Skip to main content

Strategic Autonomy for Reducing Risk of Sun-Synchronous Lunar Polar Exploration

  • Conference paper
  • First Online:
Field and Service Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 5))

  • 3580 Accesses

Abstract

Sun-synchronous lunar polar exploration can extend solar-powered robotic missions by an order of magnitude by following routes of continuous sunlight. However, enforcing an additional constraint for continuous Earth communication while driving puts such missions at risk. This is due to the uncertainty of singularities: static points that provide weeks of continuous sunlight where communication blackouts can be endured. The uncertainty of their existence and exact location stems from the limited accuracy of lunar models and makes dwelling at singularities a high-risk proposition. This paper proposes a new mission concept called strategic autonomy, which instead permits rovers to follow preplanned, short, slow, autonomous drives without communication to gain distance from shadow and increase confidence in sustained solar power. In this way, strategic autonomy could greatly reduce overall risk for sun-synchronous lunar polar missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, less than 10 cm/s is considered slow. (Circumnavigating the equator requires \(\sim \) 4.3 m/s.).

  2. 2.

    LRO data products are accessible via NASA’s Planetary Data System Geosciences Node [7, 16].

  3. 3.

    The Sun can be approximated as a directional or area light source. The latter yields a range of solar flux values, which can be thresholded to produce a binary output for planning purposes.

  4. 4.

    Since radio waves behave differently than visible light, this yields a slightly optimistic estimate.

  5. 5.

    To complete certain science objectives, a rover may be required to enter a PSR or other unlit area for a brief period of time; however, this extension is outside the scope of the work presented here.

References

  1. Acton, C.H.: Ancillary data services of NASA’s navigation and Ancillary Information Facility. Planet. Space Sci. 44(1), 65–70 (1996)

    Article  Google Scholar 

  2. Andrews, D.R., Colaprete, A., Quinn, J., Chavers, D., Picard, M.: Introducing the Resource Prospector (RP) Mission. In: AIAA SPACE 2014 Conference and Exposure Reston, Virginia (2014)

    Google Scholar 

  3. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., et al.: Detection of water in the LCROSS ejecta plume. Science 330(6003), 463–468 (2010)

    Article  Google Scholar 

  4. Heiken, G.H., Vaniman, D.T., French, B.M.: Lunar Sourcebook—A user’s Guide to the Moon. Cambridge University Press, New York, New York, USA (1991)

    Google Scholar 

  5. Heldmann, J., Colaprete, A., Elphic, R.C., Bussey, B., McGovern, A., Beyer, R., Lees, D., Deans, M.C., Otten, N., Jones, H., Wettergreen, D.: Rover Traverse Planning to Support a Lunar Polar Volatiles Mission. In: LEAG. NASA Ames Research Center (2015)

    Google Scholar 

  6. Mazarico, E., Neumann, G., Smith, D., Zuber, M., Torrence, M.: Illumination conditions of the lunar polar regions using LOLA topography. Icarus 211(2), 1066–1081 (2011)

    Article  Google Scholar 

  7. NASA: Welcome to the Planetary Data System. https://pds.nasa.gov/

  8. Otten, N.D., Jones, H.L., Wettergreen, D.S., Whittaker, W.L.: Planning routes of continuous illumination and traversable slope using connected component analysis. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3953–3958. IEEE (2015)

    Google Scholar 

  9. Paige, D.A., Foote, M.C., Greenhagen, B.T., Schofield, J.T., et al.: The lunar reconnaissance orbiter diviner lunar radiometer experiment. Space Sci. Rev. 150(1–4), 125–160 (2010)

    Article  Google Scholar 

  10. Paige, D.A., Siegler, M.A., Zhang, J.A., Hayne, P.O., et al.: Diviner lunar radiometer observations of cold traps in the moon’s south polar region. Science 330, 479–482 (2010)

    Article  Google Scholar 

  11. Pieters, C.M., Goswami, J.N., et al.: Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1. Science 326(5952), 568–572 (2009)

    Article  Google Scholar 

  12. Smith, D.E., Zuber, M.T., Jackson, G.B., et al.: The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci. Rev. 150(1–4), 209–241 (2010)

    Article  Google Scholar 

  13. Smith, D.E., Zuber, M.T., Neumann, G.A., Lemoine, F.G., et al.: Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37(18) (2010)

    Google Scholar 

  14. Tompkins, P., Stentz, A., Wettergreen, D.: Mission-level path planning and re-planning for rover exploration. Robot. Auton. Syst. 54, 174–183 (2006)

    Article  Google Scholar 

  15. Vasavada, A.R., Bandfield, J.L., Greenhagen, B.T., Hayne, P.O., et al.: Lunar equatorial surface temperatures and regolith properties from the diviner lunar radiometer experiment. J. Geophys. Res.-Planet. 117(4) (2012)

    Google Scholar 

  16. Washington University in St. Louis: PDS Geosciences Node Data and Services: LRO LOLA. http://pds-geosciences.wustl.edu/missions/lro/lola.htm

  17. Wettergreen, D., Tompkins, P., Urmson, C., Wagner, M., Whittaker, W.: Sun-synchronous robotic exploration: technical description and field experimentation. Int. J. Robot. Res. 24(1), 3–30 (2005)

    Article  Google Scholar 

  18. Whittaker, W.L., Kantor, G., Shamah, B., Wettergreen, D.S.: Sun-synchronous planetary exploration. In: AIAA Space (2000)

    Google Scholar 

  19. Wieczorek, M.: The gravity and topography of the terrestrial planets. Treatise Geophys. (2007)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Tony Colaprete and Dr. Richard Elphic for their advice on the development of this work and for providing information on relevant lunar sites. This research was supported by NASA Innovative Advanced Concepts (NIAC) Grant # NNX13AR25G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Otten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otten, N., Wettergreen, D., Whittaker, W. (2018). Strategic Autonomy for Reducing Risk of Sun-Synchronous Lunar Polar Exploration. In: Hutter, M., Siegwart, R. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67361-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67360-8

  • Online ISBN: 978-3-319-67361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics