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Abstract

We present a shape matching approach for functional magnetic resonance imaging (fMRI) time 

course and spectral alignment. We use ideas from differential geometry and functional data 

analysis to define a functional representation for fMRI signals. The space of fMRI functions is 

then equipped with a reparameterization invariant Riemannian metric that enables elastic 

alignment of both amplitude and phase of the fMRI time courses as well as their power spectral 

densities. Experimental results show significant increases in pairwise node to node correlations 

and coherences following alignment. We apply this method for finding group differences in 

connectivity between patients with major depression and healthy controls.

1 Introduction

Patterns of activation in the brain arising from task-based or resting state function magnetic 

resonance imaging (rfMRI) acquisitions are actively being investigated as potential 

biomarkers for pathology and healthy development of the brain. Often, network structures in 

the brain are defined using correlations in spontaneous low-frequency activity from BOLD 

fMRI signal across different brain areas, either targeting a given region’s fMRI timecourse 

[14, 1] or, less frequently, its power spectrum [12]. Implicit in the computation of 

correlations and coherence is the linear, one-to-one correspondence between the time series 

or the spectra, both across regions (i.e. for node to node correlations) and across subjects. 

This zero-lag assumption may not always hold true due to confounding e ects by neuronal 

processes, synchronicity between different brain states, physiological noise, or even motion 

across subjects. Conversely, improved estimation of phase lags may also be informative 

when inferring directionality in network connections using fMRI data or in comparing the 

spectral content of fMRI timecourses across different brain regions. Recently researchers 

have proposed several ideas that compute the extremum of the cross-covariance [8] or 

perform a frequency-phase analysis [3] to discover this lag structure in rfMRI connectivity.

In our work, we adopt a functional data analysis approach to account for both the amplitude 

(peaks/valleys) changes and phase (time or frequency) delays when inferring brain 

connectivity. Here, we would like to define functionalrepresentations of time courses or their 

spectra and use the functional shape information to align or match them across regions of 

interests or nodes, or across subjects. This shape alignment or matching is performed under 

a Riemannian metric that naturally gives rise to the connectivity measure that takes both the 

amplitude and phase into account. Specifically, we use the square root velocity function 
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(SRVF) [5, 4, 10] to perform functional shape registration [11] of fMRI data. The novelty of 

our work includes two aspects; a new application of the functional data analysis framework 

to rfMRI signals, and for the first time we perform functional registration of rfMRI time 

courses and spectra using the non-linear geometry of a function manifold. To our knowledge 

this has not been done before. To summarize, the contributions of this paper are as follows: 

i) analysis of fMRI time courses and spectra using a functional data analysis framework, ii) 

elastic shape matching of fMRI signals that enables the analysis of both amplitude and phase 

changes in fMRI across regions, and lastly iii) the use of group level connectivity analysis 

for detecting changes in patterns of fMRI connectivity across populations.

2 fMRI Shape Analysis of Time courses and Spectra

In this section we describe the functional data analysis approach for analyzing fMRI signals 

and their spectra. Briefly, functional data analysis (FDA) has been widely applied to several 

problems in both computer vision and statistics [7, 9, 13]. The main idea is to define an 

object by a functional representation f : I ℝ, where I is the domain of the function. The 

function f is assumed to be square-integrable and thus is considered as an element of an 

infinite-dimensional Hilbert space. This Hilbert space naturally allows the 𝕃2 inner product 

f 1, f 2 = ∫ I f 1 t f 2 t dt that also serves as a metric for finding distances between functions. 

This framework can then be used to perform statistical modeling including regression, 

prediction and classification.

2.1 Elastic Functional Data Analysis of fMRI signals using SRVFs

fMRI signal representation: Here, we describe the functional representation for fMRI 

signals in brief. For more details the reader is referred to [11]. For a given fMRI time course 

signal f : I ≡ 0, 1 ℝ, and its velocity f
.

t = d f
dt  and magnitude ∣ f

.
t ∣, we define its 

functional representation by the square-root velocity field (SRVF) map q given by,

q: [0, 1] ℝ, q(t) =
f
.

t
∣ f

.
t ∣

. (1)

For an absolutely continuous f, the SRVF transformation ensures that q is square integrable. 

The set of SRVFs is then given by 𝕃2 0, 1 , ℝ , which is a Hilbert space. The original fMRI 

signal can be recovered by f t = f 0 + ∫ 0
t q τ ∣ q τ ∣ dτ. The SRVF mapping is invertible up 

to a given f(0). We assume f(0) = 0 as the initial condition of the fMRI signal at time t = 0. It 

is noted that the domain I is defined as the interval [0, 1] for all signals in the population. We 

will use the same notation for denoting the frequency domain spectrum of the fMRI signal 

given by its power spectral density (PSD) estimate. In this case, the notation for time domain 

t is changed to that of the frequency domain ν. Then using q for the SRVF mapping, we 

have q: 0, 1 ℝ, q(ν) = p. ν
∣ p. ν ∣ , where p is the PSD function of f. With a slight abuse of 

notation, we will denote q for the SRVF mapping of both the fMRI time course and the PSD.
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fMRI temporal domain and spectral domain reparameterization: To account for 

temporal shifts and spectral phase lags, we now define the notion of time and frequency 

reparameterization. This idea is closely related to the parameterization (speed) of the 

underlying domain on which the function f or ν is defined. For example, increasing the 

speed of the parameterization results in local shrinking of the domain, whereas reducing the 

speed of the parameterization results in local expansion of the parameterization domain. 

This behavior can be modeled by a warping function γ : I → I, where γ. > 0, ∀t ∈ I; γ being 

a diffeomorphism. Thus to change the temporal parameterization, one can simply compose f 
with γ as f ○ γ. In the SRVF domain, this is given by

q ⋅ γ =
f
.

∘ γ γ.

∣ f
.

∘ γ γ. ∣
=

f
.

∘ γ
∣ f

.
∘ γ ∣

γ. = (q ∘ γ) γ. . (2)

We denote the set of all possible γ functions as Γ and emphasize that incorporating domain 

warping via γ functions enables elastic shape matching of fMRI functions.

Elastic Riemannian metric for SRVFs of fMRI signals: To compare functions and 

compute distances between them, we define the notion of a metric on the space of q 
functions. Before analysis of fMRI signals, one usually standardizes the signal by obtaining 

a z score of f as given by f = f − f‒
σ , where f‒ is the mean value of f and σ is the standard 

deviation. One can impose an analogous unit length constraint on the q function by 

obtaining q = q
∥ q ∥ . This unit length transformation forces q to lie on a Hilbert sphere 

denoted by 𝒬. Formally, the space 𝒬 is defined as 

𝒬 ≡ q ∈ 𝕃2 ∣ ∫ 0
1 q s , q s

ℝ2ds = 1, q s : 0, 1 ℝ2 . Then one can define the Riemannian 

metric on the tangent space of this sphere Tq 𝒬 . An important feature of the SRVF 

representation for fMRI signals is that an elastic Riemannian metric, which is invariant to 

the domain reparameterization, is reduced to the 𝕃2 metric [11] and given by d(f1, f2) = ∥q1 − 

q2∥. Therefore, for any two SRVFs given by q1, q2 ∈ 𝕃2 and γ ∈ Γ, we have ∥q1 · γ − q2 · γ∥ 

= ∥q1 − q2∥. This property allows us to solve the problem of registration in an efficient 

manner.

2.2 fMRI Alignment and Registration:

Next, we enable comparisons between functions via elastic geodesics between them. Since 

the space 𝒬 is a Hilbert sphere, the geodesic between two points (shapes) q1 and q2 can be 

expressed analytically as,

χt q1; v = cos t cos−1 q1, q2 q1 + sin t cos−1 q1, q2 v, (3)
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where t ∈ [0, 1] and the initial tangent vector v ∈ Tq1
𝒬  is given by v = q2 − 〈q1, q2〉q1. 

Then the geodesic distance between the two shapes q1 and q2 in 𝒬 is given by

d(q1, q2) = ∫
0

1
χ. t, χ. t dt . (4)

To find the elastic geodesic distance, we simply minimize Eqn. 4 as delastic(q1, q2) = minγ∈Γ 
d(q1, q2 ·γ). In estimating the elastic geodesic, the optimal reparameterization γ  can be 

efficiently found as the minimizer γ = argminγ ∫ 0
1 ∥ q1 − γ ⋅ q2 ∥2dt . In practice, we use 

dynamic programming to find the optimal γ . The phase difference between two functions is 

encoded by the warping function γ  resulting from the alignment.

Group analysis and statistics of fMRI signals—For statistical analysis of fMRI 

signals and spectra, we introduce the notion of the Karcher mean [6]. Given a collection of 

functions f1, f2, ⋯ , fn, let q1, q2, ⋯ , qn denote their SRVFs, respectively. The Karcher mean 

is then computed by an iterative procedure: initialize the mean function μk at an iteration k 
and solve for

γ i
k + 1 = arg inf

γ ∈ Γ
∥ μk − (qi ∘ γ) γ. ∥ , i = 1, 2, ⋯, n, (5)

μk = 1
n ∑

i = 1

n
(qi ∘ γ i

k − 1) γ̇ i
k − 1 . (6)

One can use this mean function as a template for aligning all the functions in the group. This 

enables one to compare fMRI signals across population.

3 Results

In this section we describe experimental results that show improvement in pairwise node-to-

node correlation and coherence as well as group differences in connectivity between healthy 

controls and patients with major depressive disorder (MDD). 70 patients (34M/36F, mean 

age 43 years) with MDD and 36 healthy volunteers (17M/19F, mean age 39 years) 

underwent fMRI imaging on a 3T Siemens Allegra scanner (TR = 2s, TE = 30ms, flip angle 

= 70, 3.4 × 3.4 × 5 mm3 resolution). We used FSL [4] to perform slice-timing correction, 

motion correction, and high pass filtering. The fMRI scans were then filtered using ICA 

based denoising and registered to the T1-weighted anatomical MPRAGE scan. All images 

were normalized to the MNI standard space using SPM [1]. We parcellated the fMRI images 

using the Craddock functional atlas [2] and focused our analysis on 18 seed regions chosen 

based on their relevance to depression. They included the subgenual, rostral, and dorsal 

anterior cingulate cortex (ACC), bilateral amygdala and overlapping anterior hippocampus 
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(amhp), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral thalamus (Th), posterior 

cingulate cortex (PCin), and bilateral precuneus (PreCun). Additional regions less relevant to 

depression were chosen as control nodes; these included bilateral primary visual cortex 

along the calcarine sulcus (Visual 1 & 2).

3.1 Visualization of Elastic Functional Alignment

Figure 1 shows examples of time course and spectral alignment of fMRI signals across 

regions and within-subject. In Figure 1, left, non-elastic (Panels A, C, and E γ = identity = t) 
and elastic matching (Panels B, D, and F) of two time courses and PSDs are compared. In 

non-elastic matching (Panel A), the two curves are analyzed at each time or frequency, as 

represented by the vertical black lines. In contrast, in elastic matching (Panel B), similar 

features of the two curves are aligned. As a result, the peaks and valleys of the two time 

series in panel F are aligned after elastic matching.

Alignment across subjects allows estimation of a template, which can serve as a reference 

for group analyses. Figure 2 shows the mean PSDs of the population (N = 106) in 18 regions 

of interest without and with alignment. While the non-elastic mean seems to capture a single 

low-frequency feature, the elastic mean identifies features across the frequency range. 

Finally, Figure 3 shows PSDs of the dorsal anterior cingulate and dorsolateral prefrontal 

cortex aligned to the average PSD for those ROIs for N = 50 randomly selected subjects. 

Elastic alignment yields spectra with distinct peaks at both low and high frequencies, 

mirroring the mean spectra displayed in Figure 3.

3.2 Measuring Brain Connectivity after Elastic fMRI Alignment

Pairwise node to node connectivity measures were obtained by computing the Pearson 

correlation between time series, coherence between power spectra, and elastic geodesic 

distances between time series. We remind the reader that the elastic geodesic distance 

measures the difference between the fMRI signals, whereas measures such as correlation 

and coherence measure the closeness or agreement between the fMRI signals.

Increases in measures of Correlation and Coherence—As expected we observed 

increases in correlation and coherence after elastic functional alignment. The effect of 

alignment was evaluated by comparing correlations of time series and coherences of the 

PSDs for each pair of nodes across all subjects with and without alignment. Figure 4 shows 

a signed value of Cohen’s d computed as d(x, xaligned) =
μx − μxaligned

σx, xaligned
 at each node, where x 

and xaligned represent the correlations or coherence before and after alignment, respectively. 

The measures were found to be consistently higher (statistically significant) in majority of 

connections following alignment. Connectivity among visual cortex was high prior to 

alignment; therefore changes in these connections were modest.

Population analysis of Connectivity Patterns—Lastly, group differences in 

functional connectivity between patients and controls were examined using a linear model 

covaried with age and gender. In addition to the widely used correlation and coherence, we 
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also used the geodesic distances between nodes and the deviation of the warping function γ 
from the identity as potential measures of connectivity. Figure 5 shows connectivity 

differences between patients with MDD and healthy controls. Several features in group 

analysis were observed with alignment. Some connections represented by correlation or 

coherence were maintained with alignment, for example, between anterior cingulate and 

dorsal prefrontal cortex. Importantly, effect sizes of the group differences increased for 

existing connections after alignment. Not all connections were preserved after alignment. 

For example, the correlations between the precuneus and thalamus were weakened after 

alignment. On the other hand, the correlation and coherence between posterior cingulate and 

thalamus were increased after alignment.

4 Discussion

We proposed an elastic shape matching approach for the analysis of fMRI time series and 

PSDs. It is worth noting that several significant inter-node connections shown by elastic 

geodesic and gamma distances coincided with those shown by correlation or coherence. For 

example, significantly higher correlation after alignment, and coherence before and after 

alignment between thalamus and medial anterior cingulate are captured by lower geodesic 

and gamma distances. On the other hand, the lower correlation in controls between 

precuneus and thalamus is encoded by a higher gamma distance, whereas lower coherence in 

controls between posterior cingulate and thalamus is encoded by higher geodesic distances. 

This suggests that the geodesic and gamma distances from elastic alignment may serve as 

additional representation of connectivity. While we observed increase in correlation and 

coherence between fMRI signals following alignment, further validation will be necessary to 

explore the clinical utility of this approach. In addition, we anticipate enhanced effect of 

alignment in task-based fMRI where neurobiological signals are coherent with tasks.
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Fig. 1. 
Within-subject registration of resting state time courses (Left), and power spectral densities 

(PSDs, Right). A: non-elastic matching between the top and bottom fMRI signals. B: elastic 

matching shown by corresponding lines. C: non-elastic and D: elastic geodesics between the 

two time signals (Left), or PSDs (Right). E: overlay of top and bottom signals before 

matching. F: overlay after matching.
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Fig. 2. 
Mean PSDs for 18 regions of interest.
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Fig. 3. 
Left panel: Unaligned PSDs overlaid; each line corresponds to data from a single subject. 

Right panel: PSDs after elastic alignment to the mean shape. ROIs shown are the left and 

right dorsal anterior cingulate and the left and right prefrontal cortex.
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Fig. 4. 
Signed Cohen’s d shown at each node, with a white asterisk denoting significance at p < 

0.05 (uncorrected). ACC-Anterior Cingulate Cortex; Am A hp-Amygdala/Anterior 

hippocampus; Cin-Cingulate; D-Dorsal; L-Left; P-Posterior; PreCun-Precuneus; R-Right; 

Rost-Rostral; Sg-Subgenual.
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Fig. 5. 
Group (differences between patients with MDD and healthy controls. Colormap shows the t-

statistic with controls > patients. The white asterisk denotes pairwise significance at p < 0.05 

(uncorrected).
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