Skip to main content

Kushkalla: A Web-Based Platform to Improve Functional Movement Rehabilitation

  • Conference paper
  • First Online:
Book cover Technologies and Innovation (CITI 2017)

Abstract

Telerehabilitation is a growing alternative to traditional face-to-face therapy, which uses technological solutions to cover rehabilitation care in both clinical centers and in-home programs. However, the current telerehabilitation systems are limited to deliver a set of exercise programs for some specific locomotor disability, without including tools that allow a quantitative analysis of the rehabilitation progress, in real-time, as well as the medical condition of patients. This paper presents the design and development of a novel web-based platform, named “Kushkalla”, that allows to perform movement assessment for creating personalized home-based therapy routines, integrating hardware and software tools for a quantitative analysis of locomotor movements based on motion capture, preprocessing, monitoring, visualization, storage and analysis, in real-time. The platform combines two motion capture strategies, the Kinect-based and IMU-based motion capture. In addition, a set of 2D and 3D graphical models, virtual environments, based on WebGL technology, and videoconference module are included to allow the interaction between user and clinician for enhancing the capability of the clinician to direct rehabilitation therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.virtualrehab.info.

  2. 2.

    https://www.xsens.com/products/mtw-awinda/.

  3. 3.

    http://openni.ru/files/nite/index.html.

  4. 4.

    https://www.kinovea.org.

References

  1. Atrsaei, A., Salarieh, H., Alasty, A.: Human arm motion tracking by orientation-based fusion of inertial sensors and kinect using unscented kalman filter. J. Biomech. Eng. 138(9), 091 (2016)

    Article  Google Scholar 

  2. Barriga, A., Conejero, J.M., Hernández, J., Jurado, E., Moguel, E., Sánchez-Figueroa, F.: A vision-based approach for building telecare and telerehabilitation services. Sensors 16(10), 1724 (2016)

    Article  Google Scholar 

  3. Bernard, M.M., Janson, F., Flora, P.K., Faulkner, G.E., Meunier-Norman, L., Fruhwirth, M.: Videoconference-based physiotherapy and tele-assessment for homebound older adults: a pilot study. Activities, Adaptat. Aging 33(1), 39–48 (2009)

    Article  Google Scholar 

  4. Callejas-Cuervo, M., Díaz, G.M., Ruíz-Olaya, A.F.: Integration of emerging motion capture technologies and videogames for human upper-limb telerehabilitation: a systematic review. Dyna 82(189), 68–75 (2015)

    Article  Google Scholar 

  5. Clark, P.G., Dawson, S.J., Scheideman-Miller, C., Post, M.L.: Telerehab: stroke teletherapy and management using two-way interactive video. J. Neurol. Phys. Ther. 26(2), 87–93 (2002)

    Google Scholar 

  6. Da Gama, A., Fallavollita, P., Teichrieb, V., Navab, N.: Motor rehabilitation using kinect: a systematic review. Games Health J. 4(2), 123–135 (2015)

    Article  Google Scholar 

  7. Díaz, I., Gil, J.J., Sánchez, E.: Lower-limb robotic rehabilitation: literature review and challenges. J. Robot. 2011(i), 1–11 (2011). doi:10.1155/2011/759764

    Google Scholar 

  8. DuBois, P.: MySQL Cookbook: Solutions for Database Developers and Administrators. O’Reilly Media Inc., Sebastopol (2014)

    Google Scholar 

  9. Edward, S.G., Sabharwal, N.: MongoDB architecture. Practical MongoDB, pp. 95–157. Apress, Berkeley, CA (2015). doi:10.1007/978-1-4842-0647-8_7

    Chapter  Google Scholar 

  10. Helten, T., Muller, M., Seidel, H.P., Theobalt, C.: Real-time body tracking with one depth camera and inertial sensors. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1105–1112 (2013). doi:10.1109/ICCV.2013.141

  11. Joukov, V., Karg, M., Kulic, D.: Online tracking of the lower body joint angles using IMUs for gait rehabilitation. In: Conference Proceedings of Annual International Conference on the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2014, pp. 2310–2313 (2014). doi:10.1109/EMBC.2014.6944082

  12. Kurillo, G., Koritnik, T., Bajd, T., Bajcsy, R.: Real-time 3D avatars for tele-rehabilitation in virtual reality. Stud. Health Technol. Inf. 163, 290–296 (2011). doi:10.3233/978-1-60750-706-2-290

    Google Scholar 

  13. Laudanski, A., Brouwer, B., Li, Q.: Measurement of lower limb joint kinematics using inertial sensors during stair ascent and descent in healthy older adults and stroke survivors. J. Healthc. Eng. 4(4), 555–576 (2013). doi:10.1260/2040-2295.4.4.555

    Article  Google Scholar 

  14. Moffet, H., Tousignant, M., Nadeau, S., Merette, C., Boissy, P., Corriveau, H., Marquis, F., Cabana, F., Ranger, P., Belzile, E.L., Dimentberg, R.: In-home telerehabilitation compared with face-to-face rehabilitation after total knee arthroplasty: a noninferiority randomized controlled trial. J. Bone Joint Surg. 97(14), 1129–1141 (2015). doi:10.2106/JBJS.N.01066

    Article  Google Scholar 

  15. Muñoz-Cardona, J.E., Henao-Gallo, O.A., López-Herrera, J.F.: Sistema de rehabilitación basado en el uso de análisis biomecánico y videojuegos mediante el sensor kinect. Tecno Lógicas (2013)

    Google Scholar 

  16. Natis, Y., Schulte, R.: Introduction to service-oriented architecture. Gartner Group, 14 April 2003

    Google Scholar 

  17. World Health Organization, et al.: World report on disability. World Health Organization (2011)

    Google Scholar 

  18. Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: full 6DOF human motion tracking using miniature inertial sensors. Xsens Technologies White Paper, 1–7, January 2009. (2013)

    Google Scholar 

  19. Sosa, G.D., Sanchez, J., Francoy, H.: Improved front-view tracking of human skeleton from Kinect data for rehabilitation support in multiple sclerosis. In: Conference Proceedings of the 2015 20th Symposium on Signal Processing, Images and Computer Vision, STSIVA 2015 (2015). doi:10.1109/STSIVA.2015.7330422

  20. Spasojević, S., Ilić, T., Milanović, S., Potkonjak, V., Rodić, A., Santos-Victor, J., et al.: Combined vision and wearable sensors-based system for movement analysis in rehabilitation. Methods Inf. Med. 56(2), 95–111 (2017)

    Article  Google Scholar 

  21. Tanaka, K., Parker, J., Baradoy, G., Sheehan, D., Holash, J.R., Katz, L.: A comparison of exergaming interfaces for use in rehabilitation programs and research. Loading 6(9), 69–81 (2012)

    Google Scholar 

  22. Tian, Y., Meng, X., Tao, D., Liu, D., Feng, C.: Upper limb motion tracking with the integration of imu and kinect. Neurocomputing 159, 207–218 (2015)

    Article  Google Scholar 

  23. Vargas-Valencia, L., Elias, A., Rocon, E., Bastos-Filho, T., Frizera, A.: An IMU-to-body alignment method applied to human gait analysis. Sensors 16(12), 2090 (2016). doi:10.3390/s16122090

    Article  Google Scholar 

  24. Wang, L., Zhang, Z., Sun, P.: Quaternion-based Kalman Filter for AHRS using an adaptive-step gradient descent algorithm. Int. J. Adv. Rob. Syst. 12(9), 1–12 (2015). doi:10.5772/61313

    Google Scholar 

  25. Wu, G., Van Der Helm, F.C.T., Veeger, H.E.J., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - Part II: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005). doi:10.1016/j.jbiomech.2004.05.042

    Article  Google Scholar 

  26. Zhang, J., Novak, A.C., Brouwer, B., Li, Q.: Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics. Physiol. Meas. 34(8), N63–N69 (2013). doi:10.1088/0967-3334/34/8/N63

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially funded by the Ecuadorian Consortium for Advanced Internet Development (CEDIA) through the CEPRA projects. Specifically, under grants CEPRA-X-2016 project; “Tele-rehabilitation platform for elderly with dementia disorders, based on emerging technologies”. [Grant number: X-2016-02].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Narváez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Narváez, F., Arbito, F., Luna, C., Merchán, C., Cuenca, M.C., Díaz, G.M. (2017). Kushkalla: A Web-Based Platform to Improve Functional Movement Rehabilitation. In: Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., Del Cioppo, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds) Technologies and Innovation. CITI 2017. Communications in Computer and Information Science, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-67283-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67283-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67282-3

  • Online ISBN: 978-3-319-67283-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics