Skip to main content

Health Assessment of Automotive Batteries Through Computational Intelligence-Based Soft Sensors: An Empirical Study

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 649))

Abstract

An empirical comparison of different intelligent soft sensors for obtaining the state of health of automotive rechargeable batteries is presented. Data streamed from on-vehicle sensors of current, voltage and temperature is processed through a selection of model-based observers of the state of health, including data-driven statistical models, first principle-based models, fuzzy observers and recurrent neural networks with different topologies. It is concluded that certain types of recurrent neural networks can outperform well established first-principle models and provide the supervisor with a prompt reading of the State of Health. The algorithms have been validated with automotive Li-FePO\(_4\) cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vetter, J., Novak, P., Wagner, M., Veit, C., Muller, K.C., Besenhard, J., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., Hammouche, A.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147(1–2), 269–281 (2005)

    Article  Google Scholar 

  2. Withrow, T., Myers, M.R., Bapty, T., Neema, S.: Cyber-physical vehicle modeling, design, and development. In: ASME 2013 International Mechanical Engineering Congress and Exposition, pp. V005T05A003–V005T05A010. American Society of Mechanical Engineers (2013)

    Google Scholar 

  3. Barre, A., Deguilhem, B., Grolleau, S., Gerard, M., Suard, F., Riu, D.: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680–689 (2013)

    Article  Google Scholar 

  4. Kadlec, P., Gabrys, B., Strandt, S.: Data-driven soft sensors in the process industry. Comput. Chem. Eng. 33(4), 795–814 (2009)

    Article  Google Scholar 

  5. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)

    Article  Google Scholar 

  6. Weng, C., Sun, J., Peng, H.: A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. J. Power Sources 258, 228–237 (2014)

    Article  Google Scholar 

  7. Saha, B., Goebel, K., Christophersen, J.: Comparison of prognostic algorithms for estimating remaining useful life of batteries. Trans. Inst. Meas. Control 31(3–4), 293–308 (2009)

    Article  Google Scholar 

  8. Lu, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). http://www.sciencedirect.com/science/article/pii/S0378775312016163

    Article  Google Scholar 

  9. Seaman, A., Dao, T.S., McPhee, J.: A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Sources 256, 410–423 (2014)

    Article  Google Scholar 

  10. Sánchez, L., Couso, I., González, M.: A design methodology for semi-physical fuzzy models applied to the dynamic characterization of LiFePO4 batteries. Appl. Soft Comput. 14, 269–288 (2014)

    Article  Google Scholar 

  11. Cowpertwait, P.S.P., Metcalfe, A.V.: System identification. In: Introductory Time Series with R. UR, pp. 201–209. Springer, New York (2009). doi:10.1007/978-0-387-88698-5_10

  12. Haykin, S.S.: Neural Networks and Learning Machines. Pearson, Upper Saddle River (2009)

    Google Scholar 

  13. Lin, T., Horne, B.G., Tino, P., Giles, C.L.: Learning long-term dependencies in narx recurrent neural networks. IEEE Trans. Neural Netw. 7(6), 1329–1338 (1996)

    Article  Google Scholar 

  14. Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 26(3), 603–621 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Massad, E., Ortega, N.R.S., de Barros, L.C., Struchiner, C.J.: Classical dynamical systems with fuzzy rule-based parameters, pp. 207–223. Springer, Heidelberg (2008)

    Google Scholar 

  16. Abonyi, J., Babuska, R., Szeifert, F., Nagy, L.: Identification and control of nonlinear systems using fuzzy hammerstein models. Ind. Eng. Chem. Res. 39(11), 4302–4314 (2000)

    Article  Google Scholar 

  17. Zhang, J., Morris, A.J.: Recurrent neuro-fuzzy networks for nonlinear process modeling. IEEE Trans. Neural Netw. 10(2), 313–326 (1999)

    Article  Google Scholar 

  18. Babuška, R., Verbruggen, H.: Neuro-fuzzy methods for nonlinear system identification. Ann. Rev. Control 27(1), 73–85 (2003)

    Article  Google Scholar 

  19. Jang, J.S.: Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  20. Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.Y., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Juang, J.N.: Applied System Identification. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  22. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6(02), 107–116 (1998)

    Article  MATH  Google Scholar 

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  24. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)

    Google Scholar 

  25. Verstraeten, D., Schrauwen, B., Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  26. Lukoševičius, M.: A practical guide to applying echo state networks. In: Neural Networks: Tricks of the Trade, pp. 659–686. Springer (2012)

    Google Scholar 

  27. Gallicchio, C., Micheli, A.: Architectural and markovian factors of echo state networks. Neural Netw. 24(5), 440–456 (2011)

    Article  Google Scholar 

  28. Butcher, J., Verstraeten, D., Schrauwen, B., Day, C., Haycock, P.: Extending reservoir computing with random static projections: a hybrid between extreme learning and RC. In: 18th European Symposium on Artificial Neural Networks (ESANN 2010), pp. 303–308. D-Side (2010)

    Google Scholar 

  29. Abu-Sharkh, S., Doerffel, D.: Rapid test and non-linear model characterisation of solid-state lithium-ion batteries. J. Power Sources 130(1–2), 266–274 (2004)

    Article  Google Scholar 

  30. Xu, J., Cao, B., Chen, Z., Zou, Z.: An online state of charge estimation method with reduced prior battery testing information. Int. J. Electr. Power Energy Syst. 63, 178–184 (2014)

    Article  Google Scholar 

  31. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  32. Kingma, D.P., Ba, J.: Adam - a method for stochastic optimization. In: The International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Science and Innovation Spanish Ministry and FEDER under the Projects TIN2014-56967-R, DPI2013-046541-R, TEC2016-80700-R (AEI/FEDER, UE), and by the Principality of Asturias Government under Project FC-15-GRUPIN14-073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Almansa, E., Anseán, D., Couso, I., Sánchez, L. (2018). Health Assessment of Automotive Batteries Through Computational Intelligence-Based Soft Sensors: An Empirical Study. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67180-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67179-6

  • Online ISBN: 978-3-319-67180-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics