Skip to main content

Joint Supervoxel Classification Forest for Weakly-Supervised Organ Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Abstract

This article presents an efficient method for weakly-supervised organ segmentation. It consists in over-segmenting the images into object-like supervoxels. A single joint forest classifier is then trained on all the images, where (a) the supervoxel indices are used as labels for the voxels, (b) a joint node optimisation is done using training samples from all the images, and (c) in each leaf node, a distinct posterior distribution is stored per image. The result is a forest with a shared structure that efficiently encodes all the images in the dataset. The forest can be applied once on a given source image to obtain supervoxel label predictions for its voxels from all the other target images in the dataset by simply looking up the target’s distribution in the leaf nodes. The output is then regularised using majority voting within the boundaries of the source’s supervoxels. This yields sparse correspondences on an over-segmentation-based level in an unsupervised, efficient, and robust manner. Weak annotations can then be propagated to other images, extending the labelled set and allowing an organ label classification forest to be trained. We demonstrate the effectiveness of our approach on a dataset of 150 abdominal CT images where, starting from a small set of 10 images with scribbles, we perform weakly-supervised image segmentation of the kidneys, liver and spleen. Promising results are obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boykov, Y.Y., Jolly, M.M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: ICCV 2001, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  2. Chen, X., Shrivastava, A., Gupta, A.: Enriching visual knowledge bases via object discovery and segmentation. In: Proceedings of the IEEE conference on CVPR, pp. 2027–2034 (2014)

    Google Scholar 

  3. Conze, P.H., Tilquin, F., Noblet, V., Rousseau, F., Heitz, F., Pessaux, P.: Hierarchical multi-scale supervoxel matching using random forests for automatic semi-dense abdominal image registration. In: IEEE ISBI (2017)

    Google Scholar 

  4. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis. Springer, London (2013). doi:10.1007/978-1-4471-4929-3

    Book  Google Scholar 

  5. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MCV 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18421-5_11

    Chapter  Google Scholar 

  6. Deselaers, T., Alexe, B., Ferrari, V.: Weakly supervised localization and learning with generic knowledge. IJCV 100(3), 275–293 (2012)

    Article  MathSciNet  Google Scholar 

  7. Dutt Jain, S., Grauman, K.: Active image segmentation propagation. In: Proceedings of the IEEE Conference on CVPR, pp. 2864–2873 (2016)

    Google Scholar 

  8. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59, 167–181 (2004)

    Article  Google Scholar 

  9. Glocker, B., Zikic, D., Haynor, D.R.: Robust registration of longitudinal spine CT. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 251–258. Springer, Cham (2014). doi:10.1007/978-3-319-10404-1_32

    Google Scholar 

  10. Grauman, K., Darrell, T.: Unsupervised learning of categories from sets of partially matching image features. In: 2006 IEEE Computer Society Conference on CVPR, vol. 1, pp. 19–25. IEEE (2006)

    Google Scholar 

  11. Kanavati, F., Tong, T., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D., Glocker, B.: Supervoxel classification forests for estimating pairwise image correspondences. Pattern Recogn. 63, 561–569 (2017)

    Article  Google Scholar 

  12. Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22092-0_16

    Chapter  Google Scholar 

  13. Rubinstein, M., Liu, C., Freeman, W.T.: Joint inference in weakly-annotated image datasets via dense correspondence. IJCV 119(1), 23–45 (2016)

    Article  MathSciNet  Google Scholar 

  14. Russell, B.C., Efros, A.A., Sivic, J., Freeman, W.T., Zisserman, A.: Using multiple segmentations to discover objects and their extent in image collections. In: Proceedings of the IEEE Computer Society Conference on CVPR, vol. 2, pp. 1605–1612 (2006)

    Google Scholar 

  15. Tong, T., Wolz, R., Wang, Z., Gao, Q., Misawa, K., Fujiwara, M., Mori, K., Hajnal, J.V., Rueckert, D.: Discriminative dictionary learning for abdominal multi-organ segmentation. Med. Image Anal. 23(1), 92–104 (2015)

    Article  Google Scholar 

  16. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)

    Article  Google Scholar 

  17. Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: 2011 IEEE Conference on CVPR, pp. 2217–2224. IEEE (2011)

    Google Scholar 

  18. Xu, J., Schwing, A.G., Urtasun, R.: Learning to segment under various forms of weak supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3781–3790 (2015)

    Google Scholar 

  19. Zhou, S.: Introduction to medical image recognition, segmentation, and parsing, Chap. 1. In: Zhou, S.K. (ed.) Medical Image Recognition, Segmentation and Parsing, pp. 1–21. Academic Press, New York (2016)

    Google Scholar 

  20. Zikic, D., Glocker, B., Criminisi, A.: Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Med. Image Anal. 18, 1262–1273 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahdi Kanavati .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1896 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kanavati, F., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D., Glocker, B. (2017). Joint Supervoxel Classification Forest for Weakly-Supervised Organ Segmentation. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics