N

N

Relating Student, Teacher and Third-Party Assessments
in a Bachelor Capstone Project
Vincent Ribaud, Vincent Leilde

» To cite this version:

Vincent Ribaud, Vincent Leilde. Relating Student, Teacher and Third-Party Assessments in a Bach-
elor Capstone Project. International Conference on Software Process Improvement and Capability
Determination, SPICE 2017, Oct 2017, Palma de Mallorca, Spain. pp.499-506. hal-01698582

HAL Id: hal-01698582
https://ensta-bretagne.hal.science/hal-01698582

Submitted on 1 Apr 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://ensta-bretagne.hal.science/hal-01698582
https://hal.archives-ouvertes.fr

Relating Student, Teacher and Third-Party Assessments
in a Bachelor Capstone Project (short paper)

Vincent Ribaud 1[0000-0002-5710-6469] and Vincent Leil de2[0000—0002—4153—4012]

L Université de Brest, Lab-STICC, team MOCS, Brest, France
2ENSTA Bretagne, Lab-STICC, team MOCS, 3 rue Frangois Verny, Brest, France
ribaud@univ-brest.fr

Abstract. The capstone is arguably the most important course in any engineer-
ing program because it provides a culminating experience and is often the only
course intended to develop non-technical, but essential skills. In a software de-
velopment, the capstone runs from requirements to qualification testing. Indeed,
the project progress is sustained by software processes. This paper yields differ-
ent settings where students, teachers and third-party assessors performed [self-]
assessment and the paper analyses corresponding correlation coefficients. The
paper presents also some aspects of the bachelor capstone. A research question
aims to seek if an external process assessment can be replaced or completed
with students’ self-assessment. Our initial findings were presented at the Inter-
national Workshop on Software Process Education Training and Professional-
ism (IWSPETP) 2015 in Gothenburg, Sweden and we aimed to improve the as-
sessment using teacher and third-party assessments. Revised findings show that,
if they are related to curriculum topics, students and teacher assessments are
correlated but that external assessment is not suitable in an academic context.

Keywords: process assessment, competencies model, capstone project.

1 Introduction

Project experience for graduates of computer science programs has the following
characteristic in the ACM Computer Science Curricula [1]: “To ensure that graduates
can successfully apply the knowledge they have gained, all graduates of computer
science programs should have been involved in at least one substantial project. [...]
Such projects should challenge students by being integrative, requiring evaluation of
potential solutions, and requiring work on a larger scale than typical course projects.
Students should have opportunities to develop their interpersonal communication
skills as part of their project experience.” The capstone is arguably the most im-
portant course in any engineering program because it provides a culminating experi-
ence and is often the only course used to develop non-technical, but essential skills
[2]. Many programs run capstone projects in different settings [3-8]. The capstone
project is intended to provide students with a learning by doing approach about soft-
ware development, from requirements to qualification testing. Indeed, the project
progress is sustained by software processes.



Within the ISO/IEC 15504 series and the ISO/IEC 330xx family of standards, pro-
cess assessment is used for process improvement and/or process capability determina-
tion. Process assessment helps students to be conscious about and improve what they
are doing. Hence, a capstone teacher's activity is to assist students with appreciation
and guidance, a task that relies on the assessment of students' practices and students'
products. This paper yields different settings where students, teachers and third-party
assessors performed [self-] assessment and analyses correlation coefficients. Inci-
dentally, the paper presents some aspects of the bachelor capstone project at Brest
University. Data collection started 3 years ago. Initial findings were presented in [9].

The paper structure is: section 2 overviews process assessment, section 3 presents
different settings we carried process assessments; we finish with a conclusion.

2 Process assessment

2.1  Process Reference Models

Most software engineering educators will agree that the main goal of the capstone
project is to learn by doing a simplified cycle of software development through a
somewhat realistic project. For instance, Dascalu et al. use a “streamlined” version of
a traditional software development process [3]. Umphress et al. state that using soft-
ware processes in the classroom helps in three ways: 1 - processes describe the tasks
that students must accomplish to build software; 2 - processes can give the instructor
visibility into the project; 3 - processes can provide continuity and corporate memory
across academic terms [4]. Consequently, the exposition to some kind of process as-
sessment is considered as a side-effect goal of the capstone project. It is a convention-
al assertion that assessment drives learning [10]; hence process assessment drives
processes learning. Conventionally, a process is seen as a set of activities or tasks,
converting inputs into outputs [11]. This definition is not suited for process assess-
ment. Rout states that “it is of more value to explore the purpose for which the pro-
cess is employed. Implementing a process results in the achievement of a number of
observable outcomes, which together demonstrate achievement of the process pur-
pose [12].” This approach is used to specify processes in a Process Reference Model
(PRM). We use a small subset of the ISO/IEC 15504-5:2012 Exemplar Process As-
sessment Model that includes a PRM (replicated from the ISO/IEC 12207:2008),
mainly the Software Processes of the ENG Process Group [13]: ENG.3 System archi-
tectural design, ENG.4 Software requirements analysis, ENG.5 Software design,
ENG.6 Software construction, ENG.7 Software integration, ENG.8 Software testing.
Process Purpose, Process Outcomes, Base Practices (BP) have been kept without any
modification; Input and Outputs Work Products (WP) have been set to main products.

2.2 Ability model

From an individual perspective, the ISO/IEC 15504 Exemplar Process Assessment
Model (PAM) is seen as a competencies model related to the knowledge, skills and
attitudes involved in a software project. A competencies model defines and organizes



the elements of a curriculum (or a professional baseline) and their relationships. Dur-
ing the capstone project, all the students use the model and self-assess their progress.
A hierarchical model is easy to manage and use. We kept the hierarchical decomposi-
tion issued from the ISO/IEC 15504 Exemplar PAM: process groups — process — base
practices and products. A competency model is decomposed into competency areas
(mapping to process groups); each area corresponding to one of the main division of
the profession or of a curriculum. Each area organizes the competencies into families
(mapping to processes). A family corresponds to main activities of the area. Each
family is made of a set of knowledge and abilities (mapping to base practices), called
competencies; each of these entities is represented by a designation and a description.
The ability model and its associated tool eCompas have been presented in [14].

2.3 Process assessment

The technique of process assessment is essentially a measurement activity. Within
ISO/IEC 15504, process assessment has been applied to a characteristic termed pro-
cess capability, defined as "a characterization of the ability of a process to meet cur-
rent or projected business goals™ [13]. It is now replaced in the 330xx family of
standards by the larger concept of process quality, defined as “ability of a process to
satisfy stated and implied stakeholders needs when used in a specific context [15]. In
ISO/IEC 33020:2015, process capability is defined on a six point ordinal scale that
enables capability to be assessed from the bottom of the scale, Incomplete, through
the top end of the scale, Innovating [16]. We see Capability Level 1, Performed, as an
achievement: through the performance of necessary actions and the presence of ap-
propriate input and output work products, the process achieves its process purpose
and outcomes. Hence, Capability Level 1 will be the goal and the assessment focus.

If students are able to perform a process, it denotes a successful learning of software
processes, and teachers' assessments rate this capability. Because we believe that
learning is sustained by continuous, self-directed assessment, done by teachers or a
third-party, the research question aims to state how students' self-assessment and
teacher's assessment are correlated and if self-assessment of BPs and WPs is an alter-
native to external assessment about ISO/IEC 15504 Capability Level 1. Obviously,
the main goal of assessment is students' ability to perform the selected processes set.

3 The Capstone Project

3.1  Overview

Schedule

The curriculum is a 3-year Bachelor of Computer Science. The project is per-
formed during two periods. The first period is dispatched all the semester along and
homework is required. The second period (2 weeks) happens after the final exams and
before students' internship. Students are familiar with the Author-Reader cycle: each
deliverable can be reviewed as much as needed by the teacher that provides students
with comments and suggestions. It is called Continuous Assessment in [5, 6].



System Architecture

The system is made of 2 sub-systems: PocketAgenda (PA) for address books and
agenda management and interface with a central directory; WholsWho (WIW) for
managing the directory and a social network. PocketAgenda is implemented with
Java, JSF relying on an Oracle RDBMS. WholsWho is implemented in Java using a
RDBMS. Both sub-systems communicate with a protocol to establish using UDP. The
system is delivered in 3 batches. Batch 0 established and analyzed requirements.
Batch 1 performed collaborative architectural design, separate client and server de-
velopment, integration. Batch 2 is focused on information system development.

Students consent

Students were advised that they can freely participate to the experiment described
in this paper. The class contains 29 students, all agreed to participate; 4 did not com-
plete the project and do not take part to the study. Students have to regularly update
the competencies model consisting in the ENG process group, the 6 processes above
and their Base Practices and main Work Products and self-assess on an achievement
scale: Not - Partially - Largely - Full. There will be also teacher and third-party as-
sessments that will be anonymously joined to self-assessments by volunteer students.

3.2 Batch 0 : writing and analyzing requirements

Batch 0 is intended to capture, write and manage requirements through use cases. It is
a non-technical task not familiar to students. In [7], requirements are discussed as one
of the four challenges for capstone projects. Students use an iterative process of writ-
ing and reviewing by the teacher. Usually, 3 cycles are required to achieve the task.
Table 1 presents the correlation coefficient r between student and teacher assessment
for the ENG.4 Software requirements analysis. It relies on 3 BPs and 2 WPs. Table 2
presents also the average assessment for each assessed item. The overall correlation
coefficient relates 25 * 6 = 150 self-assessment measures with the corresponding
teacher assessment measures, its value r = 0. 64 indicates a correlation.

Table 1: ENG.4 assessment (self and teacher)
Stud. avg Tch. avg r

BP1: Specify software requirements 2.12 1.84 0.31
BP3: Develop criteria for software testing 1.76 1.76 1.00
BP4: Ensure consistency 1.92 0.88 0.29
17-8 Interface requirements 1.88 1.88 1.00
17-11 Software requirements 2.08 2.08 1.00

Thanks to the Author-Reader cycle, specification writing iterates several time dur-
ing the semester and the final mark given to almost 17-8 Interface requirements and
17-11 Software requirement documents was Fully Achieved. Hence correlation be-
tween students and teacher assessments is complete. However, students mistake doc-
uments assessment for the BP1: Specify software requirements. Documents were
improved through the author-reader cycle, but only reflective students improve their



practices accordingly. Also, students did not understand the ENG.4. BP4: Ensure
consistency and failed the self-assessment. Most students did not take any interest in
traceability and self-assessed at a much higher level that the teacher did.

A special set of values can bias a correlation coefficient; if we remove the BP4:
Ensure consistency assessment, we get r = 0.89, indicating an effective correla-
tion. However, a bias still exists because students are mostly self-assessing using the
continuous feedback they got from the teacher during the Author-Reader cycle.

Students reported that they wrote use cases from a statement of work for the first
time and that they could not have succeeded without the Author-Reader cycle.

3.3 Batch 1: aclient-server endeavor

For the batch 1, students have to work closely in pairs, to produce architectural design
and interface specification and to integrate the client and server sub-systems, each
sub-system being designed, developed and tested by one student. Defining the high-
level architecture, producing the medium and low-level design are typical activities of
the design phase [3]. 4 pairs failed to work together and split, consequently lonesome
students worked alone and have to develop both sub-systems.

We were aware of two biases: 1 - students interpret the teacher’s feedback to self-
assess accordingly; 2 - relationship issues might prevent teachers to assess students to
their effective level. Hence, for ENG.3 System architectural design process and
ENG.7 Software integration process, in addition to teachers’ assessment, another
teacher, experienced in ISO/IEC 15504 assessments, acted as a third-party assessor.

Architectural design

For the ENG.3 System architectural design, table 2 presents the correlation coeffi-
cient between student and teacher assessments and the correlation coefficient between
student and third-party assessments. Assessment relies on 3 BPs and 2 WPs. Table 2
presents also the average assessment for each assessed item. The correlation coeffi-
cient between self-assessment and teacher assessment measures is r1 = 0.28 and
the correlation coefficient between self-assessment and third-party assessment
measures is r2 = 0.24. There is no real indication for a correlation.

Table 2: ENG.3 (self, teacher and third-party)
Stud. Tch.  3-party rStd- r Std-
avg avg avg. Tch 3party

BP1: Describe system architecture 2.24 2.02 1.68 -0.22 0.18
BP3. Define interfaces 1.96 2.16 1.56 0.48 0.36
BP4. Ensure consistency 2 1.72 0.88 0 0.44
04-01 Database design 2.48 2.2 1.88 0.49 0.35
04-04 High level design 2.12 1.84 1.64 0.37 -0.11

Detailed correlation is poor, except maybe for database design and interface de-
sign, but these technical topics are deeply addressed in the curriculum. An half of
students perform a very superficial architectural work because they are eager to jump



to the code. They believe that the work is fair enough but teachers do not. The BP4.
Ensure consistency is a traceability matter that suffers the same problem described
above. A similar concern to requirements arose: most students took Work Products
(Design Documents) assessment as an indication of their achievement.

Students reported that requirement analysis greatly helped to figure out the system
behavior and facilitated the design phase and interface specification. However, stu-
dents had never really learnt architectural design and interface between sub-systems,
indeed it explains the low third-party assessment average for BPS and WPs.

Integration

ENG.7 Software integration is assessed with 6 main Base Practices and 2 Work
Products. The correlation coefficient between self and teacher assessments is r1 =
-0.03 and the correlation coefficient between self and third-party assessments is r2
= 0.31. However, several BPs or WPs were assessed by the third-party assessor
with the same mark for all students (N or P): the standard deviation is zero and the
correlation coefficient is biased and was not used. Table 3 presents the assessment
average for the third types of assessment.

Table 3: ENG.7 indicators
Stud. Tch.  3-party

avg avg avg.
BP1: Develop software integration strategy 1.56 1.20 0.40
BP2: Develop tests for integrated software items 2.08 1.08 0.52
BP3: Integrate software item 2.00 2.12 1.76
BP4: Test integrated software items 2.00 1.80 1.16
BP5. Ensure consistency 1.76 1.20 0.72
BP6: Regression test integrated software items 1.64 0.52 0.2
08-10 Software integration test plan 1.44 0.88 0.00
11-01 Software product 2.04 2.12 1.48

All BPs and WPs related to integration and test are weakly third-party assessed, in-
dicating that students are not really aware of these topics, a common hole in a Bache-
lor curriculum. Some students were aware of the poor maturity of the integrated prod-
uct, partly due to the lack of testing. Although the Junit framework has been taught
during the first semester, some students did not see the point to use it while some
others did not see how to use it for the project. As mentioned by [4], we came to
doubt the veracity of process data we collected. Students reported that they appreciat-
ed the high-level discipline that the capstone imposed, but they balked at the details.

3.4  Batch 2 : information system development

For the batch 2, students have to work loosely in pairs; each of the two has developed

different components of the information system and has been assessed individually.
Table 4 presents the correlation coefficient r between student and teacher assess-

ment for the ENG.6 Software construction process. It relies on 4 Base Practices and 2



Work Products. Table 4 presents also the average assessment for each assessed item.
The correlation coefficientis r = 0.10 and there is no indication for a correlation.

However, BPs and WPs related to unit testing were assessed by the teacher with
almost the same mark for all students (N or P), biasing the correlation coefficient. If
we remove BPs and WPs related to unit testing (17-14 Test cases specification; 15-10
Test incidents report; BP1: Develop unit verification procedures), we getr = 0.49,
indicating a possible correlation.

Table 4: ENG.6 assessment (self and teacher)
Stud. avg Tch. avg r

BP1: Develop unit verification procedures 1.84 0.40 0.05
BP2: Develop software units 1.92 1.84 0.37
BP3: Ensure consistency 1.92 0.92 0.25
BP4: Verify software units 1.96 1.00 -0.2
17-14 Test cases specification 1.80 0.36 0.07
15-10 Test incidents report 1.52 0.12 -0.45

Our bachelor students have little awareness of the importance of testing, including
test specification and bugs reporting. This issue has been raised by professional tutors
many times during the internships but no effective solution has been found until yet.

Students reported that the ENG.6 Software construction process raised a certain
anxiety because students had doubt about their ability to develop a stand-alone server
interoperating with a JDeveloper application and two databases but most students
succeeded. For some students, a poor Java literacy compromised the project progress.
It is one problem reported by Goold: the lack of technical skills in some teams [5].

4 Conclusion

The research question aims to see how students’ self-assessment and external assess-
ment [by a teacher or a third-party] are correlated. This is not true for topics not ad-
dressed in the curriculum or unknown by students. For well-known topics, assess-
ments are correlated roughly for the half of the study population. It might indicate that
in a professional setting, where employees are skilled for the required tasks, self-
assessment might be a good replacement to external assessment.

Using a third-party assessment instead of coaches’ assessment was not convincing.
Third-party assessment is too harsh and tends to assess almost all students with the
same mark. Self-knowledge or teacher’s understanding tempers this rough assessment
towards a finer appreciation.

The interest of a competencies model (process/BPs/WPs) is to supply a reference
framework for doing the job. Software professionals may benefit from self-
assessment using a competencies model in order to record abilities gained through
different projects, to store annotations related to new skills, to establish snapshots in
order to evaluate and recognize knowledge, skills and experience gained over long
periods and in diverse contexts, including in non-formal and informal settings.



5 Acknowledgements

We thank all the students of the 2016-2017 final year of Bachelor in Computer Sci-
ence for their agreement to participate to this study, and especially Maxens Manach
and Killian Monot who collected and anonymized the assessments. We thank Lau-
rence Duval, a teacher that coached and assessed half of the students during batch 1.

References

1. ACM: 2013 Computer Science Curricula - Curriculum Guidelines for Undergraduate De-
gree Programs in Computer Science. http://www.acm.org/education/CS2013-final-
report.pdf (last accessed 2017/16/6).

2. Capstone project. In S. Abbott (Ed.) The glossary of education reform.
http://edglossary.org/capstone-project (last accessed 2016/23/3).

3. Dascalu, S. M., Varol, Y. L., Harris, F. C., Westphal, B. T.: Computer science capstone
course senior projects: from project idea to prototype implementation. In Proceedings 35"
Conference on Frontiers in Education, pp. S3J-1. IEEE, Indianapolis, USA (2005).

4. Umphress D. A., Hendrix T. D., Cross J. H.: Software process in the classroom: the Cap-
stone project experience. IEEE Software, 19(5), pp. 78-81 (2002).

5. Karunasekera, S., Bedse, K.: Preparing software engineering graduates for an industry ca-
reer. In Proceedings of the 30" Conference on Software Engineering Education & Training
(CSEE&T), pp. 97-106. IEEE, Dublin, Ireland (2007).

6. Vasilevskaya M., Broman D., Sandahl K.: Assessing Large-Project Courses: Model, Ac-
tivities, and Lessons Learned. Transactions on Computing Education 15(4), 30 p. (2015).

7. Bloomfield A., Sherriff M., Williams K.: A service learning practicum capstone. In 45™
technical symposium on Computer science education (SIGCSE), pp. 265-270 (2014).

8. Goold A.: Providing process for projects in capstone courses. In Proceedings of the 8"
conference on Innovation and technology in computer science education (ITiCSE), pp. 26-
29. ACM, Thessaloniki, Greece (2003).

9. Ribaud V. et al.: Process Assessment Issues in a Bachelor Capstone Project. In Interna-
tional Workshop on Software Process Education, Training and Professionalism
(IWSPETP), pp. 25-33. CEUR 1368, Gothenburg, Sweden (2015).

10. Dollard J., Miller N.E.: Personality and psychotherapy; an analysis in terms of learning,
thinking, and culture. McGraw-Hill, New York (1950).

11. ISO/IEC 12207:2008, Systems and software engineering -- Software life cycle processes.
ISO, Geneva (2008).

12. Rout, T.: The evolving picture of standardisation and certification for process assessment.
In Proceedings of the 7" Conference on Quality of Information and Communications
Technology (QUATIC), pp. 63-72. IEEE, Portugal (2010).

13. ISO/IEC 15504-5:2012. Information technology -- Process assessment -- Part 5: An exem-
plar software life cycle process assessment model. 1ISO, Geneva (2012).

14. Ribaud V., Saliou P.: Towards an ability model for SE apprenticeship. Innovation in
Teaching and Learning in Information and Computer Science 6(3), pp. 7-107 (2007).

15. ISO/IEC 33001:2015. Information technology -- Process assessment -- Concepts and ter-
minology. ISO, Geneva (2015).

16. ISO/IEC 33020:2015. Information technology -- Process assessment -- Process measure-
ment framework for assessment of process capability. ISO, Geneva (2015).


http://www.acm.org/education/CS2013-final-report.pdf
http://www.acm.org/education/CS2013-final-report.pdf
http://edglossary.org/capstone-project
http://ceur-ws.org/Vol-1368

