Skip to main content

Feasibility Study of the Application of OPC UA Protocol for the Vehicle-to-Vehicle Communication

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10449))

Included in the following conference series:

Abstract

Advanced Driver Assistance Systems (ADAS) support drivers of vehicles in emergency situations and help to save people’s lives and minimise the losses in accidents. The information from car sensors are collected locally by Controller Area Network (CAN) and then processed by ADAS. The authors focus on a CAN/OPC UA (IEC 62541) gateway that can support vehicle-to-vehicle communication in order to enable cooperation between ADAS in neighbouring vehicles. The authors present proof of the concept of the CAN/OPC UA gateway and propose a relevant OPC UA address space that contains the type hierarchy that allows meta information about sensors to be shared between ADAS. The research part focuses on the communication parameters including reliability, communication delays and the stability of the connection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6, 6–22 (2014)

    Article  Google Scholar 

  2. Ziebinski, A., Cupek, R., Grzechca, D., Chruszczyk, L.: Review of advanced driver assistance systems (ADAS). In: 13th International Conference of Computation Methods in Science and Engineering (2017)

    Google Scholar 

  3. Bosch, R.: CAN specification version 2.0. Rober Bousch GmbH, Postfach. 300240 (1991)

    Google Scholar 

  4. Farsi, M., Barbosa, M.B.M.: CANopen Implementation: Applications to Industrial Networks. Research Studies Press, Baldock (2000)

    Google Scholar 

  5. Lesser, V.R., Corkill, D.G.: The distributed vehicle monitoring testbed: a tool for investigating distributed problem solving networks. AI Mag. 4, 15 (1983)

    Google Scholar 

  6. Thompson, H.A., Benitez-Perez, H., Lee, D., Ramos-Hernandez, D.N., Fleming, P.J., Legge, C.G.: A CANbus-based safety-critical distributed aeroengine control systems architecture demonstrator. Microprocess. Microsyst. 23, 345–355 (1999)

    Article  Google Scholar 

  7. Amir, M., Pont, M.J.: Improving flexibility and fault-management in CAN-based “Shared-Clock” architectures. Microprocess. Microsyst. 37, 9–23 (2013)

    Article  Google Scholar 

  8. Ziębiński, A., Świerc, S.: The VHDL implementation of reconfigurable MIPS processor. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man–Machine Interactions. AISC, vol. 59, pp. 663–669. Springer, Berlin (2009). doi:10.1007/978-3-642-00563-3_69

    Chapter  Google Scholar 

  9. Chattopadhyay, A., Pudi, V., Baksi, A., Srikanthan, T.: FPGA based cyber security protocol for automated traffic monitoring systems: proposal and implementation, July 2016

    Google Scholar 

  10. CANoe – the Multibus Development and Test Tool for ECUs and Networks. Vector Informatic GmbH (2011)

    Google Scholar 

  11. Maka, A., Cupek, R., Rosner, J.: OPC UA object oriented model for public transportation system. In: 2011 Fifth UKSim European Symposium on Computer Modeling and Simulation (EMS) (2011)

    Google Scholar 

  12. Lange, J., Iwanitz, F., Burke, T.: OPC from Data Access to Unified Architecture. OPC Foundation, Scottsdale (2010)

    Google Scholar 

  13. OPC Foundation: Unified Architecture. https://opcfoundation.org/about/opc-technologies/opc-ua/

  14. Li, R., Liu, C., Luo, F.: A design for automotive CAN bus monitoring system. In: 2008 IEEE Vehicle Power and Propulsion Conference (2008)

    Google Scholar 

  15. Mahnke, W., Leitner, S.-H., Damm, M.: OPC Unified Architecture (2009)

    Google Scholar 

  16. Unified Architecture - OPC Foundation. https://opcfoundation.org/about/opc-technologies/opc-ua/

  17. Cupek, R., Ziebinski, A., Fojcik, M.: An ontology model for communicating with an autonomous mobile platform. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 480–493. Springer, Cham (2017). doi:10.1007/978-3-319-58274-0_38

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no: 612207) and research work financed from funds for science in years 2016–2017 allocated to an international co-financed project (grant agreement no: 3491/7.PR/15/2016/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Fojcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cupek, R., Ziębiński, A., Drewniak, M., Fojcik, M. (2017). Feasibility Study of the Application of OPC UA Protocol for the Vehicle-to-Vehicle Communication. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics