
Consciousness Level and Recovery Outcome Prediction Using 
High-Order Brain Functional Connectivity Network

Xiuyi Jia1,2, Han Zhang2, Ehsan Adeli2, and Dinggang Shen2

1School of Computer Science and Engineering, Nanjing University of Science and Technology, 
Nanjing, China

2Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA

Abstract

Based on the neuroimaging data from a large set of acquired brain injury patients, we investigate 

the feasibility of using machine learning for automatic prediction of individual consciousness 

level. Rather than using the traditional Pearson’s correlation-based brain functional network, 

which measures only the simple temporal synchronization of the BOLD signals from each pair of 

brain regions, we construct a high-order brain functional network that is capable of characterizing 

topographical information-based high-level functional associations among brain regions. In such a 

high-order brain network, each node represents the community of a brain region, described by a 

set of this region’s low-order functional associations with other brain regions, and each edge 

characterizes topographical similarity between a pair of such communities. Experimental results 

show that the high-order brain functional network enables a significant better classification for 

consciousness level and recovery outcome prediction.

1 Introduction

Studying the relationship between consciousness and brain activity has drawn a lot of 

attention in the recent years, especially using resting-state functional MRI (rs-fMRI) to 

investigate how brain functional network supports consciousness [1, 2]. The resting-state 

brain functional architecture can be characterized by different brain networks defined by 

correlated spontaneous brain activity between the regions of interest (ROIs). However, it is 

still unclear which key brain regions and their corresponding networks are essential to 

consciousness emergence and maintenance [3]. Perri et al. [4] reported that negative default 

mode network (DMN) connectivity seemed to be of metabolic neuronal origin, characterized 

by patients who have emerged from disorders of consciousness. Qin et al. [5] investigated 

three different functional networks to distinguish between conscious and unconscious states, 

and found that the salience network connectivity correlated with consciousness, while the 

DMN connectivity can be used to predict the recovery of consciousness. Wu et al. [3] 

summarized that the functional connectivity strength mainly in the DMN was disrupted with 

varying degrees of consciousness loss, and hence this disruption could be a potential 

biomarker for consciousness level prediction.

In these previous works, brain networks were usually constructed first based on the simple 

Pearson’s correlation (PC), and then a particular group-level statistical analysis, such as one-
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way ANalysis Of VAriance (ANOVA), were applied to investigate if there exists any 

significant group differences in the population-averaged brain networks between different 

consciousness-level groups. Note that the PC-based network construction only captures the 

pairwise relationships through simple correlation operations. It is incapable of capturing any 

higher-order, complex relations between the brain regions, thus causing difficulty for the 

subsequent statistical analyses to exploit the consciousness level. Moreover, the hypothesis-

driven analysis, such as in [5], limits our understanding of the biological substrate of 

consciousness with respect to the whole-brain complex network due to simply including a 

few predefined brain regions while ignoring other brain regions’ contribution. To address 

these limitations, we investigate the relevant machine learning methods for automatic 

prediction of individual consciousness level according to the whole-brain complex networks.

For the construction of complex brain networks, some previous research have utilized certain 

prior knowledge and network information for building the respective models. Typical 

models include sparse representation (SR) [6], joint low-rank and sparse (SLR) method [7], 

and weighted sparse group representation method [8]. However, again in all these models, 

the networks are constructed by considering only pairwise interactions between ROIs. The 

higher order relations between the ROIs (i.e., nodes in the brain network) were overlooked 

in most of the previous works. To extract the underlying complex relationships from the 

network, in this paper, we propose a simple but effective high-order brain functional 

connectivity network (BFCN) construction method. In particular, the high-order BFCN is 

constructed based on the conventional low-order BFCN. Each node in the high-order BFCN 

represents the community of each ROI described by a set of low-order network values, and 

the edge between each pair of the nodes represents the correlation between the two 

communities. This high-order BFCN can model complex interactions and relationships 

among brain regions at a higher level, without introducing any extra parameters.

We use our proposed high-order BFCN for prediction of individual consciousness level. 

Experimental results on using rs-fMRI data for acquired brain injury (ABI) classification 

show that the high-order network enables a successful classification between the 

consciousness preserved and unresponsive patients. We also apply our high-order BFCN to 

predict whether the unresponsive patients would regain consciousness, from which we 

obtain a promising accuracy of 87.18%.

2 Materials

Our dataset comprises 53 patients with ABI but with the fully preserved consciousness state, 

and 39 ABI patients with unresponsive wakefulness state (including 26 in vegetative state 

and 13 in coma). These different groups of patients are categorized as follows [9]. (1) The 

preserved consciousness patients were able to communicate and had experienced brain 

injury. (2) The vegetative state patients were characterized by no evidence of awareness of 

self or environment and also an inability to interact with others; no evidence of sustained, 

reproducible, purposeful, or voluntary behavioral responses to visual, auditory, tactile, or 

noxious stimuli; no evidence of language comprehension or expression; intermittent 

wakefulness manifested by the presence of sleep-wake cycles; sufficiently preserved 

hypothalamic and brainstem autonomic functions to permit survival with medical and 
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nursing care; bowel and bladder incontinence; and variably preserved cranial nerve reflexes 

and spinal reflexes. (3) The coma patients were characterized by no arousal/eye-opening, no 

behavioral signs of awareness, impaired spontaneous breathing, impaired brainstem reflexes, 

and no vocalizations of more than 1 h. Both vegetative state and coma patients are 

categorized as “unresponsive” subjects, while all other patients belong to another group of 

“consciousness preserved” subjects. The rs-fMRI data of these patients were collected from 

2010 to 2014 via a Siemens 3.0 T scanner with the following parameters: TR = 2 s, slice 

number = 33, slice thickness = 4 mm, matrix size = 64 × 64. The data was preprocessed by 

using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) similar to [3]. It is important to note that the 

T1-weighted images of these subjects were also acquired and used to guide the registration 

using group-wise registration algorithm in SPM8 (DARTEL) for avoiding registration error 

due to lesions. The subjects with excessive head motion or large lesions that induced severe 

brain distortions were excluded during data screening.

The consciousness levels of the patients were assessed using the Glasgow Coma Scale 

(GCS) [10] and the Coma Recovery Scale-Revised (CRS-R) [11] on the day of the scanning. 

The recovery outcome was assessed using the Glasgow Outcome Scale (GOS) [12] at 3 

months after scanning. The GOS provides a measurement of outcome, ranging from 1 to 5. 

The GOS score of less than 3 was defined as nonawakened, and the GOS score of larger or 

equal 3 as awakened [3]. In our 39 subjects (26 in vegetative state and 13 in coma), 17 of 

them regained consciousness after 3 months while the remained 22 of them were still 

nonawakened. We will learn a model with our high-order networks to predict both 

consciousness level (53 consciousness preserved vs. 39 unresponsive) and recovery outcome 

(17 awakened vs. 22 nonawakened).

3 High-Order BFCN Construction

Low-Order BFCN

In this subsection, we will introduce the basics of low-order BFCN construction method for 

brain disorder diagnosis, and then extend the definitions to capture high-order network 

characteristics in the next subsection.

Assume each brain is parcellated into N ROIs. Here, each ROI has a mean time series xi ∊ 
RK, i = 1,2, …, N, where K is the number of time points. xi can be represented as xi = [x1i; 

x2i; …; xKi]. Thus, each subject is represented by a matrix, X = [x1, x2, …, xN] ∊ RK×N. The 

BFCN construction is simply defined as finding a connectivity matrix W ∊ RN×N, which can 

be formulated as a matrix-regularized network learning method [7]:

minW f (X, W) + λR(W) (1)

where f (X, W) is a data-fitting term, and R(W) is a matrix-regularized term. Using different 

f (X, W) or R(W), we can obtain different BFCN construction methods. For instance, in the 

Pearson’s correlation (PC) coefficient based BFCN, the connectivity matrix is calculated by 

[13]:
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minW ∑
i, j = 1

N
xi − W i jx j

2, (2)

Sparse representation (SR) is another popular method to construct BFCN:

minW ∑
i = 1

N
xi − ∑

j ≠ i
W i jx j

2 + λ ∑
i = 1

N
∑
j ≠ i

W i j , (3)

where the regularization term enforces sparsity in the network, since it is known that BFCN 

is intrinsically sparse [14]. By importing the modularity prior as the matrix-regularized term, 

Qiao et al. [7] also proposed joint sparsity and low rank (SLR) regularizations in BFCN 

construction, by using both L1-norm and trace norm of W:

minW ∑
i = 1

N
xi − ∑

j ≠ i
W i jx j

2 + λ1 W 1 + λ2 W ∗ . (4)

Note that if we set λ1 = 0, we would have only a low-rank regularization. As can be seen, all 

these BFCN construction methods use pairwise relationships between ROIs, and hence they 

are low-order network construction techniques.

High-Order BFCN

We propose a high-order BFCN construction method, which can implicitly capture high-

order relationships among ROIs, rather than just the pairwise relations. Specifically, we 

propose to capture a second-level relationship built on the previous lower-order BFCN. As a 

result, we can additionally capture inter-regional resemblances in the BFCN. In order to 

achieve this goal, we can first use any method for constructing the low-order BFCNs as 

introduced in the previous subsection. In this low-order network, for each node (i.e., brain 

ROI), we have a vector (i.e., rows in the low-order network matrix) measuring the relations 

between this node and all other nodes. Let’s call this vector a node’s community. Then, 

based on this low-order BFCN, a second layer of correlations can be computed between any 

pairs of brain ROIs. Figure 1 illustrates the computation procedure to build a high-order 

network, given a low-order BFCN.

Specifically, assume Wj = [W1j, …, Wmj,…, WNj] represent the community of the node j 
(corresponding to the ROI xi) described by a set of Wmj, ∀m ∊ {1..N}. Here, Wmj represents 

the interaction relationship of the node m and the node j. Thus, we can calculate the 

Pearson’s correlation coefficients between the node j’s community and any arbitrary node 

q’s community as follows:
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H jq =
W j − W j

T Wq − Wq

W j − W j
T W j − W j Wq − Wq

T Wq − Wq

. (5)

This way, Hjq would be a correlation between the communities of the two nodes j and q. 

Hence, it describes a more complex relationship between ROI xj and ROI xq at a higher 

level. With the assumption that Wj has been centralized by W j − W j and further normalized 

by (W j − W j)
T(W j − W j), the PC coefficient can be simply represented as H jq = W j

TWq. In 

the high-order network, the new edge between nodes j and q would have the weight of Hjq. 

Dropping the indices and writing in a matrix form, we would have H = WTW to represent 

the high-order BFCN. Under such settings, it is easy to construct high-order networks from 

the corresponding various low-order networks, such as H(PC) = W(PC)
T W(PC) and 

H(SLR) = W(SLR)
T W(SLR), with W(PC) and W(SLR) as the low-order BFCNs estimated based on 

Pearson’s correlation and sparse and low-rank regularization, respectively.

It is worth pointing out that some machine learning methods also tried to use the linear 

transformation WTW to select features [15, 16]. The main difference is that these machine 

learning methods aim at solving the over-determined problem (with more subjects than 

features in matrix) or under-determined problem (with more features than subjects in W) by 

using the linear transformation. In our work, we do not have these problems as our network 

W is a N × N matrix, and we want to use the high-order network WTW to extract more 

complex correlation on community level.

4 Experiments

Network Construction and Experimental Setting

In our experiments, for each subject, 200 ROIs are defined based on Craddock’s 200 atlas, 

and the mean rs-fMRI signals are extracted from each ROI to construct the BFCN. We 

construct two types of low-order BFCNs as described in Sect. 2, including PC and SLR. 

Based on these two low-order BFCNs, we can construct two respective high-order BFCNs, 

namely H_PC and H_SLR. For the regularization tuning parameters (i.e., λ1 and λ2 in Eq. 

4) involved in the SLR low-order BFCN model, we use the same setting as in [7], and search 

their optimal values in the set {2−5, 2−4, …, 20, …, 24, 25}. Note that there are no parameters 

to tune for the construction of high-order BFCN.

As we have 200 ROIs as nodes in a network, and since the connectivity matrix is symmetric, 

we will vectorize the lower-triangle of the matrix and use it as the feature vector for each 

network. As a result, we will have 200 × (200 − 1)
2 = 19900 edges to describe each connectivity 

network. For each of the BFCNs, we use these edge strength values in the networks as 

features. We then select the most informative features among all these features, and then 

learn a classifier model. For feature selection, we use a simple information theoretic feature 

selection techniques, which evaluates the information gain for every single feature, and 
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selects the features with the most information gain. Specifically, we measure the information 

gain ratio with respect to the class label for each feature, similar to [17]. Then, we choose all 

the features with information gain ratio values larger than 0.01 in our experiments. After the 

selected features are identified, we employ a polynomial kernel SVM with c = 1 as the 

classifier.

Classification Results on Consciousness Level Prediction

In the following, we report four evaluation measures: accuracy, sensitivity, specificity, and F-

Score for both low-order and high-order networks using the above feature selection and 

classification methods. The reported values are the mean of 10 different runs of 10-fold 

cross validation, and hence introduce reliable results with no over-fitting effects to the 

particular population of the data. For selection of tuning parameters in SLR, we further 

conduct an inner leave-one-out cross validation on the training set to obtain their best 

parameter values.

The results are shown in Fig. 2. From these results, we can conclude that the high-order 

BCNF obtains a better performance in all experiments. Furthermore, we can see that H_SLR 

obtains the best classification results, with 78.04% accuracy, 86.39% sensitivity, 66.82% 

specificity, and 81.72% F-Score.

Results on Recovery Outcome Prediction

From the previous subsection, we can see that the H_SLR can generate the best 

classification accuracy results. Therefore, we use H_SLR to predict the recovery outcome of 

unresponsive patients. In order to be able to compare with previous methods [3, 5] on the 

same application, we implement two different cross-validation settings: (1) leave-one-out 

cross validation (LOOCV), and (2) 5 runs of leave-two-out cross validation (LTOCV). Note 

that, for the 2nd case, we average results from 5 different runs and reported the average.

As shown in Table 1, our proposed method can obtain the best accuracy of 87.18%, 

compared to other methods, under LOOCV.

5 Conclusion

In this paper, we proposed a simple but effective high-order brain functional connectivity 

network construction method for predicting both consciousness level and recovery outcome 

in acquired brain injury. Our proposed high-order network treats the community of each ROI 

as its features and the correlation between any pair of communities as the edge between the 

two ROIs. Compared to the low-order network, the high-order network can extract more 

information at the high level. The experiments on both consciousness level prediction and 

recovery outcome prediction in ABI show that our proposed high-order network can obtain a 

better classification performance. In future work, other relationships between communities 

will also be investigated to build the high-level network.
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Fig. 1. 
Construction of high-order BFCN based on low-order BFCN. Each element in the high-

order BFCN is calculated based on a pair of ROI communities from the low-order BFCN.
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Fig. 2. 
Comparison of classification results between low-order BFCNs (including PC and SLR) and 

high-order BFCNs (including H_PC and H_SLR).
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Table 1

Comparison of accuracy on different methods.

Method LOOCV (%) LTOCV (%)

H_SLR +SVM 87.18 81.54

PC + SVM [3] 81.25 75.61

PC + ANOVA [5] 74.00* N/A

Note that the comparisons are conducted under different cross-validation mechanism. N/A means the result is not available from the corresponding 
reference.

*
This accuracy was obtained based on a classification model trained using all subjects (i.e., not via stringent machine learning).
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