A Robust Number Parser
based on Conditional Random Fields

Heiko Paulheim

Data and Web Science Group, University of Mannheim, Germany

Abstract. When processing information from unstructured sources, num-
bers have to be parsed in many cases to do useful reasoning on that
information. However, since numbers can be expressed in different ways,
a robust number parser that can cope with number representations in
different shapes is required in those cases. In this paper, we show how
to train such a parser based on Conditional Random Fields. As training
data, we use pairs of Wikipedia infobox entries and numbers from public
knowledge graphs. We show that it is possible to parse numbers at an
accuracy of more than 90%.

Keywords: Number Parsing, Number Interpretation, Conditional Ran-
dom Fields

1 Introduction

Number Parsing denotes the conversion of a string representation of a number
into a binary representation which is processed as an actual number, such as an
integer or a double value. For many systems in which subsequent processing of
numeric information (e.g., in terms of comparisons and /or arithmetic operations)
is required, number parsing is a necessary preprocessing step.

Since numbers can be represented in different formats (e.g., using different
thousands and decimal separators), using blanks in between or not, using differ-
ent characters for negation, etc., number parsing can be challenging if no prior
knowledge about the format at hand exists. For example, the representation
1,000 can be interpreted as one thousand or one, depending on the interpreta-
tion of the comma character as a thousands or a decimal separator.

When processing data from the Web, there are quite a few use cases where
number parsing is essential. Examples include:

— Information extraction. The creation of knowledge bases from Web resources,
e.g., DBpedia from Wikipedia [5], requires the processing of numeric infor-
mation in Wikipedia infoboxes.

— Question answering on the Web [7]. Questions including comparisons or
arithmetics (e.g., What is the largest lake in the United States?) require
processing of numeric information, and, hence, parsing the corresponding
numeric information.

Hohwart

From Wikipedia, the free encyclopedia Coordinates: (g 47°56'40.45"N 8°3'36.68'E

The Hohwart is a mountain near the village of Breitnau in the Black
Forest in the German state of Baden-Wurttemberg. It ietres
high.

Hohwart

The Hohwart lies on an east-west ridge behind Breitnau. To the south
the ridge slopes down over cattle pasture to the Breitnau bowl. To the
north the slopes are wooded and descend towards the valley of the
Griesdobelbach. The ridge continues northwest to the Otlen
m). Just over 1 km to the east is the Rormer} and 3 km to
the east, across the Oberbach valley, is the highest mountain in
Breitnau municipality: the Weittannenhdhe! ph).

Fig.1. Example from a Web page with numerical information. Source:
https://en.wikipedia.org/wiki/Hohwart, accessed May 9th, 2017

— Information integration. Approaches such as InfoGather [14], Google Fusion
Tables [2] or the Mannheim Search Join Engine [6] foresee the integration of
data from different sources, usually tables on the Web, into a joint database.
In order to create meaningful resources here, which allow for useful process-
ing, numbers need to be parsed into a common format.

A challenge which is common to all those use cases is that numeric data on the
Web comes in a large variety of formats. In the example depicted in Fig. 1, if an
intelligent agent was to answer the question whether one of the mountains was
higher or lower than another, interpreting the text would imply interpreting the
numbers, which, even in this small snippet from just one single source, come in
two different formats (with and without and thousands separator).

Despite the presence of those use cases and challenges, robust number parsing
is still far from being solved. Many named entity recognition tools and bench-
marks foresee the detection of number expressions [8], but without any further
parsing of the number (i.e., they merely identify a substring of a larger string
which contains a numerical expression).

This paper introduces a robust number parser for numeric data from the
Web. It is based on a Conditional Random Field (CRF) [4] annotator which
separates a string encoding numeric information into relevant parts, such as
digits, thousands or decimal separators. Based on this annotation, the string
can be interpreted as a number. We create a large number of training examples
using numerical values from two Semantic Web knowledge graphs generated from
Wikipedia — i.e., DBpedia and YAGO — and the corresponding raw strings from
Wikipedia. An evaluation on a sample of tables from the Web shows that the
overall accuracy of the approach exceeds 90%.

~21,300 (2001)
Us$3,432.78

~21,300 (2001)

12 ONNTNNNOOOOOOO (; & - &)f
* US$3,432.78 5% % %%
ya O 21300 OOONTNNNDNN
el krowioaoe 3432.78
training phase

Fig. 2. Overall depiction of the approach

2 Approach

US$2,1000 (est.)
tagging

OOONTNNNNOOOOOOO

numbetaction

2100

application phase

Our approach takes pairs of a number and a string representation of that number
as input, as depicted in Fig. 2. While we used raw text values from Wikipedia
infoboxes, along with the corresponding numerical values found in the public
knowledge graphs DBpedia [5] and YAGO [12] for training, our approach can,

in general, be trained with any set of such pairs.

In a preparation step, the raw strings are tagged. The example tagger pro-
cesses both the characters of the raw string and the digits of the number from
left to right to create the training example, using the tags N (pre-decimal digit),
P (post-decimal digit), D (decimal separator), T (thousands separator), and 0

(other). Each character of the string is processed as follows:

if the current character is the current digit of the number

if the current digit is a pre-decimal digit
tag with N

else
tag with P

current digit <- next digit

else if the current digit is a -
tag with M
current digit <- next digit

else if the remaining number of pre-decimal digits is O

tag with D

else if the remaining number of pre-decimal digits is a multitude of 3

tag with T
else
tag with O

If there are digits left after the string has been processed, the whole example is

a mismatch and discarded as a training example.

After the tagging is done, the tagged strings are used train a CRF model. We
use LingPipe 4.1.2' as an implementation of Conditional Random Fields, and
the setup described in the tutorial®. This setup trains a linear chain CRF which
uses the current token and the previous tag as features. As the only change to
the example setup, we increased the number of maximum training cycles to make
sure that the CRF training converged by itself.

For applying the CRF model, we pass it a raw string and inspect the tag
sequence returned. A number is created by concatenating a - for an M tag, a .
for a D tag, and the corresponding character for each N tag in the order in which
they appear. Characters tagged as T and 0 are discarded. We create the numbers
for all predicted sequences. If a number is not valid, it is discarded. In case two
different sequences lead to the same number?, the corresponding probabilities
are added. The number with highest probability is returned.

3 Evaluation

We use two different datasets to create a large number of training examples, i.e.,
DBpedia [5] and YAGO [12], and we evaluate against a sample of HTML tables
containing relational data, drawn from the T2K corpus [9, 10].

We compare our approach to two baselines, i.e., the built-in floating point
parser in Java?, and the number parsing engine of the Mannheim Search Join En-
gine [6], a framework for searching and on-the-fly-integration of a large number
of relational tables.

3.1 Datasets

DBpedia and YAGO are large-scale knowledge graphs, which are created from
Wikipedia infoboxes using a set of mapping rules which map those infoboxes to
a backing ontology. For number parsing, they use hard-coded number parsing
rules. Since the original strings from the Wikipedia infoboxes are also available,
we are able to collect pairs of a parsed number together with the original raw
text from which it was extracted (given a certain amount of noise, as explicated
below).

To evaluate our approach, we use (a) a hold-out set of 1,000 pairs from
both the DBpedia and the YAGO dataset which is not used for training, and
(b) a sample from the T2K corpus. The latter is a collection of relational Web
tables extracted from the CommonCrawl®. Those tables are annotated, among
others, with relations defined in the DBpedia ontology. From those, we sampled
1,000 non-empty table cells which are annotated with a number-valued relation
according to the ontology.

! nttp://alias-i.com/lingpipe/

2 http://alias-i.com/lingpipe/demos/tutorial/crf/read-me.html
3 This case may occur, e.g., if two sequences differ only in a T and an 0.
4 i.e., invoking Double.parseDouble(s) on a string s

® https://commoncrawl .org

For each parsing strategy, we compute the accuracy (where we count only
deviations larger than 107% as errors, in order not to erroneously punishing
rounding errors) and the root mean squared error (RMSE).

For the hold-out sets as well as the T2K set, we hand-annotated 1,000 string
values each with the correct number value. Note that although we have a parsed
value for the DBpedia and YAGO sets, we re-created that value manually, since
we do not rely on the internal parsing of the DBpedia and YAGO frameworks.
Furthermore, this gives as an estimate of how good those parsing techniques
work. This comparison yields that the DBpedia built-in parser has an accuracy
of 0.734, while the YAGO built-in parser has an accuracy of 0.500. This con-
firms shortcomings in the accuracy of the processing of numeric expressions from
Wikipedia also reported in other works [1,11,13].

3.2 Results

From both corpora, we take different sample sizes to train the CRF (i.e., 50,
500, 5,000, 50,000, and 500,000 instances), and also mixed samples (i.e., half
from DBpedia, half from YAGO). The results are depicted in table 1. We can
observe that in all three cases, the mixed dataset with 500 training examples
yields the best performing CRF. As expected, the CRFs trained on DBpedia
and YAGO examples perform better than their counterpart on the respective
holdout sets (although they are outperformed by the mixed variant, which is
a bit surprising). The reason why the results constantly degrade when adding
more than 500 examples is likely due to some overfitting effect.

It is also remarkable that the plain Java parser performs better in terms of
RMSE in two out of three cases. The reason is that if it is capable of parsing
a number, the result is usually always correct, otherwise it is not capable of
parsing the number, in which case we treat the output as 0 for computing the
RMSE, i.e., the absolute error is bound by the values in the dataset. In contrast,
the CRF approach can also make predictions that are a few orders of magnitude
away from the actual value (e.g., when erroneously concatenating a number and
a year present in a string).

In terms of runtime, our approach is slower than the baselines: for parsing
a single number, the Java API takes 0.008 milliseconds per string, MSJE takes
0.0215, while our approach takes 0.247.5 On the other hand, this means that
even with our approach, 4,000 strings can be parsed per second, which is fast
enough for most applications.”

3.3 Error Analysis

In addition to the quantitative analysis, we inspected the mistakes made by our
approach manually. There are several main sources of errors: strings containing

% Runtimes on a commodity Windows laptop

" The training of the CRF, however, can take up to several hours, but only needs to
be performed once. An executable version with the best pre-trained CRF is available
at http://bit.1ly/2qRbwDq.

Table 1. Results on the T2K dataset and the holdout sets of DBpedia and YAGO

Dataset T2K DBpedia holdout | YAGO holdout

Approach Acc. RMSE| Acc. RMSE| Acc. RMSE
Java, 0.171| 7.03E409| 0.223|4.03E+09|0.4055{1.07TE4-07
T2K/MSJE 0.2155| 7.03E+09 0.3/4.24E+149|0.4495| 1.69E+407
DBpediab0 0.82| 8.74E+09| 0.779| 5.70E+09| 0.936| 1.52E+07

DBpediab00 0.923| 2.12E405| 0.936| 8.25E+09| 0.963| 1.52E+07
DBpedia5000 0.89| 1.26E+06| 0.932| 8.25E4-09| 0.793| 1.52E+4-07
DBpedia50000 | 0.853| 3.77E+407| 0.928| 1.04E+10| 0.73| 1.52E4-07
DBpedia500000| 0.863| 4.41E+4-06| 0.928| 6.29E+13| 0.767| 1.52E4-07

YAGO50 0.823| 9.94E409| 0.715] 5.70E+09| 0.939| 1.52E-+07
YAGO500 0.929(1.84E4-05| 0.927| 5.70E409| 0.984| 1.52E4-07
YAGOS5000 0.92| 6.92E+05| 0.901| 8.25E4-09| 0.983| 1.52E4-07

YAGO50000 0.922| 2.12E+405| 0.911| 1.42E+15| 0.982| 1.52E+07
YAGO500000 | 0.921| 6.87E+405| 0.906| 1.04E+10| 0.981| 1.52E+07

Mix50 0.906| 6.84E405| 0.891| 5.70E+09| 0.984| 1.52E+07
Mix500 0.933| 2.12E+05|0.941| 8.25E409|0.986| 1.52E4-07
Mix5000 0.922| 2.12E+4-05| 0.938| 8.25E+09| 0.984| 1.52E4-07
Mix50000 0.919| 1.26E406| 0.932]| 8.25E+09| 0.983| 1.52E+07
Mix500000 0.918| 8.65E405| 0.929| 6.29E+13| 0.983| 1.52E-+07

rare symbols adjacent to a number (such as rare currency symbols), negative
numbers, and numbers that are expressed partly textually (e.g., 3.2 million).
Negative numbers are very underrepresented in our training sets, thus, the CRF
always predicts a very low probability for a negative number. Partly textual
numbers cannot be handled by our approach, since it only tags digits and sep-
arators in a string. Extending the approach to semi-textual numbers is subject
to future work.

4 Conclusion and Outlook

In this paper, we have presented a first approach to train a robust number parser
using Conditional Random Fields. The parser was tested on different datasets,
where it constantly yields more than 90% accuracy.

Current limitations are the presence of rare symbols. To overcome those,
better and more diverse training sets are needed, although this is not trivial: in
an experiment, resampling the dataset for an equal coverage of symbols using
a Kennard Stone sample [3] did not bring any improvement here. Further chal-
lenges to be addressed include: methods are needed to cope with partly textual,
partly numerical representations, such as 3 million, and the interpretation of
units of measurement [11].

For use cases in which a set of numbers which are likely to be formatted
equally (e.g., from one column in a table) are to be processed, it would also
be interesting to adapt the approach in a way that it exploits those common
patterns.

References

10.

11.

12.

13.

14.

. Fleischhacker, D., Paulheim, H., Bryl, V., Voélker, J., Bizer, C.: Detecting errors

in numerical linked data using cross-checked outlier detection. In: International
Semantic Web Conference. pp. 357-372. Springer (2014)

Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R.,
Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data manage-
ment and collaboration. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. pp. 1061-1066. ACM (2010)

Kennard, R.W., Stone, L.A.: Computer aided design of experiments. Technometrics
11(1), 137-148 (1969), http://www. jstor.org/stable/1266770

Lafferty, J., McCallum, A., Pereira, F., et al.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: Proceedings of the
eighteenth international conference on machine learning, ICML. vol. 1, pp. 282-289
(2001)

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P.,; Auer, S., Bizer, C.: DBpedia — A Large-
scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web
Journal 6(2) (2013)

Lehmberg, O., Ritze, D., Ristoski, P., Meusel, R., Paulheim, H., Bizer, C.: The
mannheim search join engine. Web semantics: science, services and agents on the
World Wide Web 35, 159-166 (2015)

Lopez, V., Uren, V., Sabou, M., Motta, E.: Is question answering fit for the se-
mantic web?: a survey. Semantic Web 2(2), 125-155 (2011)

Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3-26 (2007)

Ritze, D., Lehmberg, O., Bizer, C.: Matching html tables to dbpedia. In: Proceed-
ings of the 5th International Conference on Web Intelligence, Mining and Seman-
tics. p. 10. ACM (2015)

Ritze, D., Lehmberg, O., Oulabi, Y., Bizer, C.: Profiling the potential of web
tables for augmenting cross-domain knowledge bases. In: Proceedings of the 25th
International Conference on World Wide Web. pp. 251-261. International World
Wide Web Conferences Steering Committee (2016)

Subercaze, J.: Chaudron: Extending DBpedia with measurement. In: 14th Euro-
pean Semantic Web Conference (2017), to appear

Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A Core of Semantic Knowledge
Unifying WordNet and Wikipedia. In: 16th international conference on World Wide
Web. pp. 697-706 (2007)

Wienand, D., Paulheim, H.: Detecting incorrect numerical data in dbpedia. In:
European Semantic Web Conference. pp. 504-518. Springer (2014)

Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: Infogather: entity aug-
mentation and attribute discovery by holistic matching with web tables. In: Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of
Data. pp. 97-108. ACM (2012)

