Skip to main content

Emerging Circuit Technologies: An Overview on the Next Generation of Circuits

  • Chapter
  • First Online:

Abstract

In the last decades, great progress has been made in the development of computing machines resulting in electronic systems which can be found in almost every aspect of our daily life. All this has become possible due to the achievements made in the domain of semiconductors which is usually associated with Moore’s Law—the famous prediction by Gordon Moore that the number of transistors in an electronic device doubles every 18 months. While this prediction is still holding on, physical boundaries and cost restrictions of conventional CMOS-based circuitry led to an increasing interest in alternative technologies (so called More than Moore technologies). Besides that, the advances according to Moore’s Law also lead to the consideration of application areas for electronic systems which go beyond just performing computations and complement the digital part by non-digital functionality (leading to so called More than Moore technologies).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A variety of corresponding open source implementations are available in the tool RevKit [83].

References

  1. M. Alistar, P. Pop, J. Madsen, Redundancy optimization for error recovery in digital microfluidic biochips. Des. Autom. Embed. Syst. 19(1–2), 129–159 (2015)

    Article  Google Scholar 

  2. A. Barenco, C.H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter, Elementary gates for quantum computation. Am. Phys. Soc. 52, 3457–3467 (1995)

    Google Scholar 

  3. C. Batten, A. Joshi, V. Stojanovic, K. Asanovic, Designing chip-level nanophotonic interconnection networks. IEEE J. Emerging Sel. Top. Circuits Syst. 2(2), 137–153 (2012). doi:10.1109/JETCAS.2012.2193932

    Article  Google Scholar 

  4. R. Beausoleil et al., A nanophotonic interconnect for high-performance many-core computation, in Symposium on High-Performance Interconnects, pp. 182–189 (2008). doi:http://doi.ieeecomputersociety.org/10.1109/HOTI.2008.32

    Google Scholar 

  5. L. Benini, G.D. Micheli, E. Macii, M. Poncino, S. Quer, Power optimization of core-based systems by address bus encoding. IEEE Trans. VLSI Syst. 6(4), 554–562 (1998). doi:10.1109/92.736127. http://dx.doi.org/10.1109/92.736127

    Article  Google Scholar 

  6. L. Benini, G.D. Micheli, D. Sciuto, E. Macii, C. Silvano, Address bus encoding techniques for system-level power optimization, in Design, Automation and Test in Europe, pp. 861–866 (1998). doi:10.1109/DATE.1998.655959. http://dx.doi.org/10.1109/DATE.1998.655959

  7. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev 17(6), 525–532 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    Article  Google Scholar 

  9. C.R. Brown, C. Mao, E. Falkovskaia, M.S. Jurica, H. Boeger, Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol. 11(8), e1001621 (2013)

    Google Scholar 

  10. W. Bogaerts et al., Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012). doi:10.1002/lpor.201100017. http://dx.doi.org/10.1002/lpor.201100017

    Article  Google Scholar 

  11. D. Bogojevic, M.D. Chamberlain, I. Barbulovic-Nad, A.R. Wheeler, A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab Chip 12(3), 627–634 (2012)

    Article  Google Scholar 

  12. O. Boyraz, B. Jalali, Demonstration of a silicon Raman laser. Opt. Exp. 12(21), 5269–5273 (2004). doi:10.1364/OPEX.12.005269. http://www.opticsexpress.org/abstract.cfm?URI=oe-12-21-5269

    Article  Google Scholar 

  13. H.J. Caulfield et al., Generalized optical logic elements GOLEs. Opt. Commun. 271, 365–376 (2007)

    Article  Google Scholar 

  14. J. Chan, G. Hendry, K. Bergman, L.P. Carloni, Physical-layer modeling and system-level design of chip-scale photonic interconnection networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(10), 1507–1520 (2011). https://doi.org/10.1109/TCAD.2011.2157157

    Article  Google Scholar 

  15. M. Cho, D.Z. Pan, A high-performance droplet routing algorithm for digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(10), 1714–1724 (2008)

    Article  Google Scholar 

  16. M.J. Cianchetti, J.C. Kerekes, D.H. Albonesi, Phastlane: a rapid transit optical routing network, in ACM SIGARCH Computer Architecture News, vol. 37 (ACM, New York, 2009), pp. 441–450

    Google Scholar 

  17. C. Condrat, P. Kalla, S. Blair, Logic synthesis for integrated optics, in Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI, GLSVLSI ’11 (ACM, New York, 2011), pp. 13–18. doi:10.1145/1973009.1973013. http://doi.acm.org/10.1145/1973009.1973013

    Book  Google Scholar 

  18. C. Condrat, P. Kalla, S. Blair, Crossing-aware channel routing for integrated optics. IEEE Trans. CAD of Integr. Circuits Syst. 33(5), 814–825 (2014)

    Article  Google Scholar 

  19. C. Condrat, P. Kalla, S. Blair, Thermal-aware synthesis of integrated photonic ring resonators, in International Conference On Computer Aided Design (CAD), pp. 557–564 (2014)

    Google Scholar 

  20. C. Condrat, P. Kalla, S. Blair, More than moore technologies for next generation computer design, in Design Automation for On-Chip Nanophotonic Integration (Springer, New York, 2015), pp. 187–218

    Book  Google Scholar 

  21. A. Deb, R. Wille, O. Keszöcze, S. Hillmich, R. Drechsler, Gates vs. splitters: contradictory optimization objectives in the synthesis of optical circuits. J. Emerg. Technol. Comput. Syst. 13(1), 11 (2016)

    Google Scholar 

  22. R. Drechsler, R. Wille, From truth tables to programming languages: progress in the design of reversible circuits, in International Symposium on Multi-Valued Logic, pp. 78–85 (2011)

    Google Scholar 

  23. FDA News, FDA Advisors Back Approval of Baebies’ Seeker Analyzer for Newborns (2016), [Online]. Available: http://www.fdanews.com/articles/178103-fda-advisors-back-approval-ofbaebies-seeker-analyzer-for-newborns

  24. F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P.T. Rakich, H. Smith, E. Ippen, F. Kartner, Maximizing the thermo-optic tuning range of silicon photonic structures, in Photonics in Switching, 2007, pp. 67–68 (2007). doi:10.1109/PS.2007.4300747

    Google Scholar 

  25. A. García-Ortiz, D. Gregorek, C. Osewold, Optimization of interconnect architectures through coding: a review, in Electronics, Communications and Photonics Conference (SIECPC), 2011 Saudi International, pp. 1–6 (2011). doi:10.1109/SIECPC.2011.5876688

    Google Scholar 

  26. GenMark Dx, GenMark ePlex System (2016), [Online]. Available: https://www.genmarkdx.com/solutions/systems/eplex-system/

  27. N. Gershenfeld, Signal entropy and the thermodynamics of computation. IBM Syst. J. 35(3–4), 577–586 (1996)

    Article  Google Scholar 

  28. W. Green et al., Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Exp. 15(25), 17,106–17,113 (2007). http://www.opticsexpress.org/abstract.cfm?id=148351

    Article  Google Scholar 

  29. E.J. Griffith, S. Akella, M.K. Goldberg, Performance characterization of a reconfigurable planar-array digital microfluidic system. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(2), 340–352 (2006)

    Article  Google Scholar 

  30. D. Grissom, P. Brisk, A field-programmable pin-constrained digital microfluidic biochip, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 1–9 (2013)

    Google Scholar 

  31. D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)

    Article  Google Scholar 

  32. D. Große, R. Wille, G.W. Dueck, R. Drechsler, Exact multiple control Toffoli network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703–715 (2009)

    Article  Google Scholar 

  33. L.K. Grover, A fast quantum mechanical algorithm for database search, in Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  34. S. Hosic, S.K. Murthy, A.N. Koppes, Microfluidic sample preparation for single cell analysis. Anal. Chem. 88(1), 354–380 (2015)

    Article  Google Scholar 

  35. Y.-L. Hsieh, T-Y. Ho, K. Chakrabarty, A reagent-saving mixing algorithm for preparing multiple-target biochemical samples using digital microfluidics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(11), 1656–1669 (2012)

    Article  Google Scholar 

  36. K. Hu, B.-N. Hsu, A. Madison, K. Chakrabarty, R. Fair, Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips, in Proceedings of IEEE/ACM Design, Automation and Test in Europe (DATE), pp. 559–564 (2013)

    Google Scholar 

  37. K. Hu, M. Ibrahim, L. Chen, Z. Li, K. Chakrabarty, R. Fair, Experimental demonstration of error recovery in an integrated cyberphysical digital-microfluidic platform, in Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4 (2015)

    Google Scholar 

  38. Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack, Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82(6), 2310–2316 (2010)

    Article  Google Scholar 

  39. W. Hwang, F. Su, K. Chakrabarty, Automated design of pin-constrained digital microfluidic arrays for lab-on-a-chip applications, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 925–930 (2006)

    Google Scholar 

  40. IBM Research, Silicon Integrated Nanophotonics Technology: From Lab to Fab (2012), http://www.research.ibm.com/photonics

    Google Scholar 

  41. M. Ibrahim and K. Chakrabarty, Cyberphysical adaptation in digitalmicrofluidic biochips, IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, 2016, pp. 444–447. doi: https://doi.org/10.1109/BioCAS.2016.7833827

  42. M. Ibrahim, K. Chakrabarty, K. Scott, Synthesis of cyberphysical digital-microfluidic biochips for real-time quantitative analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(5), 733–746 (2017). https://doi.org/10.1109/TCAD.2016.2600626

    Article  Google Scholar 

  43. M. Ibrahim, K. Chakrabarty, K. Scott, Integrated and real-time quantitative analysis using cyberphysical digital-microfluidic biochips, in Proceedings of IEEE/ACM Design, Automation and Test in Europe (DATE), pp. 630–635 (2016)

    Google Scholar 

  44. Illumina, Illumina NeoPrep Library Prep System (2015), [Online]. Available: http://www.illumina.com/systems/neoprep-library-system.html/

  45. C. Jaress, P. Brisk, D. Grissom, Rapid online fault recovery for cyber-physical digital microfluidic biochips, in Proceedings of IEEE VLSI Test Symposium (VTS), pp. 1–6 (2015)

    Google Scholar 

  46. O. Keszocze, R. Wille, R. Drechsler, Exact routing for digital microfluidic biochips with temporary blockages, in International Conference on CAD, pp. 405–410 (2014)

    Google Scholar 

  47. O. Keszocze, R. Wille, T.-Y. Ho, R. Drechsler, Exact one-pass synthesis of digital microfluidic biochips, in Proceedings of the IEEE/ACM Design Automation Conference (DAC) (2014)

    Google Scholar 

  48. O. Keszocze, R. Wille, K. Chakrabarty, R. Drechsler, A general and exact routing methodology for digital microfluidic biochips, in International Conference on CAD, pp. 874–881 (2015)

    Google Scholar 

  49. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  50. K. Lee, S. Lee, H. Yoo, Low-power network-on-chip for high-performance SOC design. IEEE Trans. VLSI Syst. 14(2), 148–160 (2006). doi:10.1109/TVLSI.2005.863753. http://dx.doi.org/10.1109/TVLSI.2005.863753

    Article  Google Scholar 

  51. Z. Li, T.-Y. Ho, K. Chakrabarty, Optimization of 3D digital microfluidic biochips for the multiplexed polymerase chain reaction. ACM Trans. Des. Autom. Electron. Syst. 21(2), Article 25 (2016)

    Google Scholar 

  52. C. Liao, S. Hu, Physical-level synthesis for digital lab-on-a-chip considering variation, contamination, and defect. IEEE Trans. NanoBiosci. 13(1), 3–11 (2014)

    Article  Google Scholar 

  53. L. Liao et al., High speed silicon Mach-Zehnder modulator. Opt. Exp. 13(8), 3129–3135 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129

    Article  Google Scholar 

  54. P. Liu, X. Li, S.A. Greenspoon, J.R. Scherer, R.A. Mathies, Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip 11(6), 1041–1048 (2011)

    Article  Google Scholar 

  55. J. Lovén, D.A. Orlando, A.A. Sigova, C.Y. Lin, P.B. Rahl, C.B. Burge, D.L. Levens, T.I. Lee, R.A. Young, Revisiting global gene expression analysis. Cell 151(3), 476–482 (2012)

    Article  Google Scholar 

  56. Y. Luo, K. Chakrabarty, T.-Y. Ho, Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)

    Article  Google Scholar 

  57. Y. Luo, K. Chakrabarty, T.-Y. Ho, Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips (Springer, Dordrecht, 2014)

    Google Scholar 

  58. Y. Luo, B.B. Bhattacharya, T.-Y. Ho, K. Chakrabarty, Design and optimization of a cyberphysical digital-microfluidic biochip for the polymerase chain reaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(1), 29–42 (2015)

    Article  Google Scholar 

  59. E. Maftei, P. Pop, J. Madsen, Tabu search-based synthesis of dynamically reconfigurable digital microfluidic biochips, in Proceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pp. 195–204 (2009)

    Google Scholar 

  60. D. Maslov, G.W. Dueck, Reversible cascades with minimal garbage. IEEE Trans. CAD 23(11), 1497–1509 (2004)

    Article  Google Scholar 

  61. D.M. Miller, D. Maslov, G.W. Dueck, A transformation based algorithm for reversible logic synthesis, in Design Automation Conference, pp. 318–323 (2003)

    Google Scholar 

  62. D.M. Miller, R. Wille, G. Dueck, Synthesizing reversible circuits for irreversible functions, in EUROMICRO Symposium on Digital System Design, pp. 749–756 (2009)

    Google Scholar 

  63. D.M. Miller, R. Wille, Z. Sasanian, Elementary quantum gate realizations for multiple-control Toffolli gates, in International Symposium on Multi-Valued Logic, pp. 288–293 (2011)

    Google Scholar 

  64. D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)

    Article  Google Scholar 

  65. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  66. H. Norian, R.M. Field, I. Kymissis, K.L. Shepard, An integrated CMOS quantitativepolymerase- chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14(20), 4076–4084 (2014)

    Article  Google Scholar 

  67. K. Okamoto, Fundamentals of Optical Waveguides (Academic, New York, 2000)

    Google Scholar 

  68. OpSIS, Optoelectronic System Integration in Silicon. http://www.opsisfoundry.org

  69. A.G. Ortiz, L.S. Indrusiak, T. Murgan, M. Glesner, Low-power coding for networks-on-chip with virtual channels. J. Low Power Electron. 5(1), 77–84 (2009). doi:10.1166/jolpe.2009.1006. http://dx.doi.org/10.1166/jolpe.2009.1006

    Article  Google Scholar 

  70. P.R. Panda, N.D. Dutt, Reducing address bus transitions for low power memory mapping, in 1996 European Design and Test Conference, ED&TC 1996, Paris, March 11–14, 1996, pp. 63–71 (1996). doi:10.1109/EDTC.1996.494129. http://dx.doi.org/10.1109/EDTC.1996.494129

    Google Scholar 

  71. A. Politi, J. Matthews, J. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  72. A. Qouneh, Z. Li, M. Joshi, W. Zhang, X. Fu, T. Li, Aurora: a thermally resilient photonic network-on-chip architecture, in 2012 IEEE 30th International Conference on Computer Design (ICCD), pp. 379–386 (2012). doi:10.1109/ICCD.2012.6378667

    Google Scholar 

  73. A. Rival, D. Jary, C. Delattre, Y. Fouillet, G. Castellan, A. Bellemin-Comte, X. Gidrol, An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip 14(19), 3739–3749 (2014)

    Article  Google Scholar 

  74. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005)

    Article  Google Scholar 

  75. S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, Theory and analysis of generalized mixing and dilution of biochemical fluids using digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 11(1), Article. 2 (2014)

    Google Scholar 

  76. M. Saeedi, I.L. Markov, Synthesis and optimization of reversible circuits - a survey. ACM Comput. Surv. 45, 21:1–21:34, Article 21 (2011)

    Google Scholar 

  77. L. Schlitt, P. Kalla, S. Blair, A methodology for thermal characterization abstraction of integrated opto-electronic layouts, in International Conference on VLSI Design, pp. 270–275 (2016)

    Google Scholar 

  78. H.-H. Shen, S.-K. Fan, C.-J. Kim, D.-J. Yao, EWOD microfluidic systems for biomedical applications. Microfluid. Nanofluid. 16(5), 965–987 (2014)

    Article  Google Scholar 

  79. V.V. Shende, A.K. Prasad, I.L. Markov, J.P. Hayes, Synthesis of reversible logic circuits. IEEE Trans. CAD 22(6), 710–722 (2003)

    Article  Google Scholar 

  80. C. Shih, Z. Zeng, C. Shiuh, Extinction ratio compensation by free carrier injection for a MOS-capacitor microring optical modulator subjected to temperature drifting, in CLEO/PACIFIC RIM ’09, pp. 1–2 (2009). doi:10.1109/CLEOPR.2009.5292625

    Google Scholar 

  81. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  82. R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)

    Article  Google Scholar 

  83. M. Soeken, S. Frehse, R. Wille, R. Drechsler, RevKit: an open source toolkit for the design of reversible circuits, in Reversible Computation 2011. Lecture Notes in Computer Science, vol. 7165 (Springer, Berlin, 2012), pp. 64–76. RevKit is available at www.revkit.org

  84. M. Soeken, R. Wille, O. Keszocze, D.M. Miller, R. Drechsler, Embedding of large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst. 12(4), 41:1–41:26, Article 41 (2015). https://doi.org/10.1145/2786982

  85. R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). doi:10.1109/JSTQE.2006.883151

    Article  Google Scholar 

  86. F. Su, K. Chakrabarty, Architectural-level synthesis of digital microfluidics-based biochips, in Proceedings of IEEE International Conference on CAD (ICCAD), pp. 223–228 (2004)

    Google Scholar 

  87. F. Su, K. Chakrabarty, Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 825–830 (2005)

    Google Scholar 

  88. F. Su, K. Chakrabarty, Module placement for fault-tolerant microfluidics-based biochips. ACM Trans. Des. Autom. Electron. Syst. 11, 682–710 (2006)

    Article  Google Scholar 

  89. F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 3(4), Article 16 (2008)

    Google Scholar 

  90. F. Su, W. Hwang, K. Chakrabarty, Droplet routing in the synthesis of digital microfluidic biochips, in Proceedings of Design, Automation and Test in Europe (DATE), pp. 323–328 (2006)

    Google Scholar 

  91. M.K. Thomsen, A functional language for describing reversible logic, in Forum on Specification and Design Languages, pp. 135–142 (2012)

    Google Scholar 

  92. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)

    Article  Google Scholar 

  93. G.F. Viamontes, M. Rajagopalan, I.L. Markov, J.P. Hayes, Gate-level simulation of quantum circuits, in ASP Design Automation Conference, pp. 295–301 (2003)

    Google Scholar 

  94. R. Wille, R. Drechsler, BDD -based synthesis of reversible logic for large functions, in Design Automation Conference, pp. 270–275 (2009)

    Google Scholar 

  95. R. Wille, D. Große, G. Dueck, R. Drechsler, Reversible logic synthesis with output permutation, in VLSI Design, pp. 189–194 (2009)

    Google Scholar 

  96. R. Wille, D. Große, S. Frehse, G.W. Dueck, R. Drechsler, Debugging of Toffoli networks, in Design, Automation and Test in Europe, pp. 1284–1289 (2009)

    Google Scholar 

  97. R. Wille, D. Große, D.M. Miller, R. Drechsler, Equivalence checking of reversible circuits, in International Symposium on Multi-Valued Logic, pp. 324–330 (2009)

    Google Scholar 

  98. R. Wille, S. Offermann, R. Drechsler, SyReC: a programming language for synthesis of reversible circuits, in Forum on Specification and Design Languages, pp. 184–189 (2010)

    Google Scholar 

  99. R. Wille, D. Große, S. Frehse, G.W. Dueck, R. Drechsler, Debugging reversible circuits. Integration 44(1), 51–61 (2011)

    Google Scholar 

  100. R. Wille, O. Keszöcze, R. Drechsler, Determining the minimal number of lines for large reversible circuits, in Design, Automation and Test in Europe (2011)

    Google Scholar 

  101. R. Wille, R. Drechsler, C. Osewold, A.G. Ortiz, Automatic design of low-power encoders using reversible circuit synthesis, in Design, Automation and Test in Europe, pp. 1036–1041 (2012)

    Google Scholar 

  102. R. Wille, M. Soeken, D.M. Miller, R. Drechsler, Trading off circuit lines and gate costs in the synthesis of reversible logic. Integration 47(2), 284–294 (2014)

    Google Scholar 

  103. R. Wille, O. Keszocze, C. Hopfmuller, R. Drechsler, Reverse BDD-based synthesis for splitter-free optical circuits, in Asia and South Pacific Design Automation Conference, pp. 172–177 (2015)

    Google Scholar 

  104. R. Wille, O. Keszocze, S. Hillmich, M. Walter, A.G. Ortiz, Synthesis of approximate coders for on-chip interconnects using reversible logic, in Design, Automation and Test in Europe, pp. 1140–1143 (2016). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459481

  105. R. Wille, E. Schönborn, M. Soeken, R. Drechsler, SyReC: a hardware description language for the specification and synthesis of reversible circuits. Integr. VLSI J. 53, 39–53 (2016)

    Article  Google Scholar 

  106. B.S. Wheeler, J.A. Blau, H.F. Willard, K.C. Scott, The impact of local genome sequence on defining heterochromatin domains. PLoS Genet. 5(4), 1–15 (2009)

    Article  Google Scholar 

  107. B.S. Wheeler, B.T. Ruderman, H.F. Willard, K.C. Scott, Uncoupling of genomic and epigenetic signals in the maintenance and inheritance of heterochromatin domains in fission yeast. Genetics 190(2), 549–557 (2012)

    Article  Google Scholar 

  108. T. Xu, K. Chakrabarty, Integrated droplet routing in the synthesis of microfluidic biochips, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 948–953 (2007)

    Google Scholar 

  109. T. Xu, K. Chakrabarty, A Cross-referencing-based droplet manipulation method for high-throughput and pin-constrained digital microfluidic arrays, in Proceedings of IEEE/ACM Design, Automation and Test in Europe (DATE), pp. 552–557 (2007)

    Google Scholar 

  110. T. Xu, K. Chakrabarty, Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 173–178 (2008)

    Google Scholar 

  111. T. Xu, K. Chakrabarty, Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 4(3), Article 11 (2008)

    Google Scholar 

  112. T. Xu, K. Chakrabarty, A droplet-manipulation method for achieving high-throughput in cross-referencing-based digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(11), 1905–1917 (2008)

    Article  Google Scholar 

  113. P.-H. Yuh, C.-L. Yang, Y.-W. Chang, BioRoute: a network flow based routing algorithm for digital microfluidic biochips, in Proceedings of IEEE International Conference on Computer-Aided Design (ICCAD), pp. 752–757 (2007)

    Google Scholar 

  114. P.-H. Yuh, C.-L. Yang, C.-W. Chang, Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM J. Emerg. Technol. Comput. Syst. 3(3), 13.1–13.32 (2007)

    Article  Google Scholar 

  115. P. Zeitzoff, J. Chung, A perspective from the 2003 ITRS. IEEE Circuits Syst. Mag. 21, 4–15 (2005)

    Article  Google Scholar 

  116. Y. Zhao, K. Chakrabarty, Cross-contamination avoidance for droplet routing in digital microfluidic biochips, in Proceedings of IEEE/ACM Design, Automation and Test in Europe (DATE), pp. 1290–1295 (2009)

    Google Scholar 

  117. Y. Zhao, K. Chakrabarty, Synchronization of washing operations with droplet routing for cross-contamination avoidance in digital microfluidic biochips, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 635–640 (2010)

    Google Scholar 

  118. A. Zulehner, R. Wille, Make it reversible: efficient embedding of non-reversible functions, in Design, Automation and Test in Europe (2017)

    Google Scholar 

  119. A. Zulehner, R. Wille, Taking one-to-one mappings for granted: advanced logic design of encoder circuits, in Design, Automation and Test in Europe (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wille, R., Chakrabarty, K., Drechsler, R., Kalla, P. (2018). Emerging Circuit Technologies: An Overview on the Next Generation of Circuits. In: Reis, A., Drechsler, R. (eds) Advanced Logic Synthesis. Springer, Cham. https://doi.org/10.1007/978-3-319-67295-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67295-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67294-6

  • Online ISBN: 978-3-319-67295-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics