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Abstract. Two simple and attractive mechanisms for the fair division of indivis-

ible goods in an online setting are LIKE and BALANCED LIKE. We study some

fundamental computational problems concerning the outcomes of these mech-

anisms. In particular, we consider what expected outcomes are possible, what

outcomes are necessary and how to compute their exact outcomes. In general, we

show that such questions are more tractable to compute for LIKE than for BA-

LANCED LIKE. As LIKE is strategy proof but BALANCED LIKE is not, we also

consider the computational problem of how, with BALANCED LIKE, an agent can

compute a strategic bid to improve their outcome. We prove that this problem is

intractable in general.

1 Introduction

Fair division is a fundamental problem in allocating resources among competing agents.

Many practical fair division problems are online. We present two such settings. For

example, in a food bank, we must start allocating food as it is donated. It is too late

to wait until the end of the day before we start distributing the food to charities. As a

second example, in allocating deceased organs to patients we must match newly donated

organs swiftly. We cannot wait till more organs arrive before deciding on the precise

match.

Motivated by such problems, Walsh has proposed a simple online model for the fair

division of indivisible items in which the items arrive over time [19]. Aleksandrov et

al. analysed two simple and attractive randomized mechanisms for such fair division

problems: LIKE and BALANCED LIKE [1]. The LIKE mechanism allocates an arriving

item uniformly at random between the agents that “like” it. It satisfies equal treatment

of equals, and it is both strategy proof and envy free ex ante [1]. Indeed, any mech-

anism that is envy free ex ante assigns items to agents with the same probabilities as

LIKE does. However, the LIKE mechanism is not very fair ex post as it can possibly

allocate all items to one agent. The BALANCED LIKE mechanism is fairer. It allocates

an arriving item uniformly at random between the agents that “like” it who have the

fewest items currently. BALANCED LIKE bounds the envy one agent has for another’s

allocation ex post. However, this comes at the price of no longer being strategy proof

in general [1]. When restricted to 2 agents and 0/1 utilities, BALANCED LIKE is strat-

egy proof. These mechanisms are simple and satisfy many desirable axioms. For these

reasons, we now turn attention to their computational properties.
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In practice, it may be difficult to query the agents each time an item arrives. The

chair will often collect the preferences of the agents in advance, and allocate items to

agents as they arrive. There are several settings where it is reasonable to suppose that the

chair does that. For instance, in the food bank problem, a good proxy for the utility of an

item to a charity that likes it might simply be its retail price. This is public information.

As a second example, in deceased organ matching, the utility of allocating an organ to

a patient might be computed from a simple formula that takes account of the age of

the organ, the age of the patient and a number of other medical factors. This is again

public information. The chair might then be interested in what outcomes are possible,

necessary or exact based on these declared preferences. For example, the chair might be

concerned that agents receive enough utility or particular essential items. Alternatively,

the chair might want to be sure that a favored agent gets a particular item. Also, they

might even want to give similar utility to each agent or bias the future allocation in case

some agents receive only a few items and are promised to receive more in expectation.

There are two sources of uncertainty in deciding these outcomes. First, both mech-

anisms are randomized. Therefore each mechanism returns a probability distribution

over actual outcomes. Second, as the problem is online, the arrival order of items is typ-

ically unknown. We consider here the problem of the chair computing what outcomes

are possible, necessary or exact depending on both sources of uncertainty. In partic-

ular, we focus on computing whether an agent can possibly or necessarily receive a

given expected utility. These results easily translate into whether an agent can possibly

or necessarily receive a given item. We simply give most of the agent’s utility to that

item. Also, as all our results hold in the case of binary utilities, they can also be viewed

as computing whether an agent can possibly or necessarily receive a given expected

number of items. Whilst some of our results consider general utilities, such utilities are

mainly used to compare outcomes and do not need to be elicited explicitly. General util-

ities are not used when bidding or allocating items. Such “like” and “not like” reporting

has advantages. It is simple, does not require costly eliciting of utilities of agents for

items and it also leads to mechanisms with nice axioms.

Our contributions: We consider three settings: the chair knows the arrival order-

ing of items, the arrival ordering is drawn from some probability distribution, and the

allocation of past items is known. In all settings, we study the problem of the chair

computing possible, necessary and exact outcomes of LIKE and BALANCED LIKE. For

both mechanisms, these problems are intractable even with 2 agents and when the or-

dering of items is not fixed. In contrast, with any number of agents, computing each

of these outcomes is tractable for LIKE and intractable for BALANCED LIKE when the

ordering of items is fixed. Interestingly, computing outcomes with BALANCED LIKE

becomes tractable in this setting only when restricted to 2 agents. Further, computing

outcomes is tractable for both mechanisms at a certain moment of time when a new item

arrives supposing the allocation of past items is known. In addition, we study a closely

related problem of whether an agent can manipulate these mechanisms by strategically

misreporting their preferences. Our computational results have a number of interesting

consequences. For example, recall that the BALANCED LIKE mechanism is fairer but

not strategy proof. However, we show that computing a manipulation of this mechanism

is intractable in general.



2 Preliminaries

We next provide basic definitions of online instances, the LIKE and BALANCED LIKE

mechanisms and their outcomes.

Allocation instance: An instance I = (A,O,U,∆) of an online fair division prob-

lem has (1) a set A of agents a1, . . . , an, (2) a set O of indivisible items o1, . . . , om, (3)

a matrix U = (uik)m×n where uik is the cardinal utility of agent ai for item ok and (4)

a matrix ∆ = (δkj)m×m where δkj is a probability that item ok arrives in moment j.

We consider binary utilities and general rational non-negative utilities. We say that

agent ai likes item ok if uik > 0. Further, we assume that one item arrives in each

moment j, i.e.
∑

k=1:m δkj = 1.

Online setting: Suppose items o1 to oj have arrived at moments 1 to j, respectively.

Given o = (o1, . . . , oj), let ∆(o) be its probability, π(j, o) the current allocation of

these items to agents, p(π(j, o)) its probability and ui(π(j, o)) the additive utility of

agent ai for the items they receive in π(j, o). Now, suppose that item ok arrives at

moment (j + 1) with probability δk(j+1) when each agent ai places a rational non-

negative bid vik for this item and a mechanism then decides its allocation to a feasible

agent in an online manner, i.g. given π(j, o) and no information about future items.

Mechanisms: We consider the randomized LIKE and BALANCED LIKE mecha-

nisms from [1]. With the LIKE mechanism, agent ai is feasible for item ok if vik > 0.

With the BALANCED LIKE mechanism, agent ai is feasible for item ok if vik > 0 and

have so far received fewest items given π(j, o) among those agents that bid positively

for item ok. Let the number of feasible agents be fk. The probability that a feasible

agent ai is allocated item ok is equal to 1/fk.

Possible, necessary and exact outcomes: We consider expected probabilities de-

pending on what information is available to the chair. If the allocation π(j, o) is the

only available information, we use pi(j + 1, π(j, o)) for the probability of agent ai for

the item that arrives at moment (j + 1). If the order o is the only available information,

we use pi(j + 1, o) for the probability of agent ai for the item that arrives at moment

(j + 1). It is equal to
∑

π(j,o) p(π(j, o)) · pi(j + 1, π(j, o)). If there is no information

about o or π(j, o), we use pi(j + 1) for the probability of agent ai for the item that

arrives at moment (j+1). It is equal to
∑

o ∆(o) ·pi(j+1, o). We next define expected

utilities of agents for items in each of these settings. Given π(j, o), we use uij(π(j, o))
for the utility of agent ai. It is equal to ui(π(j, o)) + pi(j +1, π(j, o)). Given o, we use

uij(o) for the utility of agent ai. It is equal to
∑

π(j,o) p(π(j, o)) ·ui(π(j, o)). Given ∆,

we use uij(∆) for the utility of agent ai. It is equal to
∑

o∆(o) · uij(o).
The probability (or utility) of agent ai at moment j is possible if their probability

(or utility) is positive. The outcome of agent ai at moment j is necessary at least some

rational number k if their probability (or utility) is at least k. We also say that the

outcome of agent ai at moment j is exact if we want to compute the exact value of their

probability (or utility).

We study the complexity of computing possible, necessary and exact outcomes. For

a mechanism that allocates all items to agents that like them, note that possible and

necessary outcomes are directly related. For this reason, we only study necessary and

exact outcomes. Our results for possible outcomes are inherited. We next show this

relation.



Suppose we ask if pi(j + 1) > 0 holds. This is true iff there is an ordering o and

allocation π(j, o) of the first j items such that pi(j + 1, π(j, o)) > 0. We therefore

conclude that pi(j + 1) > 0 iff pi(j + 1) ≥ ǫ where 0 < ǫ ≤ mino,π(j,o)∆(o) ·
p(π(j, o))·pi(j+1, π(j, o)). Note that this minimum value is positive and, consequently,

such ǫ always exists. Such a relation is not true for utilities. For the utility of agent ai,
we have that uij(∆) > 0 holds iff agent ai bids positively for at least one item and at

least one item arrives. This problem is easy to decide. However, deciding if uij(∆) ≥ k
holds might not be so easy.

Recall that we consider three settings: when the past allocation of items to agents

is known, when the ordering of items is unknown and when the ordering of items is

known. We next observe that all outcomes are tractable in the setting when the past

allocation is known, fixed and no information about future items is available.

Items arriving online: Let us suppose that the first j items have arrived and their

allocation be π(j, o). Suppose now that item ok arrives at moment (j+1). For both LIKE

and BALANCED LIKE, the exact value of pi(j+1, π(j, o)) is equal to
∑

k=1:m δk(j+1) ·
(1/fk) and the exact value of ui(π(j, o)) is equal to the sum of the cardinal utilities of

agent ai for the items they are allocated in π(j, o). Both of these exact outcomes, the

value of uij(π(j, o)) and therefore any possible and necessary outcomes in this setting

can be computed in O(m · n) time and space.

We use popular reductions and computational problems from computational com-

plexity, graph theory and set theory in order to show our hardness results.

Computational complexity: We use complexity classes of decision and counting

problems such as P, NP, coNP and #P, and mappings such as Karp, Turing, parsimo-

nious and arithmetic reductions [7,16,17].

Graph theory: Let G be an undirected bipartite graph. A matching µ in G is a set

of vertex-disjoint edges. We say that µ matches a vertex if there is an edge in it that

is incident with the vertex. Matching µ is maximal if it is no longer a matching once

some other edge is added to it. Matching µ is perfect if it matches all vertices in G.

Given a graph G and a number k, the minimum size maximal matching problem is to

decide if there is a matching µ in G with |µ| ≤ k. It is NP-hard on various bipartite

graphs [9,15]. Given a graph G, the counting perfect matchings problem is to output the

number of perfect matchings in G. It is #P-hard on various bipartite graphs [14,18].

Set theory: Let S be a set of integers and b, c be integers. A (b, c)-subset of S is a

subset of S whose elements sum up to b and its cardinality is c. The (b, c)-subset sum

problem is to decide if there is a (b, c)-subset of S. Note that there is a (b, c)-subset of

S for at least one c ∈ [1, |S|] iff there is a subset of S whose elements sum up to b. The

latter problem is the NP-hard b-subset sum problem [11].

This paper is structured as follows. In Section 3, the items are drawn from some

known probabilistic distribution ∆. For example, such distribution in the food bank

problem could be estimated based on historical data. In Section 4, we suppose the or-

dering o in which the items will arrive is fixed, i.e. for each moment j, we have that

δkj = 1 holds for exactly one item ok. Again, in the food bank problem, some charities

donate certain items on a regular basis and only at specific moments. In Section 5, we

consider problems of computing manipulations of these mechanisms.



3 Items Arriving from a Distribution

We suppose the agents act sincerely and begin with the case when the chair knows the

utilities but the items come from a distribution ∆ whose size is polynomial in n and m.

STOCHASTICEXACTUTILITY

Input: I = (A,O,U,∆), ai.
Output: uim(∆).

STOCHASTICNECESSARYUTILITY

Input: I = (A,O,U,∆), ai, k ∈ Q.

Question: uim(∆) ≥ k?

The stochastic exact outcomes of LIKE and BALANCED LIKE are #P-hard with

just two agents. Our reduction is motivated by the food bank problem. Let m items

be donated by m suppliers and not each of the suppliers can donate each of the items.

This relation could be viewed as an undirected bipartite graph. The items are in one

partition. The suppliers are in another partition. Let us enumerate them from 1 to m.

There is an edge between an item and a supplier if the supplier donates the item. Each

perfect matching in the graph then can be viewed as an ordering w.r.t. the enumeration

of the suppliers in which each of the m different suppliers donates exactly one of the m
different items. At the beginning of the day, the chair does not know the actual order in

which the suppliers will donate items but they can estimate it by computing an estimate

δkj for each item ok and moment j. Based on past data whose size is polynomial in

m, one such estimate could be the number of days of past data in which each of the m
items is donated from a different supplier amongst the m suppliers divided by the total

number of days of past data. We give a reduction from the counting perfect matchings

problem to STOCHASTICEXACTUTILITY.

Reduction 1 Let G be a (3-regular) bipartite graph with M vertices in each partition.

The allocation instance IG has:

– Agents: agents a1 and a2 (i.e. 2 agents),

– Items: items o1 to oM (i.e. M items),

– Utilities: uij = 1 for each ai and oj , and

– Distribution: δkj = 1/M for each ok and j.

Theorem 1 With n = 2 agents, 0/1 utilities and the LIKE or BALANCED LIKE mecha-

nism, problem STOCHASTICEXACTUTILITY is #P-hard under arithmetic reductions.

Proof. WLOG, the set of orderings of items is equal to the set of perfect matchings

in G united with the set of oǫ that reveals no items. Each ordering oM that reveals M
items corresponds to a perfect matching in G w.r.t. the enumeration of the suppliers in

G. We suppose the items arrive independently of each other and across the different

time moments. Consequently, ordering oM occurs with probability 1/MM and the ex-

pected utility uiM (oM ) is M/2 with both mechanisms as both agents have the same

utilities for items. The ordering oǫ reveals 0 items. It occurs with probability 1 minus

(1/MM ) multiplied by the number of perfect matchings in G and ui0(oǫ) is 0 with

both mechanisms as no items are revealed. We quickly obtain that uiM (∆) is equal

to (1/MM ) · (M/2) multiplied by the number of perfect matchings in G. The result

follows. ✷



We further showed that stochastic necessary outcomes of these mechanisms are NP-

hard with just two agents. We omit the complete proof for reasons of space but we give

the main reduction which is from the (b, c)-subset sum problem. Given set of integers

S = {n1, . . . , nM} and integers b and c, we construct instance IS,b,c: (1) agents a1 and

a2, (2) item ok for each nk ∈ S, (3) agent ai values item ok with nk, and (4) δkj = 1/M
for each item ok and moment j. The instance of STOCHASTICNECESSARYUTILITY has

IS,b,c, agent ai and constant k = (1/M c) · (b/2). Let us order each subset of S w.r.t.

the enumeration (1, . . . ,M). The set of orderings is now equal to the set of ordered

(b, c)-subsets of S united with the set of oǫ that reveals no items. Similarly to the proof

of Theorem 1, it should be easy now for the reader to show that there is a (b, c)-subset

of S iff uiM (∆) ≥ k.

4 Items Arriving from a Fixed Ordering

We again suppose the agents act sincerely and next consider the case that the chair

knows the utilities and the arrival ordering of future items. This corresponds to the case

when exactly one item arrives with probability of one at each moment in time.

EXACTUTILITY

Input: I = (A,O,U, o), ai.
Output: uim(o).

NECESSARYUTILITY

Input: I = (A,O,U, o), ai, k ∈ Q.

Question: uim(o) ≥ k?

4.1 The Case of n > 2 Agents

Let there be n > 2 agents. Interestingly, the outcomes of the LIKE mechanism become

tractable whereas the ones of the BALANCED LIKE mechanism remain intractable even

when the ordering is fixed.

Exact Outcomes Let us start with the LIKE mechanism. This mechanism does not

keep track of the allocation of past items. As a result, any agent is feasible for each next

item supposing they like this item. Indeed, all exact outcomes are tractable with this

mechanism for this reason.

Observation 1 With general utilities and the LIKE mechanism, problem EXACTUTIL-

ITY is in P.

Proof. The probability pi(j, o) of agent ai for item oj is 1/nj where nj is the number

of agents that like the item. Their utility uim(o) can be given as
∑m

j=1(1/nj) · uij . ✷

We continue with exact allocations for the BALANCED LIKE mechanism and give

a parsimonious reduction from counting perfect matchings problem to EXACTUTILITY.

The counting problem remains in #P-hard even on 3-regular undirected bipartite graphs

in [8]. Our reduction is very insightful because it provides a very tight bound on the

complexity of EXACTUTILITY (i.e. 0/1 utilities, each agent likes at most 4 items, each

item except one is liked by at most 3 agents, each pair of agents like at most 3 items in

common, the ordering is fixed, etc.).



Reduction 2 Let G be a 3-regular bipartite graph, u1, . . . , uN be the vertices from one

of its partitions and v1, . . . , vN the vertices from the other one of its partitions. For each

vertex ui, let vi1, vi2, vi3 denote the vertices connected to it and e3·(i−1)+1 = (ui, vi1),
e3·(i−1)+2 = (ui, vi2), e3·(i−1)+3 = (ui, vi3) the edges incident with it. Each edge ek
can be represented as (ui, vj) for some ui ∈ {u1, . . . , uN} and vj ∈ {vi1, vi2, vi3}. We

use the graph and next construct the online allocation instance EG as follows:

– Agents: 1 agent ak per edge ek and 3 special agents a3·N+1, a3·N+2 and a3·N+3

(i.e. 3 ·N + 1 agents),

– Items: 1 item per vertex vj , 2 items ui1, ui2 per vertex ui and 3 special items w
and x (i.e. 3 ·N + 2 items),

– Non-zero utilities: for i ∈ [1, N ], j ∈ {1, 2, 3}, agent a3·(i−1)+j has utility 1 for

items vij , ui1, ui2, x; agent a3·N+1 has utility 1 for items w, x, and

– Ordering: o = (v1 . . . vNu11u12 . . . uN1uN2wx).

We highlight the main idea behind the proof of the next Lemma 1. Basically, we

showed that computing the number of allocations of the first 3 · N + 1 items in o in

which each agent receives exactly one item is in #P-complete.

Lemma 1 With the BALANCED LIKE mechanism, the number of allocations in EG in

which agent a3·N+1 is feasible for item x is equal to 2N times the number of perfect

matchings in G. Computing it is in #P-hard under arithmetic reductions.

Proof. By construction, each item vj is liked by three different agents and, hence, each

allocation of v1, . . . , vN gives these items to N different agents among a1, . . . , a3·N .

Consider then an allocation of v1, . . . , vN such that, for each vertex ui, either agent

a3·(i−1)+1 gets item vi1 or agent a3·(i−1)+2 gets item vi2 or agent a3·(i−1)+3 gets

item vi3. We say that such an allocation of v1, . . . , vN has perfect matches for vertices

u1, . . . , uN because exactly one agent per triplet a3·(i−1)+1, a3·(i−1)+2, a3·(i−1)+3 gets

an item among v1, . . . , vN . In fact, there is a perfect matching in G over v1, . . . , vN and

u1, . . . , uN iff there is an allocation in EG of v1, . . . , vN that has perfect matches for

u1, . . . , uN . Furthermore, this is a 1-to-1 parsimonious correspondence. Each allocation

π in EG of the first 3 ·N+1 items in o in which each agent among a1, . . . , a3·N , a3·N+1

receives exactly one item occurs with positive probability. We call π perfect allocation

over the first 3·N+1 items in o. We show that there is an allocation in EG of v1, . . . , vN
that has perfect matches for u1, . . . , uN iff there are 2N perfect allocations such as π
in EG. Moreover, this is a 1-to-2N arithmetic correspondence. In other words, we show

that the number of perfect allocations such as π in EG is equal to 2N times the number

of perfect matchings in G.

First, let us consider one discrete allocation π1 in EG of v1, . . . , vN that has per-

fect matches for u1, . . . , uN . The allocation π1 occurs with positive probability be-

cause v1, . . . , vN are liked by disjoint sets of three agents. WLOG, suppose that π1 is

such that, for each ui, agent a3·(i−1)+1 receives their corresponding item vi1. The al-

location π1 can be extended by the mechanism to two discrete allocations w.r.t. each

ui: (1) agent a3·(i−1)+2 gets item ui1 and agent a3·(i−1)+3 gets item ui2 or (2) agent

a3·(i−1)+2 gets item ui2 and agent a3·(i−1)+3 gets item ui1. By the preference struc-

ture, π1 can then be extended by the mechanism to 2N perfect allocations in EG. Note



that each of these perfect allocations necessarily gives item w to agent a3·N+1 be-

cause only they like it. Second, consider one perfect allocation in EG. It must be the

case that it extends some discrete allocation of v1, . . . , vN that has perfect matches

for u1, . . . , uN . To show this, consider a discrete allocation π2 of v1, . . . , vN that has

not perfect matches for u1, . . . , uN . Hence, π2 is such that at least two of the agents

a3·(i−1)+1, a3·(i−1)+2, a3·(i−1)+3 for some vertex ui receive their corresponding items

vi1, vi2, vi3 of v1, . . . , vN . Therefore, each allocation of all items that extends π2 by us-

ing the mechanism gives item ui1 or item ui2 to one of the agents a3·(i−1)+1, a3·(i−1)+2,
a3·(i−1)+3 as their second item. As a consequence, in each such allocation, there is an-

other agent with zero items after round 3 ·N +1. We conclude that each such extension

of π2 is not a perfect allocation in EG. ✷

Theorem 2 With n > 2 agents, 0/1 utilities and the BALANCED LIKE mechanism,

problem EXACTUTILITY is in #P-hard under arithmetic reductions.

Proof. Let us consider allocation π = π(3 · N + 1, o) of the first 3 · N + 1 items

in o in which each agent among a1, . . . , a3·N , a3·N+1 receives exactly one item. Note

that agent a3·N+1 gets item x with positive conditional probability only given such

allocations because all agents like item x. By the preference structure, we conclude

that π occurs with probability p(π) = (1/3N) · (1/2N). The conditional probabil-

ity pi(x|π) of agent a3·N+1 for item x given π is equal to 1/(3 · N + 1) because all

agents a1, . . . , a3·N , a3·N+1 like item x. The conditional probability of agent a3·N+1

for item x is 0 given any other allocation. Therefore, p3·N+1(x, o) is equal to (1/3N) ·
(1/2N) · (1/(3 · N + 1)) multiplied by the number of allocations such as π in which

agent a3·N+1 is feasible for item x. Finally, the expected utility u(3·N+1)(3·N+3)(o) =
p3·N+1(w, o) + p3·N+1(x, o). We have that p3·N+1(w, o) = 1 because only agent

a3·N+1 likes item w and the mechanism allocates each item to an agent. The result

follows by Lemma 1. ✷

Necessary Outcomes The tractability of the exact allocations of the LIKE mechanism

entails the tractability of its necessary allocations. By Observation 1, we conclude the

next immediate result.

Observation 2 With general utilities and the LIKE mechanism, problem NECESSARYU-

TILITY is in P.

We next focus on the necessary outcomes of the BALANCED LIKE mechanism. We

give a Karp reduction from minimum size maximal matching problem to the negation of

NECESSARYUTILITY. The minimum size maximal matching problem is shown to be

NP-hard on subdivision graphs of degree at most 3 in [12].

Reduction 3 Let us have a subdivision graph G of degree at most 3 and integer r.

The graph G is bipartite with vertices u1, . . . , uN of degree exactly 2 and vertices

v1, . . . , vM of degree at most 3. WLOG, we can assume that N ≥ M and there are

no two vertices from U that are connected to the same two vertices from V . We con-

struct an allocation instance PG,r as follows:



– Agents: 2 agents ui1, ui2 per ui and agents a1, . . . , aN−r, b1, . . . , bM and c (i.e.

3 ·N +M − r + 1 agents),

– Items: 1 item per vj and items x1, . . . , xN , y1, . . . , yN , z1, . . . , zN−r and w (i.e.

3 ·N +M − r + 1 items),

– Non-zero utilities: for each i ∈ [1, N ], j ∈ {1, 2}, agent uij has utility 1 for items

xi, vij , yi, z1, . . . , zN−r; for each i ∈ [1, N − r], agent ai has utility 1 for items

x1, . . . , xN ; agents b1, . . . , bM have each utility 1 for item w; agent c has utility 1

for items zN−r, w, and

– Ordering: o = (x1 . . . xNv1 . . . vMy1 . . . yNz1 . . . zN−rw).

The expected utility of each of the agents b1, . . . , bM is at least 1/M iff pc(w, o) =
0. This observation holds because each of the agents b1 to bM have equal utilities for

items in which case they receive item w with the same probability which apparently is

also equal to their expected utility as this is the only item they like. Theorem 3 follows

from this observation.

Theorem 3 With n > 2 agents, 0/1 utilities and the BALANCED LIKE mechanism,

problem NECESSARYUTILITY is in coNP-hard under Turing reductions.

Proof. There is a maximal matching in G of cardinality at most r iff there is an allo-

cation in PG,r in which agent c receives item w iff pc(w, o) > 0. The second “iff” is

trivial. We, therefore, focus on the first “iff”. The “only if” direction is easier to show

and, for reasons of space, we only show the more difficult “if” direction. Suppose next

that π is an allocation of all items in PG,r in which agent c receives item w.

1. Item w is allocated in π to agent c as their first item. To see this, suppose they also

get some items among zN−r. Now, they would not be feasible when item w arrives

as agents b1, . . . , bM have zero items in π and the mechanism would have given

item w to an agent among b1, . . . , bM and not to agent c.
2. Prior to item w in π, agent c have received zero items. Hence, items z1, . . . , zN−r

are allocated in π to N − r agents as their first items. By the preferences, these

agents are from different pairs among u11, u12, . . . , uN1, uN2 because, for each

pair of agents ui1, ui2, either ui1 or ui2 is forced to get item yi. WLOG, let us

assume that agents u11, . . . , u(N−r)1 get items z1, . . . , zN−r in π.

3. Prior to item z1 in π, agents u11, . . . , u(N−r)1 have zero items. Hence, N − r items

among y1, . . . , yN are allocated in π to u12, . . . , u(N−r)2 as their first items. These

items are y1, . . . , yN−r. For i in [N − r + 1, N ], we note that item yi is allocated

in π to either ui1 or ui2 as their first or second item.

4. Prior to item y1 in π, agents u11, u12, . . . , u(N−r)1, u(N−r)2 have zero items. By

the preferences, agents a1, . . . , aN−r must then receive items x1, . . . , xN−r in

π. For i in [N − r + 1, N ], item xi is allocated in π to either ui1 or ui2, say

ui2. We conclude that agents u(N−r+1)1, . . . , uN1 have zero items prior to item v1
in π. Moreover, only agents u(N−r+1)1, u(N−r+1)2, . . . , uN1, uN2 receive items

v1, . . . , vM in π. Finally, only l ≤ r agents among u(N−r+1)1, . . . , uN1 get items

in π among v1, . . . , vM as first items as some of these agents might like the same

items among v1, . . . , vM . WLOG, let these agents be u(N−l+1)1, . . . , uN1 and they

are allocated in π items v1, . . . , vl as first items.



The constructed set µπ = {(uN−l+1, v1), . . . , (uN , vl)} contains only edges from

the graph G which are vertex-disjoint. Therefore, this set is a matching in G. More-

over, the cardinality of this set is l at most r. We next show that µπ is a maximal

matching. For the sake of contradiction, suppose that µπ remains a matching if we

add a new edge to it, say (u, v). The edge (u, v) is vertex-disjoint with the edges

in µπ. This means that vertex u is not among uN−l+1, . . . , uN and vertex v is not

among v1, . . . , vl. Hence, vertex u is among u1, . . . , uN−l. In the allocation π, agents

u11, u12, . . . , u(N−r)1, u(N−r)2 do not receive any items among v1, . . . , vM . This im-

plies that all these agents are feasible for the items they like among v1, . . . , vM but

they do not get them in π. As agents u(N−l+1)1, . . . , uN1 get items v1, . . . , vl as their

first items, we conclude that some agents among u(N−l+1)1, u(N−l+1)2 . . . , uN1, uN2

receive items vl+1, . . . , vM as their second items. Therefore, it must be the case that all

agents u11, u12, . . . , u(N−r)1, u(N−r)2 do not like any item among vl+1, . . . , vM . Oth-

erwise, the mechanism would allocate some of these items to agents among u11, u12,
. . . , u(N−r)1, u(N−r)2. This is just the way in which the mechanism works. And, we

reached a contradiction with the existence of the allocation π. Finally, in the graph G,

vertices u1, . . . , uN−r are connected only to vertices among v1, . . . , vl. Hence, v is

among v1, . . . , vl. This fact contradicts that µπ ∪ {(u, v)} is a matching. ✷

4.2 The Case of 2 Agents

By Observations 1 and 2, the outcomes of LIKE are tractable. Surprisingly, in contrast

to Theorems 1, 2 and 3, the outcomes of BALANCED LIKE become tractable with only

two agents and when the ordering of items is fixed.

Theorem 4 With n = 2 agents, general utilities and the BALANCED LIKE mechanism,

problems EXACTUTILITY and NECESSARYUTILITY are in P.

Proof. We use a dynamic program. Each state s = (p, q) in it encodes that agent a1
has p items, agent a2 has q items, and its probability p(s). By induction, we show that

there are at most 2 different states after each allocation round. In the base case, consider

round 1. There are at most 2 states after this round depending on whether both a1 and a2
or only one of them like the first item. In the hypothesis, consider round j and suppose

there are at most two states after round j. In the step case, consider round j + 1. Now,

there are two cases. In the first one, there is only one state after round j. The result

follows by the base case. In the second case, there are two states after round j. Let these

be (p, q) and (p − 1, q + 1) where p + q = j. If only one agent likes item oj+1, each

state transits into a new state and the result follows. If both a1 and a2 like item oj+1, we

consider four sub-cases depending on the difference p− q: (1) (p, q) and (p− 1, q+1)
for p− q > 2, (2) (q+2, q) and (q+1, q+1) for p− q = 2, (3) (q+1, q) and (q, q+1)
for p − q = 1 and (4) (q, q) and (q − 1, q + 1) for p − q = 0. For sub-case (1), each

state transits into one new state with the same probability. For sub-case (2), (q + 2, q)
transits into (q+2, q+1), and (q+1, q+1) into (q+2, q+1) and (q+1, q+2). For

sub-case (3), both states transit into the same new state with probability 1. For sub-case

(4), (q, q) transits into (q, q + 1) and (q + 1, q), and (q − 1, q + 1) into (q, q + 1). We

conclude that there are at most two different states after round j + 1 in each sub-case.



The probability p1(j+2, o) is equal to
∑

sj+1
p(sj+1) ·p(a1 gets oj+2|sj+1) where

sj+1 is such a state after round j + 1 in which agent a1 is feasible for item oj+2. The

conditional probability p(a1 gets oj+2|sj+1) of agent a1 for item oj+2 is (i) 0 or 1 in

sub-case (1), (ii) 0, 1/2 or 1 in sub-case (3) and (iii) the probability of the state in which

they are feasible in sub-cases (2) and (4). We can compute the states, their probabilities

and hence the probabilities of agents and their utilities in O(m) space and time. ✷

5 Manipulations

We next consider how agents can act strategically. The LIKE mechanism is strategy-

proof and hence agents have an incentive to bid sincerely for items. In contrast, the

BALANCED LIKE mechanism is not strategy-proof and agents can have an incentive

to bid strategically for items [1]. We thus focus on strategic misreporting of bids with

BALANCED LIKE. In particular, we study the worst case when the utilities and the

ordering of the items are known to the misreporting agent. Any complexity results, in

this case, provide lower bounds on the complexity in the case of partial or probabilistic

information. We formulate the next problems where uim(vi, o) denotes the utility of

agent ai supposing their bid vector is vi = (vi1, . . . , vim) and the other agents bid

sincerely. Let ui = (ui1, . . . , uim) denotes their sincere bid vector.

EXACTMANIPULATION

Input: I = (A,O,U, o), ai, u
i, vi.

Output: uim(vi, o)− uim(ui, o).

NECESSARYMANIPULATION

Input: I=(A,O,U, o), ai, v
i, ui, k ∈Q.

Question: uim(vi, o)−uim(ui, o) ≥ k?

Theorem 5 With n > 2 agents, 0/1 utilities and the BALANCED LIKE mechanism,

problem EXACTMANIPULATION is in #P-hard under arithmetic reductions.

Proof. Consider instance EG. Let us modify this instance a bit. We add one new item z
between items w and x in the ordering o such that only agent a3·N+1 likes z with 1. Let

FG denote this new instance. Suppose that all agents in FG bid sincerely. Thus, agent

a3·N+1 receives each of the items w and z each with probability 1 because they are the

only agent who likes them. However, they receive item x with probability 0. Therefore,

u(3·N+1)(3·N+3)(u
(3·N+1), o) = 2. Suppose that all agents in FG bid sincerely except

agent a3·N+1 who bids strategically 0 for item z. Let v(3·N+1) be their bidding vector

in this case. We can now remove item z because no agent bids positively for it. But,

then we obtain instance EG. By Theorem 2, we have u(3·N+1)(3·N+3)(v
(3·N+1), o) =

1 + p3·N+1(x, o). The instance of EXACTMANIPULATION uses instance FG, agent

a3·N+1 and vectors u(3·N+1) and v(3·N+1). Its hardness follows by Theorem 2. ✷

Observe that the truthful report of agent a3·N+1 in the proof of Theorem 5 leads to

their utility being 2 whereas their insincere report leads to their utility being at most 2.

Hence, their strategic move cannot lead to an increase in their utility but the computation

of the exact difference in utility is intractable. However, as we discuss next, computing

an exact profitable insincere report that leads to such an increase is also intractable.



Necessary manipulations might be easy even when exact manipulations are hard.

For example, in the proof of Theorem 5, suppose that agent a3·N+1 has cardinal util-

ity for item x that is strictly greater than (3N ).(3N + 1). If they bid sincerely, their

expected utility is 2. If they bid strategically zero for item z, their expected utility is

strictly greater than 2. This necessary increase can be decided in polynomial time but

computing the exact increase is intractable. However, necessary manipulations are also

in general not always easy even if we ask merely for any increase in the expected utility

of a given agent.

Theorem 6 With n > 2 agents, 0/1 utilities and the BALANCED LIKE mechanism,

problem NECESSARYMANIPULATION is in coNP-hard under Turing reductions.

Proof. Consider instancePG,r. Suppose all agents bid sincerely. Hence,uc(3N+M−r+1)

(uc, o) = pc(zN−r, o) + pc(w, o). Suppose all agents bid sincerely except agent c
who bids strategically 0 for item w. Let their bidding vector be vc. We have that

uc(3N+M−r+1)(v
c, o) = pc(zN−r, o). The instance of NECESSARYMANIPULATION

uses as input instance PG,r, agent c, vectors vc and uc, and rational number k = 0. We

conclude that uc(3N+M−r+1)(v
c, o)−uc(3N+M−r+1)(u

c, o) ≥ 0 iff pc(w, o) = 0. The

result follows by Theorem 3. ✷

Another definition of the manipulation problem is whether a player can possibly

increase their utility by insincere reporting, rather than computing the necessary or exact

gain. Observe that in the proof of Theorem 6, we have that uc(3N+M−r+1)(u
c, o) −

uc(3N+M−r+1)(v
c, o) > 0 iff pc(w, o) > 0. We conclude that possible manipulations

are also intractable in general by the proof of Theorem 3. Finally, by Theorem 4, we

conclude that possible, necessary and exact manipulations are easy with just two agents

and items arriving from a fixed ordering. By Theorem 1 and the discussion after it, we

conclude that necessary and exact manipulations are hard with two agents and items

arriving from a distribution.

6 Related Work and Conclusion

We studied the worst-case computational complexity of possible, necessary and exact

outcomes returned by the LIKE and BALANCED LIKE mechanisms supposing agents

act sincerely. With LIKE, there is no benefit for agents to act strategically. With BALAN-

CED LIKE, the agents might be strategic but we proved that computing a manipulation is

computationally intractable in general. Some results are however tractable for the case

of 2 agents. Our study of the online allocations returned by the LIKE and BALANCED

LIKE mechanisms is in-line with many results in offline fair division, voting theory and

partial tournaments where possible, necessary and exact outcomes play crucial role;

see e.g. [2,4,5,20]. Our results provide a stepping stone towards better understanding

strategic behavior. A number of works already considered such behavior for offline

mechanisms; see e.g. [3,6]. Another interesting future directions would be to estimate

the outcomes of our mechanisms or to look at fixed-parameter tractable algorithms for

these problems [10,13,15].
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