
The University of Manchester Research

Indecisive trees for classification and prediction of knee
osteoarthritis
DOI:
10.1007/978-3-319-67389-9_33

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Minciullo, L., Bromiley, P. A., Felson, D. T., & Cootes, T. F. (2017). Indecisive trees for classification and prediction
of knee osteoarthritis. In Machine Learning in Medical Imaging - 8th International Workshop, MLMI 2017, Held in
Conjunction with MICCAI 2017, Proceedings (Vol. 10541 LNCS, pp. 283-290). (Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol.
10541 LNCS). Springer Nature. https://doi.org/10.1007/978-3-319-67389-9_33
Published in:
Machine Learning in Medical Imaging - 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI
2017, Proceedings

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1007/978-3-319-67389-9_33
https://research.manchester.ac.uk/en/publications/fc654def-decc-45a8-9768-98b40082891f
https://doi.org/10.1007/978-3-319-67389-9_33


Indecisive Trees for Classification and Prediction
of Knee Osteoarthritis

Luca Minciullo1, Paul A. Bromiley1, David T. Felson2 and Timothy F. Cootes1

1 The University of Manchester
2 ARUK Epidemiology Unit, The University of Manchester

Abstract. Random forests are widely used for classification and regres-
sion tasks in medical image analysis. Each tree in the forest contains
binary decision nodes that choose whether a sample should be passed to
one of two child nodes. We demonstrate that replacing this with some-
thing less decisive, where some samples may go to both child nodes, can
improve performance for both individual trees and whole forests. Intro-
ducing a soft decision at each node means that a sample may propagate
to multiple leaves. The tree output should thus be a weighted sum of the
individual leaf values. We show how the leaves can be optimised to im-
prove performance and how backpropagation can be used to optimise the
parameters of the decision functions at each node. Finally, we show that
the new method outperforms an equivalent random forest on a disease
classification and prediction task.

Keywords: Random Forests, Decision Trees, Optimisation

1 Introduction

Decision trees, particularly in the form of Random Forests, are widely used in
medical image analysis for tasks such as landmark localisation [5], segmentation
[8] and classification [6, 7]. In most cases each tree uses hard decision nodes, a
threshold on a feature response derived from the input, in which a sample is
channelled either to the left or right child node. Thus one input sample ends up
at exactly one leaf, which holds the output for the tree.

A natural extension is to replace this binary decision with something softer,
so that a sample can go down both branches, but with different weights or prob-
abilities depending on the feature response at the node. An early example of
this approach was “Fuzzy Decision Trees” [9] in which a sigmoidal function was
used to assign a weight to be passed down each child branch. The approach
was extended in [4], where a forest of such trees was integrated into a deep net-
work allowing end-to-end training. However, one problem with using a sigmoidal
transfer function is that every input effectively ends up at every leaf of the tree
with a non-zero weight, though at most leaves the weight may be very close to
zero. This is potentially very inefficient for deep trees.

In this paper we introduce trees in which only samples near the decision
boundary are propagated to both children; most samples only go to one child.



This is equivalent to using a simple, sloped step function to compute the weights.
Each input is then propagated to a relatively small number of leaves. This allows
the use of deep trees whilst retaining most of the efficiency of binary decision
trees. We describe the approach in detail, including a greedy method for train-
ing a tree. As with fuzzy trees, both the values stored at the leaf nodes and the
parameters of the transfer functions can be optimised using either closed form
or gradient descent approaches, leading to better performance than that from
the greedy training. We demonstrate that replacing random forests with these
more indecisive trees leads to improvements in overall performance on a classi-
fication task. We show the improvement in performance of our methodology on
Osteoarthritis (OA) classification and prediction tasks. OA is the most common
form of arthritis, affecting millions of people around the world, the chance of de-
veloping the disease being particularly high in older people. The most common
signs of OA are osteophytes, bony spurs that grow on the bones of the spine or
around the joints, joint space narrowing (JSN), and calcium deposits. We train
our trees to use features that measure the shape and appearance of the knee in
radiographs, to classify OA status and predict who is at risk of developing the
disease.

2 Background

Random Forests are a very successful machine learning ensemble model, where
each of the sub-models is a binary decision tree. The randomness comes from two
main sources. First, each of the decision trees is trained on a different sample of
the original dataset, obtained by generating multiple bootstrap samples. Second,
the optimal split is found by considering only a random subset of the features
appearing in the data.

Ren et al. [8] showed how the leaves of a forest could be mutually optimised
to give better performance than that of a forest with independent trees. Fuzzy
decision trees, which can be optimised by a backpropagation-like algorithm, were
introduced in [9]. They proposed training a tree in the normal way, then replac-
ing the binary decision threshold with a sigmoidal function to indicate branch
membership, the parameters of which could then be optimised. Kontschieder
et al. [4] extended this idea to full decision forests, using a sigmoidal decision
function. They too used a stochastic gradient descent approach to optimise the
parameters of the decision nodes and the leaves. The decisions at each node were
based on the output of one node of a deep convolutional network, making the
entire system amenable to end-to-end training.

When using a sigmoidal function for branch membership, every sample ends
up being propagated to every leaf of the tree, even though at some leaves the
membership value may be very small. This may lead to inefficiencies for deep
trees. To overcome this we use a ramp function for the membership propagation

π(x; t0, t1) =


0 if f(x) ≤ t0

(f(x)−t0)
(t1−t0) if t0 < f(x) < t1

1 if f(x) ≥ t1
(1)



where f(x) is a feature derived from the input x and t0 < t1 are two thresholds
defining the ramp function. Thus, if the membership for either branch is zero,
we do not need to propagate down that branch. During training we choose
the thresholds so that a given proportion of the training samples are in the
ambiguous region (see below).

2.1 Evaluating the result from a tree

An indecisive tree is a collection of decision nodes and leaf nodes. Each decision
node has two child nodes (left and right), a function that computes a scalar
feature value from the input f(x), and two threshold values defining the transfer
function, t0, t1. Each leaf node contains an output value. When an input, x, is
evaluated with the tree, the output is a set of leaf values and associated weights,
S = {(vi, wi)}. Starting at the root node, we propagate an input through the
nodes, exploring only the branches with non-zero weights. Each node either adds
its value (if it is a leaf) to a set of outputs, or it propagates the input and weight
to one or both of its child nodes. This can be computed with a recursive function,
starting at the root node with a unit weight: S =EVALUATE(root,(x, 1.0), {}).
The function is defined as follows:

1: function evaluate(node,(x, w),S)
2: if node.isLeaf then
3: S ← {S, (node.value, w)}
4: else
5: µ = π(node.f(x), node.t0, node.t1)
6: wL = (1− µ)w
7: wR = µw
8: if wL < wR then
9: if (wL < wt) then wL ← 0, wR ← w

10: else
11: if (wR < wt) then wR ← 0, wL ← w
12: end if
13: if (wL > 0) S ←EVALUATE(node.leftChild,(x, wL),S)
14: if (wR > 0) S ←EVALUATE(node.rightChild,(x, wR),S)
15: end if
16: return S
17: end function

The tests in lines 8-12 allow a threshold (wt) to be enforced on the smallest
allowable weight. If a split would cause the weight propagated to one child node
to fall below the threshold, then that child node is ignored and all the weight
is passed to the other child. Setting wt > 0 ensures that no leaf is reached with
a weight lower than wt, and focuses processing on the branches with higher
weights. It thus also limits the maximum number of leaves that can be returned
to w−1

t . The output of the tree can then be computed from S as the weighted
sum of the leaf outputs, v =

∑
i wivi.



3 Training and Optimising Indecisive Trees

In a similar way to training a normal decision tree, an indecisive tree is trained
using a greedy recursive algorithm in which each node finds a feature and thresh-
old to split the data arriving at it so as to minimise a cost function. During
training a sample consists of a triplet, (x,y, w), containing the input vector, the
target output and a weight. To train a node, we consider the set of n samples D
arriving from the parent node. To evaluate a particular choice of feature, f(x),
and thresholds t0, t1, we compute the sets of data DL and DR that would be
propagated to the child nodes, and the cost function

C(f, t0, t1) = C(DL) + C(DR) (2)

The cost C(D) depends on the task. For instance, for regression, it can be the
sum-of-squared differences. A random selection of features and possible thresh-
olds is evaluated, and those giving the lowest cost retained.

Since finding the optimal pair of thresholds can be computationally expen-
sive, we use the following approach. For each input (xi,yi, wi) we compute the
feature value fi = f(xi), then rank the samples using this value. Let (xj ,yj , wj)
be the jth sample in this ranked list. By computing running sums through this
ranked data we can efficiently locate the index, k, for the hard split leading
to the lowest total cost (all samples j ≤ k are sent to one child, all j > k
to the other). We then introduce an ambiguous region to include a proportion
of approximately r ∈ [0, 1] of the samples by setting j0 = max(1, k − 0.5rn),
j1 = min(n, k + 0.5rn), and selecting t0 = fj0, t1 = fj1.

Since the samples in the ambiguous region will go to both children, the total
number of samples propagated from nodes at depth d will be approximately
n0.(1 + r)d, where n0 is the original number of training examples, though it
should be remembered that the total weight for each of the original samples will
always sum to unity. In order to avoid propagating large numbers of samples
with small weights, we use the same technique as described above (Sec. 2.1). If a
sample weight would fall below wt when propagated to one child node, we ignore
that child and propagate all the sample weight to the other child. Decision nodes
are added in a recursive manner until a suitable stopping condition (a maximum
depth, minimum number of samples or measure of spread) is reached. The values
at the leaf nodes can then be set to the weighted mean of the samples reaching
that node, for instance for regression, the value

t =
(∑

wiyi

)
/
(∑

wi

)
(3)

3.1 Optimising the leaf values

A tree with vector output can be expressed as a function of input x

y = Vw(x) (4)



where V is a matrix whose columns are all the leaf vectors, and w(x) is the
sparse vector of weights returned by the tree, which selects the leaves to which
x in propagated. Thus the outputs corresponding to the training inputs can be
expressed as

Y = VW (5)

where Y = (y1|...|yn) and W = (w(x1)|...|w(xn)) is a sparse matrix.
For regression, as in [8], the leaf values can be found by minimising

Q(V) = ||VW −Y||2 + α||V||2 (6)

where α is an optional ridge regression regularisation function. Since W is sparse
the solution can be found efficiently with conjugate gradient descent.

3.2 Optimising the decision nodes

If the leaf values are fixed, each decision node only affects the final output
through the way it changes the weights on the samples passing through it. As in
[9, 4] we can use a gradient descent-based backpropagation algorithm to optimise
the parameters. However, in our case, since each sample only passes through a
small subset of nodes, this can be significantly more efficient, as we only have
to compute values at the nodes visited. The cost function to be minimised is of
the form

QT (θ; {(xi,yi)}) =
∑
i

Q(Vw(xi, θ),yi) (7)

where θ are the parameters affecting the weights and Q(t,y) is the cost function
comparing the output of the tree, t = Vw(x, θ) with the target output y.

Gradient at leaf nodes: The contribution to the output from a single leaf
node is given by wv, where w is the weight of the sample arriving at the leaf.
For one leaf,

dQ

dw
=
dQ

dt

dt

dw
= vT

dQ

dt
(8)

Gradient at decision nodes: At a decision node, the weights passed to
the output nodes are given by(

wL
wR

)
= w

(
1− π(f, t0, t1)
π(f, t0, t1)

)
(9)

If the parameters at the decision nodes are θ, then

dQ
dθ = dwR

dθ
dQ
dwR

+ dwL

dθ
dQ
dwL

= w dπ
dθ

dQ
dwR
− w dπ

dθ
dQ
dwL

= w dπ
dθ

(
dQ
dwR
− dQ

dwL

) (10)

Similarly
dQ

dw
= π(θ)

dQ

dwR
+ (1− π(θ))

dQ

dwL
(11)



π()w

wL

wR
a) Forward pass

dQ
dθ

dQ
dw

dQ
dwL

dQ
dwR

b) Backward pass

Fig. 1: During the forward pass (root to leaves), weights are calculated. During
the backward pass (leaves to root), gradients are calculated.

During the backward pass we use (10) to compute the gradient w.r.t. the
thresholds t0 and t1. In the experiments below we keep the features fixed, but it
would also be possible to compute gradients of any parameters of the features.

We use the following algorithm to update the parameters of each node (t0, t1):

1: function UpdateNodes(X = {(xi,yi)})
2: for all x in X do
3: Feed x forward through tree to calculate weights
4: Visit each node in reverse depth order - compute gradients
5: Update estimate of mean gradient over batch
6: end for
7: Update parameters using mean gradient
8: end function

In the following the parameter update is made using a momentum term, but
something more sophisticated could be used.

4 Experiments

Here we focus on two classification tasks related to knee osteoarthritis. The
features used were shape, texture and appearance parameters extracted from
lateral knee radiographic images (Fig. 2). Those features were obtained by first
building a statistical appearance model [1] of the knee. This model was a PCA-
based combination of statistical shape and texture models and was built on fully
automated annotations found using a 3-stage Constrained Local Model [2].

Data. The images were taken from the Multicentre Osteoarthritis Study
(MOST) dataset [3]. MOST is a longitudinal prospective study that collected
data from 3026 participants with a 7-year follow-up. Lateral radiographs have
been collected at each time-point for both knees and a KL (Kellgren-Lawrence)
grade assessing the severity of the disease was assigned to each knee. For our
binary classification tasks the grades were split into two groups: non-OA, KL
(0,1), and the OA group, KL(2-4). The first task was OA classification, where
the goal was to distinguish patients from the two groups, and used 8606 OA
(KL ≥ 2) and 10604 non-OA images. In the second task we considered 3478
baseline images with no OA (KL ≤ 1) and aimed to discriminate those that
would develop OA within 84 months from those that would not.

Knee OA classification tasks. We compared the performance of our
Indecisive Forest (IF) with a standard Random Forest (RF) in 5-fold CV ex-



0 2 4 6 8 10 12 14 16 18 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

depth

Proportion of examples propagated to both children at each level

 

 

0.1

0.15

0.2

0.25

0.3

Fig. 2: An example of the landmark points used to build the appearance model
(Left). Proportion of examples within the indecisive window at each level for
different choices for window width. (Right)

periments. A parameter sweep suggested that a good choice for the parameter
responsible for the width of indecision window was r = 0.3. In addition, we ap-
plied the tuning algorithm described above to optimise the IF, and evaluated
the performance. We report the area under the ROC curve to evaluate each
of the models in Table 1. This shows that for both classification tasks the IF
performed better than a standard Random Forest, with an improvement of at
least 2% for both classification and prediction. The optimisation improved the
results for the OA classification task, while the OA prediction performance did
not change significantly. Our results on both tasks achieved the state-of-the-art
on the MOST dataset using only lateral knee radiographs (compared to [7]).

Figure 2 (Right) shows that the proportion of examples within the indeci-
sive region increases when the window width increases and decreases linearly as
examples go deeper in the trees.

Timings. The average time to train a standard tree on the prediction
dataset was 9.3s, compared to 94.9s for each indecisive tree. The average tree
optimisation time depended on the dataset and the parameter choice, ranging
from 3s to 2 minutes. There was little difference in time taken when applying
the trees.

OA Classification OA Prediction

Baseline Forest 86.35 ± 0.99 59.03 ± 1.20

IF 87.61 ± 0.94 61.11 ± 1.79

OIF 88.15 ± 0.91 59.11 ± 2.01

Table 1: AUC for the two knee OA tasks: comparing a standard Random Forest
with both an Indecisive Forest (IF) and an Optimised Indecisive Forest (OIF).



5 Discussion and Conclusions

We have presented an improvement on the standard random forest that uses a
ramp function with an ambiguous region to train and test decision trees. We
showed improved performance, compared to a standard Random Forest, on two
OA-related classification tasks. The combined leaf and node optimisation further
improved the results on one of the tasks. The indecisive forests take longer to
train and optimise. Pilot experiments on regression tasks have shown small but
encouraging improvements, something that we will explore in future work.

6 Acknowledgments

The research leading to this results has received funding from EPSRC Centre
for Doctoral Training grant 1512584. This publication also presents independent
research supported by the Health Innovation Challenge Fund (grant no. HICF-
R7-414/WT100936), a parallel funding partnership between the Department of
Health and Wellcome Trust, and by the NIHR Invention for Innovation (i4i)
programme (grant no. II-LB 0216-20009). The views expressed are those of the
authors and not necessarily those of the NHS, NIHR, the Department of Health
or Wellcome Trust.

References

1. T. F. Cootes, C. J. Taylor, et al. Statistical models of appearance for computer
vision, 2004.

2. D. Cristinacce and T. F. Cootes. Feature detection and tracking with constrained
local models. In BMVC, 2006.

3. D. Felson, J. Niu, T. Neogi, J. Goggins, M. Nevitt, F. Roemer, J. Torner, C. Lewis,
A. Guermazi, and M. I. Group. Synovitis and the risk of knee osteoarthritis: the
most study. Osteoarthritis and Cartilage, 24(3):458–464, 2016.

4. P. Kontschieder, M. Fiterau, A. Criminisi, and S. Bulo. Deep neural decision forests.
In International Conference on Computer Vision, 2015.

5. C. Lindner, P. Bromiley, M. Ionita, and T. Cootes. Robust and accurate shape model
matching using random forest regression-voting. IEEE Trans. Pattern Analysis and
Machine Intelligence, 37(9):1862–1874, 2015.

6. L. Minciullo and T. F. Cootes. Fully automated shape analysis for detection of
osteoarthritis from lateral knee radiographs. In ICPR, 2016.

7. L. Minciullo, J. Thomson, and T. F. Cootes. Combination of lateral and pa view
radiographs to study development of knee oa and associated pain. In SPIE Medical
Imaging, pages 1013411–1013411. International Society for Optics and Photonics,
2017.

8. S. Ren, X. Cao, Y. Wei, and J. Sun. Global refinement of random forest. In
Computer Vision and Pattern Recognition, 2015.

9. A. Suarez and J. Lutsko. Globally optimal fuzzy decision trees for classification and
regression. IEEE Trans. Pattern Analysis and Machine Intelligence, 21(12):1297–
1311, 1999.


