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Abstract. Seeding strategies for influence maximization in social net- 

works have been studied for more than a decade. They have mainly relied 

on the activation of all resources (seeds) simultaneously in the beginning; 

yet, it has been shown that sequential seeding strategies are commonly 

better. This research focuses on studying sequential seeding with buffer- 

ing, which is an extension to basic sequential seeding concept. The pro- 

posed method avoids choosing nodes that will be activated through the 

natural diffusion process, which is leading to better use of the budget   

for activating seed nodes in the social influence process. This approach 

was compared with sequential seeding without buffering and single stage 

seeding. The results on both real and artificial social networks confirm 

that the buffer-based consecutive seeding is a good trade-off between the 

final coverage and the time to reach it. It performs significantly better 

than its rivals for a fixed budget. The gain is obtained by dynamic rank- 

ings and the ability to detect network areas with nodes that are not yet 

activated and have high potential of activating their   neighbours. 

 

Keywords: social network, social network analysis, spread of influence, 

diffusion, seed selection, sequential   seeding 

 
 

1 Introduction 
 

The growing complexity of problems which need to be solved daily is leading to 
increasingly complicated decision processes. In order to reduce risk and uncer- 
tainty, some decisions are naturally divided into a sequence of less complicated 
component decisions. Even though the decision can be taken and implemented 
immediately, [9, 19], it is not always the most efficient strategy from the perspec- 
tive of the final outcome, especially assuming that the process at hand bears 
some uncertainty. As an alternative, sequential analysis and decisions where in- 
troduced by Wald [31] and extended later [29, 3]. Lower risk is usually assigned 
to series of many smaller decisions. As an outcome, dividing the decision or 
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activity into smaller chunks can be more profitable compared to the decisions 
that are taken immediately. In terms of acquiring knowledge and reducing risk, 
instead of using partial knowledge in the first stage, the strategy that performs 
better in many cases is gathering more knowledge about the nature of the pro- 
cess during its runtime, and using that knowledge in future decision-making. 
The same applies to marketing [30], cognitive science [14], medicine, especially 
for vaccination strategies [26, 13], and the sequential nature of the process is also 
found in nature; for instance, in the way viral infections develop [4]. 

In this project, we investigate two seeding strategies built upon sequential 

seeding, which were initially proposed in [7]: (i) sequential seeding with revival 

and (ii) sequential seeding with buffering. both are suited for the social influence 

maximisation problem [10], which was extended in various directions [21], [18]. 
They are based on an independent cascades model and the concept of dynamic 
seed allocation, in which seeds are not used until the natural diffusion process 
stops. Yet, they differ on how the seeds are activated after the diffusion termi- 
nates. The proposed strategies are compared with typical single stage seeding 
when all seeds are used in the first stage, as in most typical seeding strategies 
[9, 19, 10, 11]. The main goal of the work is to verify the performance of the 
proposed approach for different parameters related to network structures and 
characteristics of diffusion processes. The initial research on sequential seeding 
showed that the same number of seeds activated over time offers better results, 
i.e. a larger final coverage, compared to the single stage seeding [7], so the natural 
research question is whether there is any chance to outperform it by introducing 
some novel features. In this study, we carried out detailed research on better 
understanding this phenomenon, with the verification of several strategies that 
expand a typical sequential seeding strategy, which is using many parameters of 
diffusion processes. 

 

2 Conceptual Framework 
 

Earlier research showed a better outcome of the sequential seeding, compared 
to a single stage seeding, due to better usage of potential of natural diffusion 
processes. In this section, we further discuss methods for better exploitation  

of sequential seeding. Results from the single stage seeding (SS) are treated  
as a reference for evaluation of performance of sequential seeding. In the first 

stage, n initial seeds are selected with the use of a seed selection strategy, e.g., 
based on the structural characteristics of nodes like the degree, closeness,  etc. 
. The diffusion process starts and continues without any additional support, 
until it naturally stops at the time TSS , (see Fig. 1. Its coverage is measured    
by a percentage of the naturally activated nodes in relation to all nodes in the 
network, and represented by CSS . In the proposed generic sequential approach, 
splitting the seeds among several stages takes place in a form of sequence of seeds, 
which are used in several consecutive stages of the process [7]. The selection of 
seeds in each step is based on the ranks built using static measures, which were 
computed once before the process begins. The next evaluated approach is based 
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on the highest decomposition of the seeding budget over time, and by activating 
a single node per stage (OP S Sq). 

 
 

 

Fig. 1: Macroscopic view of diffusion process with various seeding strategies ap- 
plied: single stage seeding SS, sequential seeding with one seed per stage ac- 
tivated OP S Sq, sequential seeding with revival OP S RSq and with buffering 
OP S BSq. Only natural activations are contributing to the coverage. 

 

 
The OP S Sq approach is not dependent on the process characteristics and 

it leaves room for improvement, because the allocation of additional seeds takes 
place, even when natural diffusion processes are characterised with high dy- 
namics. In order to use acquired knowledge about this dynamics, a sequential 

strategy with a revival mode is proposed, and this is named OP S RSq. Addi- 
tional seeding is used only when the diffusion process stops. In this approach, 
when natural activations are observed, additional seeds are not used. The pro- 
posed approach extends the total period of seeding because the number of seeds 
used to improve dynamics is the same as the ones present in generic strategies, 
and additional seeding is postponed to other periods if no further natural ac- 
tivations are detected. Here, only one seed is used per stage. Due to specifics  
of an independent cascades model, each node has only one chance to activate 
neighbours. Then, if the natural process stops, it will not be re-initiated in a 
natural way during future stages, so the only way to continue activations is by 
using  additional seeding. 

The second proposed method that extends the capabilities of sequential seed- 

ing is sequential seeding with buffering - OP S BSq. Here, unlike with sequential 

seeding, if the activation process unfolds naturally and no additional seeding is 
performed. Yet, i for each stage that didnt require any seeding, a virtual counter 
increases the value of the amount of seeds which will be activated after the nat- 
ural activation plateau is reached. If so, the number of seeds n which is equal 
to the value of this counter is activated and the counter is reset. All four seed- 
ing methods are depicted in Fig. 1 and the approaches which were based on 
sequential seeding are summarized in Table 1. 
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Table 1: Sequential seeding strategies 

 
 
OPS Sq 

one per stage generic sequential seeding based on atomic decomposition 

with the one per stage seed used in each step of simulations and the  

length of sequence equals the number of seeds used 

OPS RSq 
one per stage seeding with revival mode; an additional seed is used only 

when  the  natural  diffusion  process finishes 

 
OPS BSq 

one per stage seeding with buffering mode where additional seeds   are 

collected in the buffer while natural processes continues; the seeds from 

the buffer are used after the natural diffusion process   stops 

 
 
 

3 Related Work 
 

The original influence maximization problem [10] considered static social net- 
works, and researchers followed that path when proposing new algorithms for 
tackling it. Moreover, they focused on single stage seeding, i.e., the best allo- 
cation of the budget assuming its immediate spending [20] without any further 
support. However, in many realistic scenarios, this is not the only way of man- 
aging the budget and recent studies started to investigate how distributing a 
budget over time influences the outcome of the process. Starting with two-stage 
stochastic models [27] through more scalable approaches [6], it was shown that 
this research direction has a potential that was further explored in the area of 
social influence [28, 34]. The most recent study [7] proposed sequential seeding 
as being a more effective way to allocate the budget, while showing its advan- 
tages over a single stage seeding in many network configurations. The potential 
of multi-period spraying algorithm for routing in delay-tolerant networks was 
also discussed [2]. Apart from that, some authors noticed the benefit of omitting 
the nodes that will be activated due to the natural diffusion process. As a result 
they proposed methods that avoid choosing as a new seed either a node that    
is a neighbour of the already chosen seed, [12, 35], or a node that is in a local 
cluster that already contains another seed, which also reflects the observation on 
how information spreads across clusters [8]. In this assignment, we investigate 
sequential seeding [7] in detail, so as to answer the question about the extent 
to which this approach provides a better solution, compared to a single stage 
seeding. 

 

4 Experimental Setting 
 

Experimental research was conducted, using agent-based simulations within twenty 
networks, and including eleven real networks (N1 [22], N2 [22], N3 [24], N4 [22], 
N5 [1], N6 [33], N7 [23], N8 [25], N9 [17], N10 [16], N11 [15]) and nine ar- 
tificially generated networks following the Watts-Strogatz and Barabsi-Albert 
models (N12-N20); these were done according to the specifications  presented 
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in Table 2. Networks were generated with the use of various parameters. For 
Watts-Strogats model Parameter 1 represents the neighbourhood within which 
the vertices of the lattice will be connected and Parameter 2 represents rewiring 
probability. In the case of the Barabasi-Albert model, Parameter 1 represents 
the number of edges to be included in each time step and Parameter 2 shows 
the power of the preferential attachment. 

 
 

Table 2: Specification of synthetic networks N12-N20 
 

ID Network model Param. 1 Param. 2 Nodes Edges 

N12 Watts-Strogatz nei=1 r=0.05 10,000 20,000 

N13 Watts-Strogatz nei=2 r=0.05 10,000 60,000 

N14 Watts-Strogatz nei=3 r=0.05 10,000 120,000 

N15 Watts-Strogatz nei=2 r=0.10 10,000 60,000 

N16 Watts-Strogatz nei=2 r=0.30 10,000 60,000 

N17 Watts-Strogatz nei=2 r=0.50 10,000 60,000 

N18 Barabasi-Albert m=2 p=0.50 10,000 19,997 

N19 Barabasi-Albert m=4 p=0.50 10,000 39,990 

N20 Barabasi-Albert m=8 p=0.50 10,000 79,964 

 
 
 

The independent cascades model (IC) [10] was used for each edge (a, b), with 
the propagation probability P P (a, b) that node a activates node b in the step  
t + 1, with the condition that node a was activated in the time t  [32]. 

The main reason for the selection of IC model is that in the IC model, a 
single seed can induce diffusion and even a cascade, while in the linear threshold 
model [5], small seeds packages would not have any effect. 

 

5 Results 
 

5.1 Sequential seeding with revival and buffering 

Results achieved in sequential seeding were compared to the single stage seed- 
ing (SS) in the same conditions, i.e., for the same network and its parameters, 
such as propagation probability, seeding percentage and seed selection strategy 
based on a random selection (R), the degree (D), the second-level degree (D2), 
the closeness (CL), the clustering coefficient (CC) or the PageRank (PR) across 
twenty different networks. Reference values for comparison are based on the cov- 
erage achieved for single stage seeding (CSS ) and the duration of the single stage 

process representing the stage when the TSS is achieved. Experiments showed 
that sequential seeding was almost always better than single stage seeding with 
the same parameters. An example of s simulation case is presented in Fig. 2. 

Results for all networks, strategies and parameters showed that, in 91.94% 
of simulation cases, OP S Sq delivered better results than single stage seeding. 
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Fig. 2: Longer duration of sequential seeding with higher coverage 
 
 

Even though the performance was dependent on the network characteristics and 
parameters of the process and the strategy used, the sequential seeding supported 
the diffusion in most cases. The improvement can even exceed 50% with the 
use of the same number of seeds, just like in single stage seeding. An average 
reach of diffusion processes based on the OP S Sq with statistical significance 
(p < 2.2e−16) achieved 8.43% better results than using the SS approach with 
the same conditions based on Wilcoxon signed-rank test. 

The analysis of OP S Sq showed that sequential seeding outperforms single 
stage seeding in most cases, and the performance of proposed methods is depen- 
dent on parameters of the diffusion process and network characteristics. Exper- 
iments were performed for a wide range of networks and parameters, including 
a very low performance, i.e., the propagation probability PP=0.01 or seeding 
percentage 1% with a low number of activations and very difficult diffusion pro- 
cesses, no matter what strategy is applied. An opposite situation is observed 
within the networks, with a high degree and propagation probability PP=0.25 
and SP=5%. Under these conditions, most strategies were performing very well, 
with diffusion processes leading to 100% activated nodes in a very short time, 
and they left a very small margin for improvements. Taking into account the 
above conditions, an average 8.43% or 6% of increase shows substantial growth, 
with much better results for conditions such as a higher activation probability. 
A substantial increase was obtained for degree -based strategies for both one (D) 
and second level degree (D2), and a propagation probability higher than 0.05. 

For networks N2, N4, N10 and N19, a high performance average reaching 
higher 30% than in single stage seeding was observed for both sequential strate- 
gies, based on D and D2 selection, see Table 3 containing results compared with 
single stage seeding for each network. Low performance was observed for net- 
works N12, N14, and at least in three strategies for networks N6, N8; however, 
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it was still above 10% with only four cases with an increase which was smaller 
than 5% (N12, N14). 

The first reason why sequential seeding (including its modifications outper- 
forms single stage seeding is the fact that, in the case of sequential seeding, 
initial seeds used in a single stage approach are activated by a natural process, 
due to their high positions in the network, and they dont require seeding to    
be activated. When taking into account the seeds selected in the single stage 
seeding process, more than 60% of them can be activated in natural processes 
when sequential seeding is applied. Saved seeds can be used for activation of 
other nodes and unexplored segments of the network. This refers mostly to re- 
vival mode strategies, where the phenomena based on using natural diffusion 
processes is most visible, with additional seeding performed only when natural 
activations are stopped. 

 
 

Table 3: Results for OP S Sq based on D and D2 strategies with PP=0.1 and 
SP=0.05 

 
Strategy N1 N2 N3 N4 N5 

OPS Sq D 124.81 138.66 111.82 135.87 110.36 

OPS Sq D2 120.66 149.65 113.06 145.35 109.99 

Strategy N6 N7 N8 N9 N10 

OPS Sq D 107.47 126.21 113.05 109.05 130.22 

OPS Sq D2 113.89 137.28 111.33 114.01 145.41 

Strategy N11 N12 N13 N14 N15 

OPS Sq D 112.29 102.94 114.67 106.45 116.16 

OPS Sq D2 112.49 106.15 115.37 106.15 117.69 

Strategy N16 N17 N18 N19 N20 

OPS Sq D 119.59 114.94 114.44 130.78 114.28 

OPS Sq D2 118.84 119.24 119.33 130.59 114.60 

 
 
 

In the next stage, an approach based on seeding with revival mode (with the 
presence of additional seeding) was used, and diffusion processes stops were ob- 
served. Results for compared strategies with the revival model showed statistical 

differences between OP S Sq vs OP S RSq with p < 2.2e 16. Results showed 

that the revival mode OP S RSq achieved a 5.34% better reach than OP S Sq for 

all cases linked to static rankings. In 2319 cases (64.42%), OP S RSq delivered 

better results than OP S Sq. For OP S RSq, the best performance above me- 
dian 4.66% was observed for networks N4, N5, N7, N8, N9, N10, N13, N14, N16, 
and N20; when compared to the non-revival mode, network parameters were not 
statistically significant. The results showed that, for networks with a higher de- 
gree, the performance of the revival mode was better. Diffusion processes within 
networks with a higher degree have higher dynamics and allocation of additional 
seeds when natural processes are continued is resulting in the waste of available 
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resources. Results analysed for seeding percentages 1%, 2%, 3%, 4%, 5% showed 
an increase of OP S RSq with values of 11.79%, 7.42%, 3.42%, 3.40%, 2.30%, and 
the relation between the seeding performance and revival mode showed the high- 

est increase of performance for small proportion of seeds selected (SP = 1%). 
While most of the analysis is performed on aggregated data obtained from all 
cases, Fig. (3 shows example results from a simulation performed within the net- 
work N2, with the propagation probability PP=0.1 and seed selection strategy 
D2, and 5% of the initial selected seeds s. The revival mode is achieving better 
results, but the process is longer and dynamics are smaller than what is observed 

from the 75th stage of simulation. 

 
 

Fig. 3: Revival mode results within network N2 with PP=0.1 and SP=5% based 
on S=D2 

 
 

The introduced approach to the revival mode increased the reach of pro- 
cesses, but the duration was increased as well, due to the delay of each additional 
seeding, until diffusion processes stopped. Results for compared strategies with 
the Wilcoxon signed rank and revival mode showed statistical differences be- 
tween OP S Sq vs. OP S RSq and p = 4.40e−09). The buffered mode OP S BSq 

achieved 3.2% increase of reach when compared to OP S Sq, and it represented 
60% of value achieved with the revival mode (5.34%). The buffering mode, when 
compared to the revival mode without buffering, makes it possible to shorten 
the duration of processes achieved better results than in the case of generic se- 
quential seeding. The average duration of OP S BSq was only 21.92% longer 
than OP S Sq, while the duration of OP S RSq was 71.31% longer. Fig. 4a illus- 
trates the duration of OP S BSq and OP S RSq in relation to generic OP S Sq 

approach. 
The buffered approach showed an average increase when compared to OP S Sq 

for propagation probabilities 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 as follows:  8.48%, 
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4.24%, 3.22%, 4.21%, 2.54% and 0.00%, with the best result being for lowest 
propagation probabilities. When compared to the revival mode, the buffering 
mode delivered improvements for PP=0.01 with a 2.61% increase, while for prob- 
abilities 0.05, 0.1, 0.15, 0.2, 0.25, buffering results were worse. Average results 
from all propagation probabilities showed slightly better results than in the re- 
vival mode OP S RSq for 6 networks: N1, N6, N12, N16, N17 and N15. Fig. 4b 
shows an example OP S BSq and OP S RSq results from network N10 with the 
PP=0.1 strategy D2 and SP=0.05 with higher reach achieved for OP S RSq and 
a lower reach of OP S BSq, but with a shorter duration proposes. 

 
 

 

  
(a) Duration of difussion processes for 

OPS BSq and OPS RSq compared with 

generic OPS Sq 

(b) Strategies OPS BSq and OPS RSq 

compared with sequential seeding for 

network N10 with PP = 0.1, strategy 

D2 and SP = 0.05 
 

Fig. 4: Comparison of seeding strategies 
 
 
 

Sequential strategies delivered better results than the single stage approach 
in terms of reach; however, the longer duration of diffusion processes is a dis- 
advantage for the higher reach. It is a result of the smaller amount of seeds 
used in the first stages of processes and lower initial dynamics, due to spreading 
seeds over several periods of time. In an analysis presented in this section, the 

stage TSS  was used as a reference, where the maximal number of activations  

is achieved using a single stage approach. The cases in Fig. 5 show differences 
among generics per stage seeding strategy, as well as its extensions with the re- 
vival and buffering modes. The duration of one per stage seeding was increased 
by the revival mode, but cases from the buffering mode are concentrated between 
OP S Sq and OP S RSq. 
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Fig. 5: Duration of one per stage strategies OP S Sq, OP S RSq and OP S BSq 
 

 
5.2 Trade-off between the coverage and duration of the process 

 
The potential of sequential seeding can be evaluated as a trade-off between 
coverage and duration. The last stage of analysis includes connected effects of 
increased coverage and longer duration of the diffusion processes with the ref- 
erence to a single stage seeding, with integrated results for the same PP, SP, N 
and S. The distribution of reference values for OP S Sq for all used strategies 
shows visual characteristics of obtained results in Fig. 6. The X axis represents 
the distance from the single stage reach, which was computed with the formula 

CoverageRef = (CoverageSq –CoverageSS )/CoverageSS . Negative values rep- 

resent cases with worse results than in a single stage seeding. Here, the Y axis is 
representing the distance between the stage when a maximal value was achieved 
according to the formula Duration Ref = (Duration Sq–Duration SS)/Duration SS. 
Each figure includes 3,600 cases for each sequential strategy. References for 

OP S Sq are characterized by a bigger dispersion on the Y axis, including more 
cases with high values which are achieved in the X axis. 

The effect of the revival mode for OP S RSq is presented in Fig. 7a with      
a growing dispersion and longer sequences, but with a shift that was observed 
on the X axis, and geared towards better reach. The reach and duration of 
diffusion processes and the relation between them in reference to single stage 
seeding were connected with results of a simulation with the same parameters. 
Cases with negative values on the X axis represent worse results in terms of 
reach than with single stage seeding. Cases with negative values on the Y-axis 

represent processes with SS SS, which are achieved faster than in a single stage 
approach. Results for the buffered mode are presented in Fig. 7b. Buffered mode 

resulted in dispersion between OP S Sq and OP S RSq in terms of X and Y 
distribution. 
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Fig. 6: Distribution of cases in generic sequential seeding approach OP S Sq 
 
 

 
Distribution of cases with used OP S Sq shows a bigger dispersion and longer 

duration, especially for cases with low X values. Implementation of revival mode 
resulted in an increased number of cases, with a longer duration and an accom- 
panied increase of reach. 

 
 
 

(a) Revival mode OPS RSq (b) Buffered mode OPS BSq 

 

Fig. 7: Distribution of cases 
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6 Conclusions 
 

The results revealed that the best result can be achieved by means of one per 
stage method with the revival mode, and it also lasts the longest. This observa- 
tion is valid for all tested ranking methods: degree, second level degree, closeness, 
clustering coefficient and page rank If the process time span is limited, even from 
the duration of the single stage approach (the shortest possible), the length of 
the sequence may have to be reduced and the buffer-based consecutive seeding 
appears to be a good solution. The results show the potential of the buffer-   
ing mode as being a suitable compromise, which enables us to extend coverage 
without high increase in duration. During the experiments, results from short 
sequences were compared with the longest sequences based on revival concepts. 
The sequential seeding approaches with the longer duration usually yield better 
results in terms of the number of activated nodes, which is the final coverage. 
Hence, the trade-off between time and reach depends on individual preferences 
and the role of process coverage and duration in a given application domain. 
Further research will focus on various modifications of the buffering mode, as 
well as on other approaches for duration shortening. The general direction is 
leading towards finding clear dependencies between the length of sequences and 
the final coverage for different networks and strategies. 
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