Skip to main content

Varicella Incidence Rate Forecasting in Bogotá D.C. (Colombia) by Stochastic Time Series Analysis

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 742))

Included in the following conference series:

Abstract

This work presents a specific implementation of the Allard approach to the epidemiological time series analysis by ARIMA and SARIMA modeling, intended to describe and predict the epidemic behavior of Varicella in the city of Bogotá D.C. (Colombia). Model selection and preliminary forecast evaluation supported on the official accounts of Varicella incidence rate are performed and reported for the interval 2010–2015. This approach yields a SARMA(3,0,1)(1,0,1) model, whose forecasting results were evaluated against real data of the year 2016. Performance comparison with alternative models and their potential use in the support of epidemic surveillance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Colombian National Institute of Health http://ins.minsalud.gov.co.

  2. 2.

    Sistema Nacional de Vigilancia Epidemiológica (SIVIGILA) http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/sivigila/Paginas/sivigila.aspx.

  3. 3.

    The quotient of the new confirmed cases of disease in a particular location during an epidemiological week, divided by its total population.

  4. 4.

    This is the interval \(\left[ -2/T, 2/T\right] \) where T is the time series length.

References

  1. Bardach, A., Cafferata, M., Klein, K., Cormick, G., Gibbons, L., Ruvinsky, S.: Incidence and use of resources for chickenpox and herpes zoster in Latin America and the Caribbean - a systematic review and meta-analysis. Pediatr. Infect. Dis. J. 31(12), 1263–1268 (2012)

    Article  Google Scholar 

  2. Masresha, B., Fall, A., Eshetu, M., Sosler, S., Alleman, M., Goodson, J., et al.: Progress towards measles pre-elimination, African region, 2011–2012. Wkly Epidemiol. Rec. 4(14), 141–150 (2014)

    Google Scholar 

  3. Instituto Nacional de Salud: Reporte anual 2016, December 2016

    Google Scholar 

  4. Silhol, R., Boëlle, P.Y.: Modelling the effects of population structure on childhood disease: the case of varicella. PLoS Comput. Biol. 7(7), e1002105 (2011)

    Article  MathSciNet  Google Scholar 

  5. Zibolenová, J., Ševĉoviĉ, D., Baška, T., Rošková, D., Malobická, E., Szabóová, V., Švihrová, V., Hudeĉková, H.: Mathematical modeling of infectious childhood diseases [matematické modelovanie infekĉných ochorení detského veku]. Cesko-Slovenska Pediatrie 70(4), 210–214 (2015)

    Google Scholar 

  6. Ferrante, M., Ferraris, E., Rovira, C.: On a stochastic epidemic SEIHR model and its diffusion approximation. Test 25(3), 482–502 (2015)

    Article  MathSciNet  Google Scholar 

  7. Hans, H., Roy, M., Viggo, A.: Modeling infectious disease dynamics in the complex landscape of global health. Science 347 I, aaa4339 (2015)

    Google Scholar 

  8. Allard, R.: Use of time-series analysis in infectious disease surveillance. Bull. World Health Organ. 76(4), 327–333 (1998)

    Google Scholar 

  9. Trottier, H., Philippe, P., Roy, R.: Stochastic modeling of empirical time series of childhood infectious diseases data before and after mass vaccination. Emerg. Themes Epidemiol. 3, 9 (2006)

    Article  Google Scholar 

  10. Kritsotakis, E., Christidou, A., Roumbelaki, M., Tselentis, Y., Gikas, A.: The dynamic relationship between antibiotic use and the incidence of vancomycin-resistant enterococcus: time-series modelling of 7-year surveillance data in a tertiary-care hospital. Clin. Microbiol. Infect. 14(8), 747–754 (2008)

    Article  Google Scholar 

  11. Critselis, E., Nastos, P., Theodoridou, K., Theodoridou, M., Tsolia, M., Hadjichristodoulou, C., Papaevangelou, V.: Time trends in pediatric hospitalizations for varicella infection are associated with climatic changes: a 22-year retrospective study in a tertiary Greek referral center. PLoS ONE 7(12), e52016 (2012)

    Article  Google Scholar 

  12. Rivadeneira, A.G.: Clasificación internacional de enfermedades (cie): Descifrando la cie-10 y esperando la cie-11. Monitor Estratégico (7), Enero-junio 2015

    Google Scholar 

  13. Wei, W.W.: Time Series Analysis - Univariate and Multivariate Methods, 2nd edn. Pearson Addison-Wesley, Boston (2006)

    MATH  Google Scholar 

  14. Hyde, S.: Likelihood based inference on the Box-Cox family of transformations: SAS and MATLAB programs. Ph.D. thesis, Montana State University (1999)

    Google Scholar 

  15. Gardner, W.A., Napolitano, A., Paura, L.: Cyclostationarity: half a century of research. Sig. Process. 86(4), 639–697 (2006)

    Article  MATH  Google Scholar 

  16. Said, S.E., Dickey, D.A.: Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3), 599–607 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Osborn, D.R., Chui, A.P., Smith, J.P., Birchenhall, C.R.: Seasonality and the order of integration for consumption. Oxford Bull. Econ. Stat. 50(4), 361–377 (1988)

    Article  Google Scholar 

  18. Montesinos López, A.: Estudio del aic y bic en la selección de modelos de vida con datos censurados (2011)

    Google Scholar 

  19. Hyndman, R.J.: Forecast: forecasting functions for time series and linear models. R package version 8.0 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sierra, W., Argoty, C., Franco, H. (2017). Varicella Incidence Rate Forecasting in Bogotá D.C. (Colombia) by Stochastic Time Series Analysis. In: Figueroa-García, J., López-Santana, E., Villa-Ramírez, J., Ferro-Escobar, R. (eds) Applied Computer Sciences in Engineering. WEA 2017. Communications in Computer and Information Science, vol 742. Springer, Cham. https://doi.org/10.1007/978-3-319-66963-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66963-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66962-5

  • Online ISBN: 978-3-319-66963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics