 2-opt will be restricted to only considering
swapping edges that are within 500 cities of each other in the current tour. This
reduces the runtime of 2-opt significantly although slightly reduces its effective-
ness.

Table 8. Results from testing PartialACO on four art TSP instances. Accuracy ex-
pressed as percentage difference from best known tour. Results averaged over 10 runs.

TSP Instance
Accuracy (% Error) Execution Time

(in hours)
Average Best Worst

mona-lisa100K 5.45 ± 0.07 5.36 5.58 1.07± 0.02
vangogh120K 5.82 ± 0.10 5.70 6.01 1.45± 0.03
venus140K 5.81 ± 0.14 5.60 6.05 2.09± 0.06
earring200K 7.20 ± 0.18 6.91 7.39 5.06± 0.14

Table 9. Results from testing standard P-ACO against the four large art based TSP
instances for the timings reported in Table 8. Accuracy is expressed as the percentage
difference from the best known solution. The number of iterations is shown enabling a
speedup of PartialACO to be ascertained. Results averaged over 10 runs.

TSP Instance
Accuracy (% Error) Average

Iterations
Relative Speedup
by PartialACO

Average Best Worst

mona-lisa100K 13.50 ± 0.49 12.62 14.46 248.10 ± 4.41 403.06x
vangogh120k 14.04 ± 0.54 13.25 15.07 157.00 ± 1.76 636.94x
venus140k 14.48 ± 2.24 13.04 20.71 105.30 ± 3.77 949.67x
earring200k 16.71 ± 3.25 13.97 21.46 83.40 ± 0.52 1199.04x

The results of executing the PartialACO technique on the large scale TSP
instances are shown in Table 8 whereby it can be observed that tours with an av-
erage error ranging between 5-7% of the best known optima are found. Regarding
runtime, PartialACO finds these tours with just a few hours of computational
time using a single multi-core CPU. To clearly demonstrate the effectiveness of
PartialACO a comparison is made with the standard P-ACO approach. Given
the likely increase in runtime it would not be feasible to execute for 100,000
iterations. Consequently, a time limited approach is used whereby the standard



12 Darren M. Chitty

P-ACO approach is run for the same degree of time as the results from Ta-
ble 8 and the number of iterations achieved recorded which provides a relative
speedup achieved by PartialACO. These results are shown in Table 9 whereby it
can be observed that much worse accuracy is achieved which is to be expected
as P-ACO only ran for a few hundred iterations. Furthermore, a speedup of up
to 1200x is demonstrated by PartialACO. To understand this speedup the num-
ber of required edge comparisons to unvisited cities to determine which city to
visit next by an ant building a tour must be considered. The number of com-
parisons an ant will make relates to a triangle progression sequence defined by
(n(n+1))/2. Thus, an ant building a complete tour for a 100k city problem will
perform approximately 5× 109 edge comparisons. However, if only 1% of a tour
is modified an ant will only perform 5×105 comparisons, a 10,000 fold efficiency
saving. However, not all of this saving will be realised as a result of computa-
tional factors such as the use of 2-opt. The 10,000 fold efficiency only applies to
the tour construction aspect of ACO hence the lower reported speedups.

Mona Lisa TSP Instance

0

5

10

15

20

25

30

0:00 0:10 0:20 0:30 0:40 0:50 1:00

Time (hh:mm)

E
rr
o
r
(%
fr
o
m
b
e
s
t
k
n
o
w
n
) P-ACO

PartialACO

Van Gogh's Self Portrait TSP Instance

0

5

10

15

20

25

30

0:00 0:20 0:40 1:00 1:20

Time (hh:mm)

E
rr
o
r
(%
fr
o
m
b
e
s
t
k
n
o
w
n
) P-ACO

PartialACO

The Birth of Venus TSP Instance

0

5

10

15

20

25

30

0:00 0:20 0:40 1:00 1:20 1:40 2:00

Time (hh:mm)

E
rr
o
r
(%
fr
o
m
b
e
s
t
k
n
o
w
n
) P-ACO

PartialACO

GirlWith a Pearl Earring TSP Instance

0

5

10

15

20

25

30

0:00 1:30 3:00 4:30

Time (hh:mm)

E
rr
o
r
(%
fr
o
m
b
e
s
t
k
n
o
w
n
) P-ACO

PartialACO

Fig. 3. The average convergence rates over time for the P-ACO and PartialACO tech-
niques and each of the art based TSP instances

Further evidence of the effectiveness of PartialACO is demonstrated by con-
sidering the convergence rates over time for each of the art based TSP instances
as shown in Figure 3. PartialACO clearly converges much faster than the P-
ACO approach for all four problems. Indeed, inspection of the largest problem
instance, The Girl With the Pearl Earring, shows that the PartialACO technique
achieves the same accuracy in minutes that P-ACO takes hours to achieve. This



Applying ACO To Large Scale TSP Instances 13

convergence speed is simply as a result of PartialACO being able to perform
many more iterations of the ant tours, indeed thousands, in a short space of
time. In fact, it can be argued that in terms of iterations PartialACO converges
slower but given that time is a more important factor, PartialACO is the better
approach.

6 Related Work

It is acknowledged that ACO is computationally intensive. Indeed, even the
original author of ACO was aware of the computational complexity proposing a
variant known as Ant Colony System (ACS) [7] whereby the neighbourhood of
unvisited cities is restricted. A candidate list approach is used whereby at each
decision point made by an ant, only the closest cities are considered. If these
have already been visited then normal ACO used. This approach significantly
reduces the computational complexity. ACS is also similar to PartialACO in
that with a high probability an ant takes the edge with the greatest level of
combined pheromone and heuristic information improving the speed. However,
ACS still requires a full pheromone matrix and to needs to search for the edge
with the greatest level to choose the next city to visit.

The main area of research into speeding up ACO though has been through
parallel implementations. ACO is naturally parallel such that ants can construct
tours simultaneously. Early works such as Bullnheimer et al. [2], Delisle et al.
[6] and Randall and Lewis [13] relied on distributing ants to processors using a
master-slave methodology. In recent years the focus on speeding up ACO has
been on utilising Graphical Processor Units (GPUs) consisting of thousands of
SIMD processors. Bai et al. were the first to implement MAX-MIN ACO for
the TSP on a GPU achieving a 2.3x speedup [1]. More notable works include
DeléVacq et al. who compare parallelisation strategies for MAX-MIN ACO on
GPUs [5], Cecelia et al. who present an Independent Roulette approach to better
exploit data parallelism for ACO on GPUs [3] and Dawson and Stewart who
introduce a double spin ant decision methodology when using GPUs [4]. However,
ACO is not ideally suited to GPUs and these papers can only report speedups
ranging between 40-80x over a sequential implementation.

7 Conclusions

This paper has addressed the issues associated with applying ACO to large
scale TSP instances, namely reducing memory constraints and substantially in-
creasing execution speed. A new variant of ACO was introduced, PartialACO,
based upon P-ACO which dispenses with the pheromone matrix, the memory
overhead. Moreover, PartialACO only partially modifies the best tour found by
each ant akin to crossover in GAs. PartialACO was demonstrated to signifi-
cantly improve the computational speed of ACO and the accuracy by reducing
the computational complexity and the probabilistic chance of ants making poor
choices of cities to visit. Consequently, PartialACO was applied to large scale



14 Darren M. Chitty

TSP instances of up to 200K cities achieving accuracy of 5-7% of the best known
tours with a speed of up to 1200 times faster than that of standard P-ACO. Par-
tialACO is a first step to deploying ACO on large scale TSP instances and further
work is required to improve its accuracy to compete with a GA approach [12]
although it should be noted that this work uses a supercomputer. Further anal-
ysis of the parameters balancing speed vs. accuracy could help to improve the
technique such as reducing the maximum permissable modification of tours for
speed and increasing the iterations. Moreover, a dynamic approach may be best
whereby initially only small modifications are allowed but as time progresses the
permissible modification increases to avoid being trapped in local optima.

8 Acknowledgement

This is a pre-print of a contribution published in Chao F., Schockaert S., Zhang
Q. (eds) Advances in Computational Intelligence Systems. UKCI 2017, Advances
in Intelligent Systems and Computing, vol. 650 published by Springer. The defini-
tive authenticated version is available online via https://doi.org/10.1007/978-3-
319-66939-7 9.

References

1. Bai, H., OuYang, D., Li, X., He, L., Yu, H.: MAX-MIN ant system on GPU with
CUDA. In: Innovative Computing, Information and Control (ICICIC), 2009 Fourth
International Conference on. pp. 801–804. IEEE (2009)

2. Bullnheimer, B., Kotsis, G., Strauß, C.: Parallelization strategies for the ant sys-
tem. In: High Performance Algorithms and Software in Nonlinear Optimization,
pp. 87–100. Springer (1998)

3. Cecilia, J.M., Garćıa, J.M., Nisbet, A., Amos, M., Ujaldón, M.: Enhancing data
parallelism for ant colony optimization on GPUs. Journal of Parallel and Dis-
tributed Computing 73(1), 42–51 (2013)

4. Dawson, L., Stewart, I.: Improving ant colony optimization performance on the
GPU using CUDA. In: Evolutionary Computation (CEC), 2013 IEEE Congress
on. pp. 1901–1908. IEEE (2013)

5. DeléVacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization
on graphics processing units. Journal of Parallel and Distributed Computing 73(1),
52–61 (2013)

6. Delisle, P., Krajecki, M., Gravel, M., Gagné, C.: Parallel implementation of an
ant colony optimization metaheuristic with OpenMP. In: Proceedings of the 3rd
European Workshop on OpenMP (EWOMP01), Barcelona, Spain (2001)

7. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on evolutionary
computation 1(1), 53–66 (1997)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate,
MA, USA (2004)

9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Micro
Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth Interna-
tional Symposium on. pp. 39–43. IEEE (1995)



Applying ACO To Large Scale TSP Instances 15

10. Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Work-
shops on Applications of Evolutionary Computation. pp. 72–81. Springer (2002)

11. Holland, J.H.: Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. MIT Press
(1975)

12. Honda, K., Nagata, Y., Ono, I.: A parallel genetic algorithm with edge assembly
crossover for 100,000-city scale TSPs. In: Evolutionary Computation (CEC), 2013
IEEE Congress on. pp. 1278–1285. IEEE (2013)

13. Randall, M., Lewis, A.: A parallel implementation of ant colony optimization.
Journal of Parallel and Distributed Computing 62(9), 1421–1432 (2002)


	Applying ACO To Large Scale TSP Instances

