Skip to main content

Spatio-Temporal Evolution of Scientific Knowledge

  • Conference paper
  • First Online:
  • 1034 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 767))

Abstract

In this work we take a first step towards the problem of integrating the content and the spatio-temporal aspects of the evolution of the (published) scientific knowledge. A lot of research has been invested in developing tools and search engines that will enable more efficient querying of relevant medical (and broader scientific) data from various perspectives, spanning from retrieval of similar documents/images to HCI-based flexible query-answering systems. Variety of methodologies have been developed, founded on knowledge-bases, statistics, semantic similarity, etc. and quite a few systems are available (e.g., Medline). Parallel to this, another body of research works has emerged over the past couple of decades, targeting the efficient management of mobility and spatio-temporal data. What motivates this work is the observation that fusing the data (and corresponding techniques) developed in these two broad research fields could enable novel categories of queries that can be used to investigate various evolving spatio-temporal relationships between particular scientific topics.

We present a novel model and a formalization of this confluence, in what we call Knowledge-Evolution Trajectories (KET). We also provide a preliminary proof-of-concept implementation that enables answering novel categories of queries pertaining to KET data with a few initial observations regarding the impact of different data-representation approaches.

Research supported by NSF – CNS 1646107 and III 1213038, and ONR – N00014-14-1-0215.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We do not aim at presenting a comprehensive overview of the vast body of works from the well-established field of IR in this paper (cf. [6, 21]. The purpose of this section is to provide a motivation for the research presented here.

  2. 2.

    Aside from the main body of the text of the respective publications, or other attributes associated with, e.g., publishers, forum/venue, etc...

  3. 3.

    We note that all the data, code for the queries, as well as the scripts used to generate the values for the spatial attributes, is publicly available at https://github.com/ShailavTaneja/PubMedDerivedDataAndImplementation.

  4. 4.

    The description of the standard meta-data used in PubMed is available at https://www.ncbi.nlm.nih.gov/books/NBK3828/#publisherhelp.Example_of_a_Standard_XML.

References

  1. Bedard, Y., Merrett, T., Han, J.: Fundamentals of spatial data warehousing for geographic knowledge discovery. Geogr. Data Min. Knowl. Discov. 2, 53–73 (2001). Taylor and Francis

    Article  Google Scholar 

  2. Bilgen, M., Abbe, R., Liu, S.J., Narayana, P.A.: Spatial and temporal evolution of hemorrhage in the hyperacute phase of experimental spinal cord injury: in vivo magnetic resonance imaging. Magn. Ressonance Med. 43(4), 594–600 (2000)

    Article  Google Scholar 

  3. Bogorny, V., Renso, C., de Aquino, A.R., de Lucca Siqueira, F.: Constant - A conceptual data model for semantic trajectories of moving objects. GIS 18(1), 66–88 (2014)

    Article  Google Scholar 

  4. Chu, W.W., Cardenas, A.F., Taira, R.T.: Kmed: A knowledge-based multimedia medical distributed database system. Inf. Sci. 20(2), 75–96 (1995)

    Google Scholar 

  5. Damiani, M.L., Güting, R.H.: Semantic trajectories and beyond. In: Proceedings of IEEE - MDM, pp. 1–3. Brisbane, Australia (2014)

    Google Scholar 

  6. Dee, C.R.: The development of the medical literature analysis and retrieval system (medlars). J. Med. Library Assoc. 94(5), 416–425 (2007)

    Article  Google Scholar 

  7. Ding, H., Trajcevski, G., Scheuermann, P.: Towards efficient maintenance of continuous queries for trajcectories. GeoInformatica 12(3), 255–288 (2008)

    Article  Google Scholar 

  8. Etzion, O., Jajodia, S., Sripada, S. (eds.): Temporal Databases: Research and Practice. LNCS, vol. 1399. Springer, Heidelberg (1998)

    Google Scholar 

  9. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N., Schneider, M., Vazirgiannis, M.: A foundation for representing and queirying moving objects. ACM TODS 25, 1–42 (2000)

    Article  Google Scholar 

  10. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  11. Güting, R.H., Valdés, F., Damiani, M.L.: Symbolic trajectories. ACM Trans. Spat. Algorithms Syst. 1(2), 7:1–7:51 (2015)

    Google Scholar 

  12. Hirano, Y., Stefanovic, B., Silva, A.C.: Spatiotemporal evolution of the fmri response to ultrashort stimuli. J. Neurosci. 31(4), 1440–1447 (2011)

    Article  Google Scholar 

  13. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

    Article  Google Scholar 

  14. Hristovski, D., Kastrin, A., Dinevski, D., Rindflesch, T.C.: Constructing a graph database for semantic literature-based discovery. In: MEDINFO 2015: eHealth-enabled Health - Proceedings of the 15th World Congress on Health and Biomedical Informatics, p. 1094 (2015)

    Google Scholar 

  15. Issa, H.: Spatio-textual trajectories: models and applications. PhD thesis, Universita degli studi di Milano (2017)

    Google Scholar 

  16. Korfhage, R.: The impact of personal computers on library-based information systems. SIGIR Forum 12(4), 10–13 (1978)

    Article  Google Scholar 

  17. Lowe, H.J., Barnett, G.O.: Understanding and using the medical subject heading (mesh) vocabulary to perform literature searches. J. Am. Med. Assoc. 271(14), 1103–1108 (1994)

    Article  Google Scholar 

  18. Mokbel, M.F., Aref, W.G.: SOLE: scalable on-line execution of continuous queries on spatio-temporal data streams. VLDB J. 17(5), 971–995 (2008)

    Article  Google Scholar 

  19. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G.L., Andrienko, N.V., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., de Macêdo, J., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories modeling and analysis. ACM Comput. Surv. 45(4), 42 (2013)

    Article  Google Scholar 

  20. Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present, and anticipated future positions of moving objects. ACM Trans. Database Syst. 31(1), 255–298 (2006)

    Article  Google Scholar 

  21. Salton, G.: Automatic Text Processing. Addison Wesley, Massachusetts (1989)

    Google Scholar 

  22. Schiller, J.H., Voisard, A. (eds.): Location-Based Services. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  23. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, New Jersy (2003)

    Google Scholar 

  24. Taine, S.I.: New program for indexing at the national library of medicine. Bull. Med. Libr. Assoc. 47(2), 117 (1959)

    Google Scholar 

  25. Trajcevski, G., Donevska, I., Vaisman, A.A., Avci, B., Zhang, T., Tian, D.: Semantics-aware warehousing of symbolic trajectories. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on GeoStreaming, IWGS 2015, pp. 1–8, 3–6 November 2015, Bellevue, WA, USA (2015)

    Google Scholar 

  26. Trajcevski, G., Tamassia, R., Cruz, I., Scheuermann, P., Hartglass, D., Zamierowski, C.: Ranking continuous nearest neighbors for uncertain trajectories. VLDB J. 20(5), 767–791 (2011)

    Article  Google Scholar 

  27. Vaisman, A.A., Zimányi, E.: Data Warehouse Systems: Design and Implementation. Data-Centric Systems and Applications. Springer, Heidelberg (2014)

    Book  Google Scholar 

  28. Xing, X., Mokbel, M.F., Aref, W.G., Hambrusch, S.E., Prabhakar, S.: Scalable spatio-temporal continuous query processing for location-aware services. In: International Conference on Scientific and Statistical Database Management (SSDBM) (2004)

    Google Scholar 

  29. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654 (2005)

    Google Scholar 

  30. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE, pp. 631–642 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goce Trajcevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Trajcevski, G., Teng, X., Taneja, S. (2017). Spatio-Temporal Evolution of Scientific Knowledge. In: Kirikova, M., et al. New Trends in Databases and Information Systems. ADBIS 2017. Communications in Computer and Information Science, vol 767. Springer, Cham. https://doi.org/10.1007/978-3-319-67162-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67162-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67161-1

  • Online ISBN: 978-3-319-67162-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics