Skip to main content

Intelligent Maintenance for Industrial Processes, a Case Study on Cold Stamping

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 649))

Abstract

The correct diagnosis of tool breakage is fundamental to improve productivity, minimizing the number of unproductive hours and avoiding expensive repairs. The use of Data Mining techniques provides a significant added value in terms of improvements in the robustness, reliability and flexibility of the monitored systems. In this work, a general view of a diagnosis and prognosis of tool breakage in Industrial Processes is proposed. The important issues identified will be analyzed: filtering, process characterization and data based modeling. A case study has been implemented to carry out the prognosis of tool breakage in the cold stamping process. The results provided are qualitative trends and hypothesis to perform the prognosis. Although a validation in real operation is needed, these results are promising and demonstrate the goodness of using these type of techniques in real processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antunes, C.M., Oliveira, A.L.: Temporal data mining: an overview. In: KDD Workshop on Temporal Data Mining, vol. 1, p. 13 (2001)

    Google Scholar 

  2. Bariani, P., Berti, G., D’Angelo, L.: Tool cost estimating at the early stages of cold forging process design. CIRP Ann. Manuf. Technol. 42(1), 279–282 (1993). http://www.sciencedirect.com/science/article/pii/S0007850607624433

    Article  Google Scholar 

  3. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, vol. 10, pp. 359–370. Seattle, WA (1994)

    Google Scholar 

  4. Candan, Ç., Inan, H.: A unified framework for derivation and implementation of savitzky-golay filters. Signal Process. 104, 203–211 (2014)

    Article  Google Scholar 

  5. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings, 15th International Conference on Data Engineering, pp. 126–133. IEEE (1999)

    Google Scholar 

  6. Chandrika, V., Jeyakumar, A.E.: Detection of DC voltage fault in SRM drives using k-means clustering and classification with SVM. Int. J. Mod. Eng. Res. (IJMER) 1(4), 38–42 (2014)

    Google Scholar 

  7. Chen, G.: Introduction to random signals and applied kalman filtering. Int. J. Adapt. Control Sig. Process. 6(5), 516–518 (1992)

    Article  Google Scholar 

  8. Datta, A., Mavroidis, C., Hosek, M.: A role of unsupervised clustering for intelligent fault diagnosis. In: ASME 2007 International Mechanical Engineering Congress and Exposition, pp. 687–695. American Society of Mechanical Engineers (2007)

    Google Scholar 

  9. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

    Article  Google Scholar 

  10. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1), 12 (2012)

    Article  MATH  Google Scholar 

  11. Frambourg, C., Douzal-Chouakria, A., Gaussier, E.: Learning multiple temporal matching for time series classification, pp. 198–209. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41398-8_18

  12. Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Article  Google Scholar 

  13. Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Sig. Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  14. Jyoti, K., Singh, S.: Data clustering approach to industrial process monitoring, fault detection and isolation. Int. J. Comput. Appl. 17(2), 41–45 (2011)

    Google Scholar 

  15. Keogh, E., Chakrabarti, K., Pazani, M., Mehrotra, S.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM SIGMOD Rec. 30(2), 151–162 (2001)

    Article  Google Scholar 

  16. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  MATH  Google Scholar 

  17. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min. Knowl. Discov. 7(4), 349–371 (2003)

    Article  MathSciNet  Google Scholar 

  18. Kong, L.X., Nahavandi, S.: On-line tool condition monitoring and control system in forging processes. J. Mater. Process. Technol. 125, 464–470 (2002)

    Article  Google Scholar 

  19. Liao, T.W.: Clustering of time series data a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  MATH  Google Scholar 

  20. Morgan, I., Liu, H., Turnbull, G., Brown, D.: Predictive unsupervised organisation in marine engine fault detection. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008, IEEE World Congress on Computational Intelligence, pp. 249–256. IEEE (2008)

    Google Scholar 

  21. Rafiei, D., Mendelzon, A.: Efficient retrieval of similar time sequences using dft. arXiv:preprint cs/9809033 (1998)

  22. Ratanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M., Das, G.: Mining time series data. In: Data Mining and Knowledge Discovery Handbook, pp. 1049–1077. Springer (2009)

    Google Scholar 

  23. Sharma, V.S., Sharma, S., Sharma, A.K.: Cutting tool wear estimation for turning. J. Intell. Manuf. 19(1), 99–108 (2008)

    Article  Google Scholar 

  24. Shatkay, H., Zdonik, S.B.: Approximate queries and representations for large data sequences. In: Proceedings of the Twelfth International Conference on Data Engineering, pp. 536–545. IEEE (1996)

    Google Scholar 

  25. Sick, B.: On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mech. Syst. Sig. Process. 16(4), 487–546 (2002)

    Article  Google Scholar 

  26. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: VLDB (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Boto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Boto, F., Lizuain, Z., Cortadi, A.J. (2018). Intelligent Maintenance for Industrial Processes, a Case Study on Cold Stamping. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67180-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67179-6

  • Online ISBN: 978-3-319-67180-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics