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Abstract. The importance of modeling the spread of epidemics through
a population has led to the development of mathematical models for
infectious disease propagation. A number of empirical studies have col-
lected and analyzed data on contacts between individuals using a variety
of sensors. Typically one uses such data to fit a probabilistic model of
network contacts over which a disease may propagate. In this paper,
we investigate the effects of different contact network models with vary-
ing levels of complexity on the outcomes of simulated epidemics using
a stochastic Susceptible-Infectious-Recovered (SIR) model. We evaluate
these network models on six datasets of contacts between people in a
variety of settings. Our results demonstrate that the choice of network
model can have a significant effect on how closely the outcomes of an
epidemic simulation on a simulated network match the outcomes on the
actual network constructed from the sensor data. In particular, preserv-
ing degrees of nodes appears to be much more important than preserving
cluster structure for accurate epidemic simulations.

Keywords: network model, stochastic epidemic model, contact net-
work, degree-corrected stochastic block model

1 Introduction

The study of transmission dynamics of infectious diseases often involves simula-
tions using stochastic epidemic models. In a compartmental stochastic epidemic
model, transitions between compartments occur randomly with specified prob-
abilities. For example, in a stochastic Susceptible-Infectious-Recovered (SIR)
model [4,10], a person may transition from S to I with a certain probability
upon contact with an infectious person, or a person may transition from I to R
with a certain probability to simulate recovering from the disease.

The reason for the spread of infection is contact with the infectious indi-
vidual. Hence, the contact network in a population is a major factor in the
transmission dynamics. Collecting an actual contact network over a large popu-
lation is difficult because of limitations in capturing all the contact information.
This makes it necessary to represent the network with some level of abstraction,
e.g. using a statistical model. A variety of statistical models for networks have
been proposed [9]; such models can be used to simulate contact networks that
resemble actual contact networks.
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(c) Recovered

Fig. 1: For each of the susceptible (S), infectious (I), and recovered (R) compart-
ments, the mean curve for simulations on the model (shown in blue) is compared
to the mean curve for simulations on the actual network (shown in red). The
closeness between the model and actual network is given by the sum of the
shaded areas between the curves for each compartment (smaller is better).

Our aim in this paper is to evaluate different models for contact networks in
order to find the best model to use to simulate contact networks that are close to
an actual observed network. We do this by comparing the disease dynamics of a
stochastic SIR model over the simulated networks with the disease dynamics over
the actual network. One commonly used approach is to compare the epidemic
size at the end of the simulation, i.e. what fraction of the population caught
the disease [19,25]. A drawback of this approach is that it only considers the
steady-state outcome and not the dynamics of the disease as it is spreading.

We propose to compare the dynamics at each time instant in the simulation
by calculating the area between the mean SIR curves for the epidemic over the
simulated and actual networks, shown in Fig. 1. A small area indicates that the
dynamics of the epidemic over the simulated contact networks are close to those
of the actual network. We use this approach to compare four contact network
models (in increasing order of number of parameters): the Erdős-Rényi model,
the degree model, the stochastic block model, and the degree-corrected stochastic
block model. Our experiment results over six different real network datasets
suggest that the degree-corrected stochastic block model provides the closest
approximation to the dynamics of an epidemic on the actual contact networks.
Additionally, we find that preserving node degrees appears to be more important
than preserving community structure for accuracy of epidemic simulations.

2 Related Work

A significant amount of previous work deals with the duration [23], frequency
[17], and type [6,24] of contacts in a contact network. These findings are often
incorporated into simulations of epidemics over different types of contact models.
The R package EpiModel [13] allows for simulation of a variety of epidemics over



Table 1: Summary statistics from datasets used in this study.

HYCCUPS
Friends &

Family
High

School
Infectious

Primary
School

HOPE

Number of nodes 43 123 126 201 242 1178
Sensor type Wi-Fi Bluetooth RFID RFID RFID RFID

Proximity range N/A 5 m 1–1.5 m 1–1.5 m 1–1.5 m Room
Graph density 0.326 0.228 0.217 0.0328 0.285 0.569

Clustering coefficient 0.604 0.496 0.522 0.459 0.480 0.748
Average degree 14.0 27.8 27.1 6.56 68.7 671

Maximum degree 28 73 55 21 134 1072

temporal exponential random graph models for contact networks and has been
used in studies of various different infectious diseases including HIV [14].

There has also been prior work simulating the spread of disease over a variety
of contact network models with the goal of finding a good approximation to the
actual high resolution data in terms of the epidemic size, i.e. the final number of
people infected [19,25]. Such work differs from our proposed area metric, which
considers the dynamics as the disease is spreading and not just the steady-
state outcome. In [3], the authors use the squared differences between the I
curves (fraction of infectious individuals) of an epidemic model on simulated
contact networks and on an actual contact network to calibrate parameters of the
epidemic model when used on simulated contact networks. Although this metric
does consider the dynamics of the epidemic, our proposed metric also involves
the S and R curves for a more complete evaluation of population dynamics.

3 Datasets

We consider a variety of contact network datasets in this paper. Table 1 shows
summary statistics for each dataset along with the sensor type. The HYCCUPS
dataset was collected at the University Politehnica of Bucharest in 2012 using
a background application for Android smartphones that captures a device’s en-
counters with Wi-Fi access points [20]. The Friends & Family (F&F) dataset was
collected from the members of a residential community nearby a major research
university using Android phones loaded with an app that records many features
including proximity to other Bluetooth devices [2]. The High School (HS) dataset
was collected among students from 3 classes in a high school in Marseilles, France
[7] using wearable sensors that capture face-to-face proximity for more than 20
seconds. The Infectious dataset was collected at a science gallery in Dublin us-
ing wearable electronic badges to sense sustained face-to-face proximity between
visitors. [12]. We use data for one arbitrarily selected day (April 30) on which
201 people came to visit. The Primary School (PS) dataset was collected over
232 students and 10 teachers at a primary school in Lyon, France in a similar
manner to the HS dataset [8]. Lastly, the HOPE dataset is collected from the
Attendee Meta-Data project at the seventh Hackers on Planet Earth (HOPE)



conference [1]. We create a contact network where the attendees at each talk
form a clique; that is, each person is assumed to be in contact with every other
person in the same room, hence why this network is much denser.

4 Methods

We construct actual networks from the datasets by connecting the individuals
(nodes) with an edge if they have a contact at any point of time. We evaluate the
quality of a contact network model for simulations of epidemics by conducting
the following steps for each dataset:

1. Simulate 5, 000 epidemics over the actual network.
2. Fit contact network model to actual network.
3. Simulate 100 networks from contact network model. For each simulated net-

work, simulate 50 epidemics over the network for 5, 000 epidemics total.
4. Compare the results of the epidemic simulations over the actual network

with those over the simulated networks.

These steps are repeated for each contact network model that we consider.
We describe the stochastic epidemic model we use to simulate epidemics in Sec-
tion 4.1 and the contact network models we use in Section 4.2. To get a fair
evaluation of the dynamics of epidemics spreading over different contact net-
work models, all of the parameters which are not related to the contact network
model, e.g. probability of infection and probability of recovery are kept constant.
Our aim is to single out the effect of using a particular contact network model
while simulating an epidemic.

4.1 Stochastic Epidemic Model

An actual infection spread in a population experiences randomness in several fac-
tors which may aggravate or inhibit the spread. This is considered in stochastic
epidemic models. The initial condition is, in general, to have a set of infectious
individuals, while the rest of the population is considered susceptible. We con-
sider a discrete-time process, where at each time step, the infectious individuals
can spread the disease with some probability of infection to susceptible individ-
uals they have been in contact with. Also, the infectious individuals can recover
from the disease with some probability independent of the individuals’ contacts
with others. This model is known as the stochastic SIR model and is one of the
standard models used in epidemiology [4,10].

We randomly choose 1 infectious individual from the population as the initial
condition and simulate the epidemic over 30 time steps. We set the probability
of infection for every interaction between people to be 0.025. The probability of
recovery is also set to be 0.025. Note that the rate at which the disease spreads
across the population is dependent not only on the infection probability but also
the topology of the contact network; thus, by fixing these probabilities, we are
exploring only the effects of the contact network.



4.2 Contact Network Models

In practice, it is extremely difficult to obtain accurate contact network data. An
alternative is to simulate a contact network by using a statistical network model.
We consider several such models, which we briefly describe in the following. We
refer interested readers to the survey by Goldenberg et al. [9] for details.

Erdős-Rényi (E-R) Model In the E-R model, an edge between any two
nodes is formed with probability p independent of all other edges. To fit the E-R
model to a network, set the single parameter, the estimated edge probability
p̂ = M/

(
N
2

)
, where N and M denote the number of nodes and edges in the

actual network, respectively. By doing so, the expected number of edges in the
E-R model will be

(
N
2

)
p̂ = M , the number of edges in the actual network.

Degree Model In several network models, including the configuration model
and preferential attachment models, the edge probability depends upon the de-
grees of the nodes it connects [21]. We consider a model that preserves the
expected rather than actual degree of each node, often referred to as the Chung-
Lu model [5]. In this model, the probability of an edge between two nodes is
proportional to the product of their node degrees, and all edges are formed in-
dependently. The model has N parameters, the expected degrees of each node.

To fit the degree model to a network, we compute the degrees of all nodes to
obtain the degree vector d. We then set the estimated edge probabilities p̂ij =
αdidj , where the constant α is chosen so that the sum of all edge probabilities
(number of expected edges) is equal to the number of edges in the actual network.

Stochastic Block Model (SBM) In the SBM [11], the network is divided
into disjoint sets of individuals forming K communities. The probability of edge
formation between two nodes depends only upon the communities to which they
belong. This model takes as input a vector of community assignments c (length
N) and a matrix of edge formation probabilities Φ (size K × K), where φab
denotes the probability that a node in community a forms an edge with a node
in community b, independent of all other edges. For an undirected graph, Φ is
symmetric so the SBM has N +

(
K+1
2

)
parameters in total.

To estimate community assignments, we use a regularized spectral clustering
algorithm [22] that is asymptotically consistent and has been demonstrated to
be very accurate in practice. We select the number of communities using the
eigengap heuristic [18]. Once the community assignments ĉ are estimated, the

edge probabilities can be estimated by φ̂ab = mab/nab, where mab denotes the
number of edges in the block formed by the communities a, b in the observed
network, and nab denotes the number of possible edges in the block [16].

Degree-corrected Stochastic Block Model (DC-SBM) The DC-SBM is
an extension to the SBM in a way that incorporates the concepts of the degree



model within an SBM [16]. The parameters of the DC-SBM are the vector of
community assignments c (length N), a node-level parameter vector θ (length
N), and a block-level parameter matrix Ω (size K ×K). In a DC-SBM, an edge
between a node i ∈ a (meaning node i is in community a) and node j ∈ b is
formed with probability θiθjωab independent of all other edges. Ω is symmetric,

so the DC-SBM has 2N +
(
K+1
2

)
parameters in total.

To fit the DC-SBM to an actual network, we first estimate the community
assignments in the same manner as in the SBM using regularized spectral clus-
tering. We then estimate the remaining parameters to be θ̂i = di/

∑
j∈a dj , for

node i ∈ a, and ω̂ab = mab [16]. Using these estimates, we arrive at the estimated

edge probabilities p̂ij = θ̂iθ̂jω̂ab.

5 Results

To evaluate the quality of a contact network model, we compare the mean SIR
curves resulting from epidemic simulations on networks generated from that
model to the mean SIR curves from epidemic simulations on the actual network.
If the two curves are close, then the network model is providing an accurate
representation of what is likely to happen on the actual network.

To measure the closeness of the two sets of mean SIR curves, we use the
sum of the areas between each set of curves as shown in Fig. 1. By measuring
the area between the curves rather than just the final outcome of the epidemic
simulation (e.g. the fraction of recovered people after the disease dies out as in
[19,25]), we capture the difference in transient dynamics (e.g. the rate at which
the infection spreads) rather than just the difference in final outcomes.

The area between the SIR curves for each model over each dataset is shown
in Fig. 2a. According to this quality measure, the DC-SBM is the most accurate
model on F&F, HS, and PS; the degree model is the most accurate on HYCCUPS
and HOPE; and the SBM is most accurate on Infectious. However, the SBM
appears to be only slightly more accurate than the E-R model overall, despite
having N+

(
K+1
2

)
parameters compared to the single parameter E-R model. The

contact network models were most accurate on the HOPE network, which is the
densest, causing the epidemics to spread rapidly.

We compute also the log-likelihood for each contact network model on each
dataset, shown in Fig. 2b. To normalize across the different sized networks, we
compute the log-likelihood per node pair. Since all of the log-likelihoods are
less than 0, we show the negative log-likelihood (i.e. lower is better) in Fig. 2b.
Unsurprisingly, the DC-SBM, with the most parameters, also has the highest log-
likelihood, whereas the relative ordering of the log-likelihoods of the degree model
and SBM, both with roughly the same number of parameters, vary depending
on the dataset.

Both the proposed area between SIR curves and the log-likelihood can be
viewed as quality measures for a contact network model. A third quality measure
is given by the number of parameters, which denotes the simplicity of the model.
A simpler model is generally more desirable to avoid overfitting. These three
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Fig. 2: Comparison of (a) area between SIR curves of each model with respect
to actual network for each dataset and (b) negative log-likelihood per node pair
for each model (lower is better for both measures). The DC-SBM model appears
to be the best model according to both quality measures, but the two measures
disagree on the quality of the degree model compared to the SBM.

Table 2: Quality measures (lower is better) averaged over all datasets for each
model. Best model according to each measure is shown in bold.

Quality Measure E-R Degree SBM DC-SBM

Area between SIR curves 1.82 0.73 1.43 0.71
Negative log-likelihood per node pair 0.597 0.496 0.504 0.385

Number of parameters 1 319 328 647

quality measures for each model (averaged over all datasets) are shown in Table
2. The DC-SBM achieves the highest quality according to the area between SIR
curves and the log-likelihood at the expense of having the most parameters. On
the other hand, the E-R model has only a single parameter but is the worst in
the other two quality metrics. Interestingly, the degree model and SBM appear
to be roughly equal in terms of the number of parameters and log-likelihood,
but the area between SIR curves for the two models differs significantly. This
suggests that the degree model may be better than the SBM at reproducing
features of contact networks that are relevant to disease propagation.

6 Discussion

The purpose of our study was to evaluate the effects of contact network models
on the results of simulated epidemics over the contact network. While it is well-
known and expected that more complex models for contact network topology
do a better job of reproducing features of the contact network such as degree
distribution and community structure, we demonstrated that, in general, they



also result in more accurate epidemic simulations. That is, the results of simu-
lating an epidemic on a more complex network model are usually closer to the
results obtained when simulating the epidemic on the actual network than if we
had used a simpler network model. Moreover, models that preserve node degrees
are shown to produce the most accurate epidemic simulations. Unlike most prior
studies such as [19,25], we measure the quality of a network model by its area
between SIR curves compared to the SIR curve of the actual network, which
allows us to capture differences while the disease is still spreading rather than
just the difference in the final outcome, i.e. how many people were infected.

Our findings suggest that the degree-corrected stochastic block model (DC-
SBM) is the best choice of contact network model in epidemic simulations be-
cause it resulted in the minimum average area between SIR curves. Interestingly,
using the degree model resulted in an average area between SIR curves to be
only slightly larger than the DC-SBM despite having less than half as many
parameters, as shown in Table 2. The SBM (without degree correction) also has
half as many parameters as the DC-SBM, but has over twice the area between
SIR curves. We note that the difference between the degree model and the SBM
cannot be observed using log-likelihood as the quality measure, as both models
are very close in log-likelihood. This leads us to believe that preserving degree
has a greater effect on accuracy of epidemic simulations than preserving commu-
nity structure. Furthermore, this finding demonstrates that one cannot simply
evaluate the accuracy of a contact network model for epidemic simulations only
by examining goodness-of-fit on the actual contact network!

In practice, one cannot often collect high-resolution contact data on a large
scale, so having accurate contact network models is crucial to provide realis-
tic network topologies on which we can simulate epidemics. In this paper, we
estimated the parameters for each contact network model using the contact net-
work itself, which we cannot do in practice because the contact network is often
unknown. As a result, one would have to estimate the model parameters from
prior knowledge or partial observation of the contact network, which introduces
additional error that was not studied in this paper. It would be of great interest
to perform this type of sensitivity analysis to identify whether the DC-SBM and
degree model are still superior even when presented with less accurate parame-
ter estimates. Also, there is a risk of overfitting in more complex models which
should be examined in a future extension of this work. Both issues could po-
tentially be addressed by considering hierarchical Bayesian variants of network
models such as the degree-generated block model [27], which add an additional
generative layer to the model with a smaller set of hyperparameters.

Another limitation of this study is our consideration of static unweighted
networks. Prior work [15,19,23,25] has shown that it is important to consider the
time duration of contacts between people, which can be reflected as weights in the
contact network, as well as the times themselves, which can be accommodated
by using models of dynamic rather than static networks, such as dynamic SBMs
[26]. We plan to expand this work in the future by incorporating models of
weighted and dynamic networks to provide a more thorough investigation.
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